
Programming with Relaxed Streams
Univ. of Virginia Dept. of Comp. Sci. Tech Report CS-2007-17

Dec. 2007

Jiayuan Meng
jm6dg@cs.virginia.edu

Shahrukh Rohinton
Tarapore∗

starapor@atl.lmco.com

Shuai Che
sc5nf@cs.virginia.edu

Jiawei Huang
jh3wn@cs.virginia.edu

Jeremy W. Sheaffer
jws9c@cs.virginia.edu

Kevin Skadron
skadron@cs.virginia.edu

University of Virginia
Computer Science

ABSTRACT
Diminishing returns in single thread performance have forced a

reevaluation of priorities in microprocessor design. Recent archi-

tectures have foregone deeper pipelining in favor of multiple cores

per chip and multiple threads per core. The day approaches when

processors with hundreds or thousands of cores are commonplace,

but programming models for these manycore architectures lag far

behind the architectures themselves. We are developing Fractal, a

manycore architecture and associated programming model we call

relaxed streaming. Relaxed streaming allows flexible and conve-

nient stream access, implicit memory management and dependency

enforcement, and the decoupling of sequential and parallel phases

of execution. This paper presents relaxed streaming in the context

of our Fractal API, discussing the benefits of a relaxed streaming

model over more traditional streaming models, especially in terms

of convenience and ease of use.

1. INTRODUCTION
As we move into an era of manycore microprocessor architecture,

data movement becomes a far more challenging problem. Cores

may spend more time waiting for data than actually computing with

it. Of course, conventional cache systems alleviate this concern

somewhat; however, write-allocation, inclusive hierarchies, com-

plicated coherence protocols with high overhead, and false sharing

situations all lead to unnecessary data transfer. Streaming provides

a semantic notion that simplifies data movement. Its single assign-

ment nature guarantees coherency, and its predictable access pat-

terns define and localize a thread’s global data working set. With

streams, data movement is addressed in an explicit way, which

potentially leads to performance gains and increased energy effi-

∗Now with Lockheed Martin Advanced Technology Laboratories

ciency. Our pattern concept, introduced in Section 2.1, capitalizes

on this behavior and provides a useful abstraction.

Existing streaming models include many useful features, but often

package them with undesirable restrictions. Stanford’s Imagine [8]

uses StreamC and KernelC [4] to program streaming applications.

In these models, streams are represented as one-dimensional FIFO

(first in, first out) queues. Kernels are parallel, homogeneous op-

erations applied to the stream elements. StreamIt [17] also models

one-dimensional streams, but is somewhat less restrictive in that it

allows an indexed peek operation on elements in the queue. Unfor-

tunately, StreamIt does not support stream reuse; reusing a stream

requires an explicit, high-overhead copy operation. Brook [2] ex-

tends streams to accommodate indexable structures—but not in-

dexable streams!—its workspace is based on the shape of its input

streams, requiring all input streams to share the same dimensions.

While supporting indexable streams as Brook does, our Fractal

API also decouples the kernel workspace from the concept of the

stream, allowing a relaxed stream access model. The workspace

is defined on a multi-dimensional grid we call the domain. Tradi-

tional streaming is implemented over the domain, allowing threads

to have access to multiple elements in each input and output stream.

Moreover, the dimensions of a stream have no bearing on a work-

space, which is strictly dictated by the domain. As a result, we can

define a kernel that operates on a subset of stream elements (List-

ing 5 gives an example of this) without first creating a stream with

like dimensions. This also enables streams to have multiple pro-

ducer kernels writing to different elements of the same stream and

eases the handling of various boundary conditions.

Graphics processors (GPUs) presented the first, and to some ex-

tent still the only, commodity architecture capable of accelerat-

ing data-parallel and streaming workloads. GPUs are not stream-

ing architectures—though they do share much in common—but

rather, special purpose computing devices designed to accelerate

real-time raster-based rendering. GPUs started to introduce pro-

grammability in some functional units with NVIDIA’s NV30 series

hardware in 2003. Early GPU programmers were forced to recast

data-parallel problems as rendering, shoehorning compute prob-

lems into an OpenGL [15] model to use graphics processors as gen-

eral purpose processing engines (GPGPU). NVIDIA soon released

Cg [12], a language for writing graphics shaders. Before Cg, all

shaders had to be written in assembly, but even Cg was designed for

shading geometry in raster graphics, not for GPGPU, leaving GPU

programmers confined to a very restrictive, data-parallel model in-

side a graphics interface. Brook has been ported to the GPU, using

both OpenGL and Microsoft’s Direct3D interfaces.

