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Motivation 

Many applications fail to harness all of the available computational power 
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Leveraging Multiple Devices 

Writing correct multi-device applications is challenging 

Writing efficient multi-device applications is even harder 

 

The optimal division of labor depends on: 

– Hardware characteristics 

– Input data set 

– Behavior of other applications 

– Metric being optimized 

 

Efficiently orchestrating the data movement and kernel invocations is complicated: 

– Set appropriate flags based on hardware and software characteristics 

– Use multiple buffers to overlap operations 
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Goal: Automatically load balance a single-device 

application across multiple (heterogeneous) devices 
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Outline 

Motivation 

Our approach: dynamic chunking 

 Load balancing framework 

Preliminary results 

Conclusions and future work 
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Our Approach: Dynamic Chunking 

Break the kernel into multiple chunks 

– Key distinction: # chunks > # devices 

Dynamically schedule chunks to devices 

– Scheduling decisions and chunk sizes based on online profiling 
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Chunking 

Chunk: a contiguous set of work groups 

– Division can be along any dimension 

– Different chunks can be different sizes 
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Chunking: Kernel + Data 

Need to ensure that: 

– The input data consumed by each chunk is copied to device memory 

– The output data produced by each chunk is copied back to host memory 

Application 

GPU CPU 

Data 

Kernel 

Application 

GPU CPU 

Chunk 1 

Chunk 2 

Chunk 3 



9 |  Automatic Intra-Application Load Balancing  |  June 14, 2011 

Chunking: Advantages & Challenges 

Advantages: 

– No training required, even as hardware changes 

– Can respond to dynamic performance changes due to: 

 Data-dependent behavior 

 Contention from other applications 

– Can overlap kernel execution and data transfer 

 

Challenges: 

– Managing contention 

 Contention from other applications 

 CPU is both host and compute device 

 Memory contention between CPU & GPU operations 

– Dispatch overhead 

– Determining which data is accessed by each chunk 

 Difficult data structures / access patterns 
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Chunking: Overlapping Operations 
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Load-Balancing Framework 
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Framework Overview 
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Framework Requirements 

1. Intercept OpenCL API calls 

2. Determine what data to transfer to each device 

3. Orchestrate and balance execution across the devices 
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Framework Components 

1. API intercept layer 

– Intercepts and transforms calls from application to OpenCL runtime 

 

2. Access pattern extractor 

– Analyzes kernel source code to extract data access patterns 

 

3. Chunk scheduler 

– Breaks kernels into chunks and schedules them onto devices 
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API Intercept Layer 

 Intercepts each OpenCL API call and replicates it across multiple devices or transforms it 

clCreateCommandQueue 

Application View System View 

GPU GPU CPU 

clCreateBuffer 

GPU GPU CPU 

OpenCL API Function 
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Access Pattern Extractor 

Need a mechanism for sending the right data to each device 

 

Given the kernel source, determines: 

– Mapping from chunk to memory region 

– Preferred chunking direction 

Kernel source code is available from intercepting call to the OpenCL compiler 

 

Output: function that returns the region of memory accessed by a given chunk 

– Callable by the chunk scheduler 

– Works for arbitrary chunk sizes 
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Access Pattern Extractor: Details 

Built on Clang (LLVM’s front-end) 

– Clang’s OpenCL support is under active development 

– For now, add an implicit header to define built-in data types and functions 

 

Basic idea: traverse the kernel AST 

– Identify accesses to memory buffers 

– Express buffer offsets in terms of values that can be reasoned about at kernel invocation time 

– Determine relationship between accesses from different work items 
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Access Pattern Extractor: Example 

__kernel void blackScholes(const __global float4 *randArray, 

    … 

    __global float4 *put, int width) { 

     

 size_t xPos = get_global_id(0); 

 size_t yPos = get_global_id(1); 

 float4 inRand = randArray[ yPos * width + xPos ]; 

 … 

 put[ yPos * width + xPos ]  = KexpMinusRT * phiD2 - S * phiD1; 

Read access 

Write access 
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Access Pattern Extractor:  Input vs. Output Buffers 

 Input buffers: 

– Can afford to be imprecise 

– Approach: determine minimum and maximum offset and transfer entire range 

 

