
Automatic Intra-Application Load

Balancing for Heterogeneous Systems

Michael Boyer, Shuai Che, and Kevin Skadron

Department of Computer Science

University of Virginia

Jayanth Gummaraju and Nuwan Jayasena

AMD

2 | Automatic Intra-Application Load Balancing | June 14, 2011

Motivation

Many applications fail to harness all of the available computational power

CPU

GPU

Kernel

GPU

CPU

GPU 1 GPU 2

CPU

3 | Automatic Intra-Application Load Balancing | June 14, 2011

Leveraging Multiple Devices

Writing correct multi-device applications is challenging

Writing efficient multi-device applications is even harder

The optimal division of labor depends on:

– Hardware characteristics

– Input data set

– Behavior of other applications

– Metric being optimized

Efficiently orchestrating the data movement and kernel invocations is complicated:

– Set appropriate flags based on hardware and software characteristics

– Use multiple buffers to overlap operations

4 | Automatic Intra-Application Load Balancing | June 14, 2011

Goal: Automatically load balance a single-device

application across multiple (heterogeneous) devices

5 | Automatic Intra-Application Load Balancing | June 14, 2011

Outline

Motivation

Our approach: dynamic chunking

 Load balancing framework

Preliminary results

Conclusions and future work

6 | Automatic Intra-Application Load Balancing | June 14, 2011

Our Approach: Dynamic Chunking

Break the kernel into multiple chunks

– Key distinction: # chunks > # devices

Dynamically schedule chunks to devices

– Scheduling decisions and chunk sizes based on online profiling

7 | Automatic Intra-Application Load Balancing | June 14, 2011

Chunking

Chunk: a contiguous set of work groups

– Division can be along any dimension

– Different chunks can be different sizes

Original NDRange

Chunks
Chunks

8 | Automatic Intra-Application Load Balancing | June 14, 2011

Chunking: Kernel + Data

Need to ensure that:

– The input data consumed by each chunk is copied to device memory

– The output data produced by each chunk is copied back to host memory

Application

GPU CPU

Data

Kernel

Application

GPU CPU

Chunk 1

Chunk 2

Chunk 3

9 | Automatic Intra-Application Load Balancing | June 14, 2011

Chunking: Advantages & Challenges

Advantages:

– No training required, even as hardware changes

– Can respond to dynamic performance changes due to:

 Data-dependent behavior

 Contention from other applications

– Can overlap kernel execution and data transfer

Challenges:

– Managing contention

 Contention from other applications

 CPU is both host and compute device

 Memory contention between CPU & GPU operations

– Dispatch overhead

– Determining which data is accessed by each chunk

 Difficult data structures / access patterns

10 | Automatic Intra-Application Load Balancing | June 14, 2011

Chunking: Overlapping Operations

Transfer

Computation

No chunking:

1

1

Transfer

Computation

Chunking:
2 3 4

2 3 4

11 | Presentation Title | Month ##, 2011

Load-Balancing Framework

12 | Automatic Intra-Application Load Balancing | June 14, 2011

Framework Overview

Application
OpenCL

Runtime

Application View

Application
OpenCL

Runtime

Load-

Balancing

Framework

System View

OpenCL API calls

13 | Automatic Intra-Application Load Balancing | June 14, 2011

Framework Requirements

1. Intercept OpenCL API calls

2. Determine what data to transfer to each device

3. Orchestrate and balance execution across the devices

14 | Automatic Intra-Application Load Balancing | June 14, 2011

Framework Components

1. API intercept layer

– Intercepts and transforms calls from application to OpenCL runtime

2. Access pattern extractor

– Analyzes kernel source code to extract data access patterns

3. Chunk scheduler

– Breaks kernels into chunks and schedules them onto devices

15 | Automatic Intra-Application Load Balancing | June 14, 2011

API Intercept Layer

 Intercepts each OpenCL API call and replicates it across multiple devices or transforms it

clCreateCommandQueue

Application View System View

GPU GPU CPU

clCreateBuffer

GPU GPU CPU

OpenCL API Function

16 | Automatic Intra-Application Load Balancing | June 14, 2011

Access Pattern Extractor

Need a mechanism for sending the right data to each device

Given the kernel source, determines:

– Mapping from chunk to memory region

– Preferred chunking direction

Kernel source code is available from intercepting call to the OpenCL compiler

Output: function that returns the region of memory accessed by a given chunk

– Callable by the chunk scheduler

– Works for arbitrary chunk sizes

17 | Automatic Intra-Application Load Balancing | June 14, 2011

Access Pattern Extractor: Details

Built on Clang (LLVM’s front-end)

– Clang’s OpenCL support is under active development

– For now, add an implicit header to define built-in data types and functions

Basic idea: traverse the kernel AST

– Identify accesses to memory buffers

– Express buffer offsets in terms of values that can be reasoned about at kernel invocation time

– Determine relationship between accesses from different work items

18 | Automatic Intra-Application Load Balancing | June 14, 2011

Access Pattern Extractor: Example

__kernel void blackScholes(const __global float4 *randArray,

 …

 __global float4 *put, int width) {

 size_t xPos = get_global_id(0);

 size_t yPos = get_global_id(1);

 float4 inRand = randArray[yPos * width + xPos];

 …

 put[yPos * width + xPos] = KexpMinusRT * phiD2 - S * phiD1;

Read access

Write access

19 | Automatic Intra-Application Load Balancing | June 14, 2011

Access Pattern Extractor: Input vs. Output Buffers

 Input buffers:

– Can afford to be imprecise

– Approach: determine minimum and maximum offset and transfer entire range

 Output buffers:

– Need to be precise

– Approach: determine parameters of strided access

Buffer Access Input Buffer Output Buffer

20 | Automatic Intra-Application Load Balancing | June 14, 2011

Scheduler

Breaks kernel into chunks

For each chunk:

– Sends input data to device

– Launches kernel on device

– Copies output data back to host

Mapping of chunks to devices is determined dynamically, based on online profiling data

21 | Automatic Intra-Application Load Balancing | June 14, 2011

Dynamic Scheduling

 If number of work groups is small, skip chunking and send whole kernel to one device

Otherwise, send initial chunks to each device:

– Initial chunk size set to exactly fill each device

Maintain two chunks outstanding to each device to hide dispatch overheads

Exponentially increase chunk sizes for “fast” devices until “slow” device has completed a chunk

Once performance data is available for all devices:

– Distribute a portion of the remaining work to all devices based on relative performance

– Maintain aggregate history information, but decay it exponentially

22 | Presentation Title | Month ##, 2011

Preliminary Results

23 | Automatic Intra-Application Load Balancing | June 14, 2011

Experimental Systems

1. CPU + GPU:

 AMD Radeon HD 5870 (Cypress)

 Intel Core i7 920: quad-core, hyper-threaded, 2.67 GHz

2. Homogenous Multi-GPU:

 2 x AMD Radeon HD 5870

3. Heterogeneous Multi-GPU:

 AMD Radeon HD 5870

 AMD Radeon HD 6570 (Turks)

24 | Automatic Intra-Application Load Balancing | June 14, 2011

Synthetic Benchmark: Computation-to-Communication Ratio

Ratio of kernel execution time to data transfer time can be controlled arbitrarily

Data Transfer KE 10 / 90

Data Transfer Kernel Execution 50 / 50

Kernel Execution DT 90 / 10

25 | Automatic Intra-Application Load Balancing | June 14, 2011

Synthetic Benchmark Results

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
u

p

Percent Kernel Execution

Multi-GPU

CPU-GPU

Data Transfer Dominated Kernel Execution Dominated

26 | Automatic Intra-Application Load Balancing | June 14, 2011

Sample Applications

From Rodinia benchmark suite:

– SRAD

From AMD APP SDK:

– Mandelbrot

– Black-Scholes

27 | Automatic Intra-Application Load Balancing | June 14, 2011

Results: CPU + GPU, SRAD

0.8

0.9

1.0

1.1

1.2

1.3

16 36 64

S
p

e
e

d
u

p

Data Set Size (MB)

28 | Automatic Intra-Application Load Balancing | June 14, 2011

Results: Heterogeneous Multi-GPU, Mandelbrot

0.8

0.9

1.0

1.1

1.2

1.3

16 32 64 128

S
p

e
e

d
u

p

Data Set Size (MB)

29 | Automatic Intra-Application Load Balancing | June 14, 2011

Results: Homogeneous Multi-GPU, Black-Scholes*

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

48 96 192

S
p

e
e

d
u

p

Data Set Size (MB)

30 | Automatic Intra-Application Load Balancing | June 14, 2011

Previous Work: Qilin

Divides a CUDA kernel across a CPU and GPU

 Limitations:

– Requires manual creation of CPU & GPU versions of kernel

– Requires a training phase

– Scheduling is static

– Only works on NVIDIA GPUs

Reference: C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping,” in MICRO 42: Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, 2009.

31 | Automatic Intra-Application Load Balancing | June 14, 2011

Previous Work: Single Compute Device Image

Divides an OpenCL kernel across multiple GPUs

 Limitations:

– Naïve scheduling: each device gets an equal amount of work

– Only works on NVIDIA GPUs

Reference: J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device image in OpenCL for

multiple GPUs,” in Proceedings of the 16th ACM symposium on Principles and Practice of Parallel

Programming, 2011.

32 | Automatic Intra-Application Load Balancing | June 14, 2011

Challenges and Future Work

 Tune the framework for different hardware and software configurations

 Optimize for different metrics

 One version of the kernel for multiple devices

– Optimizations for GPU may hurt performance on CPU and vice versa

– Supporting device-specific kernels would allow a tradeoff between programmer effort and performance

 Multiple kernel calls

– Need to understand data flow between kernel calls

 Possible (but rare) for work groups to communicate with each other using atomic instructions

– Difficult to support across multiple devices efficiently

 Deployment possibilities:

– OpenCL layer targeting standalone applications

– Layer in the Fusion software stack

33 | Automatic Intra-Application Load Balancing | June 14, 2011

Conclusions

Heterogeneous multi-device systems (like Fusion) are becoming ubiquitous

– Effectively utilizing the available devices is difficult

Our framework automatically load balances unmodified OpenCL applications across multiple (possibly

heterogeneous) devices

– Extracts access patterns to determine mapping of work groups to data

– Uses online profiling to guide scheduling decisions

Preliminary performance results are encouraging

34 | Presentation Title | Month ##, 2011

Questions

35 | Automatic Intra-Application Load Balancing | June 14, 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN

IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

The contents of this presentation were provided by individual(s) and/or company listed on the title page. The information and

opinions presented in this presentation may not represent AMD’s positions, strategies or opinions. Unless explicitly stated, AMD is

not responsible for the content herein and no endorsements are implied.