 Output buffers: 

– Need to be precise 

– Approach: determine parameters of strided access 

Buffer Access Input Buffer Output Buffer 
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Scheduler 

Breaks kernel into chunks 

For each chunk: 

– Sends input data to device 

– Launches kernel on device 

– Copies output data back to host 

 

Mapping of chunks to devices is determined dynamically, based on online profiling data 
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Dynamic Scheduling 

 If number of work groups is small, skip chunking and send whole kernel to one device 

 

Otherwise, send initial chunks to each device: 

– Initial chunk size set to exactly fill each device 

Maintain two chunks outstanding to each device to hide dispatch overheads 

Exponentially increase chunk sizes for “fast” devices until “slow” device has completed a chunk 

Once performance data is available for all devices: 

– Distribute a portion of the remaining work to all devices based on relative performance 

– Maintain aggregate history information, but decay it exponentially 
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Preliminary Results 
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Experimental Systems 

1. CPU + GPU: 

 AMD Radeon HD 5870 (Cypress) 

 Intel Core i7 920: quad-core, hyper-threaded, 2.67 GHz 

 

2. Homogenous Multi-GPU: 

 2 x AMD Radeon HD 5870 

 

3. Heterogeneous Multi-GPU: 

 AMD Radeon HD 5870 

 AMD Radeon HD 6570 (Turks) 
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Synthetic Benchmark: Computation-to-Communication Ratio 

Ratio of kernel execution time to data transfer time can be controlled arbitrarily 

Data Transfer KE 10 / 90 

Data Transfer Kernel Execution 50 / 50 

Kernel Execution DT 90 / 10 
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Synthetic Benchmark Results 
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Sample Applications 

From Rodinia benchmark suite: 

– SRAD 

From AMD APP SDK: 

– Mandelbrot 

– Black-Scholes 
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Results: CPU + GPU, SRAD 
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Results: Heterogeneous Multi-GPU, Mandelbrot 
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Results: Homogeneous Multi-GPU, Black-Scholes* 
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Previous Work: Qilin 

Divides a CUDA kernel across a CPU and GPU 

 

 Limitations: 

– Requires manual creation of CPU & GPU versions of kernel 

– Requires a training phase 

– Scheduling is static 

– Only works on NVIDIA GPUs 

 

 

Reference: C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous 

multiprocessors with adaptive mapping,” in MICRO 42: Proceedings of the 42nd Annual IEEE/ACM 

International Symposium on Microarchitecture, 2009. 
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Previous Work: Single Compute Device Image 

Divides an OpenCL kernel across multiple GPUs 

 

 Limitations: 

– Naïve scheduling: each device gets an equal amount of work 

– Only works on NVIDIA GPUs 

 

 

Reference: J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device image in OpenCL for 

multiple GPUs,” in Proceedings of the 16th ACM symposium on Principles and Practice of Parallel 

Programming, 2011. 
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Challenges and Future Work 

 Tune the framework for different hardware and software configurations 

 

 Optimize for different metrics 

 

 One version of the kernel for multiple devices 

– Optimizations for GPU may hurt performance on CPU and vice versa 

– Supporting device-specific kernels would allow a tradeoff between programmer effort and performance 

 

 Multiple kernel calls 

– Need to understand data flow between kernel calls 

 

 Possible (but rare) for work groups to communicate with each other using atomic instructions 

– Difficult to support across multiple devices efficiently 

 

 Deployment possibilities: 

– OpenCL layer targeting standalone applications 

– Layer in the Fusion software stack 
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Conclusions 

Heterogeneous multi-device systems (like Fusion) are becoming ubiquitous 

– Effectively utilizing the available devices is difficult 

 

Our framework automatically load balances unmodified OpenCL applications across multiple (possibly 

heterogeneous) devices 

– Extracts access patterns to determine mapping of work groups to data 

– Uses online profiling to guide scheduling decisions 

 

Preliminary performance results are encouraging 
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Questions 
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Disclaimer & Attribution 
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions 

and typographical errors. 

 

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited 

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no 

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to 

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes. 

 

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO 

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS 

INFORMATION. 

 

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY 

DISCLAIMED.  IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL 

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN 

IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
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