More recently, NVIDIA released CUDA (Compute Unified De-

vice Architecture), a language—with hardware support—designed

specifically for GPGPU [13]. CUDA removes the graphics inter-

face model from GPU programming and offers a more open mem-

ory model, including random access read and write. CUDA forms

groups of shader cores into what NVIDIA terms “multiprocessors”

or MPs. These MPs share on chip storage to accommodate large

streams while providing fast access. CUDA 1.1 allows concurrent

execution of independent kernels—a nice place to map the Fractal

API’s dependency graphs (Section 2.1)—but inter-kernel commu-

nication must be through global memory.

Sequoia provides a nice separation of functionality and memory

management for hardware with explicit memory management [5].

Programmers organize their computation and transfer data among

different levels of the memory hierarchy explicitly; however, dif-

ficulty arises when programmers are confronted with the exposed

memory hierarchy. Explicit memory management is a very foreign

concept to most programmers, and poses challenges even for ex-

perienced programmers. This proves be especially troublesome in

the face of tasks, such as mergesort, that aggregate large amount of

data.

Ct also provides streaming functionality in its model, and is very

similar to the Fractal API in many ways [1]. One important distinc-

tion of Ct from our model is found in Ct’s thread creation method-

ology, which bases the number of threads on hardware parameters.

Fractal assumes free thread creation and instantiates one per ele-

ment in the domain.

Our Fractal API addresses many of the restrictions of these earlier

programming models, allowing arbitrary computational domains

independent of stream dimensions, as well as multiple input and

output streams, a memory model that falls between implicit and ex-

plicit memory management, and a host of other features that make

parallel programming easier. Section 3 discusses these features and

the benefits they impart in more detail. The next section defines the

concept of relaxed streaming and gives an example of a relaxed

stream program in the Fractal API.

2. RELAXED STREAMS AND PROGRAM-

MING MODEL
To define Relaxed Streaming, we first define a set of characteristic

concepts, then present a programming model.

2.1 Relaxed Streams
A domain is an ordered n-space array of vectors (possibly a strided

subset of a larger, abstract domain). These vectors contain their

own n-space coordinate or address within the domain. Streams are

n-space ordered arrays of data, and are independent of domains.

Kernels execute over domains, taking zero or more streams and

uniform parameters as inputs, instantiating one thread per domain

vector. The thread index is the value of that thread’s domain vector,

and is an implicit kernel parameter (since the set of threads on a

kernel, k, and domain, d, is defined by {k × d}). A pattern is a

characteristic of a kernel, k, defining the set of stream elements

that may be accessed by a thread executing k, as a function of its

thread index (note that this is always statically calculable, since it is

finitely bounded by the stream length, though currently we require

the programmer to supply a pattern function). Patterns are related

to the concept of the iterator, but are a new concept in the context of

streaming. An example of a pattern is shown in Figure 1. A stream

dependency graph (SDG) is a bipartite directed graph with stream-

and kernel-nodes on opposite sides, stream-kernel edges indicating

inputs and kernel-stream edges indicating outputs. Figure 2 shows

SDGs for a number of applications that we have implemented.

Figure 1: A pattern defines that part of a stream which is as-

sessable by a given thread. Above, a thread with index 〈i, j〉
is consuming a 5 × 5 area on a stream, at location 〈p, q〉. The
pattern tells the size and position of the accessed region. The

pattern size, (5, 5), is specified explicitly in the program, and
the position is stored as a transformation matrix,M , that maps

the domain index 〈i, j〉 to the lower bound, 〈p, q〉, of its position
in the pattern.

Figure 2: SDGs for three applications: LU decomposition, Fast

Fourier Transform, and Edge Detection.

Given the definitions above, Relaxed Streaming is a domain-based

streaming model, synchronized on SDGs, in which stream access

by a thread is restricted to the bounds of that stream’s pattern over

the thread.

2.2 Programming with Relaxed Streams
Our Fractal API is designed to achieve maximum parallelism on

an architecture with a traditional, out-of-order control processor

Listing 1: A definition of a kernel in our relaxed streaming

model
1 i k n l (f i rFun c , i ndex /∗ t h r e ad i nd e x ∗ /)
{

3 kargs /∗ Argument l i s t ∗ / {
uparams (f l o a t ∗∗ , c o e f) ,

5 i x f l ow (f l o a t , s r c) , /∗ i n p u t s t r eam ∗ /

oxf low (f l o a t , d s t) /∗ ou t p u t s t r eam ∗ /

7 }

9 kbody /∗ Func t i on body ∗ / {
long i = index [0] ;

11 l ong j = index [1] ;
l ong w = s r c . dims () [1] ;

13 f l o a t v a l = 0 . f ;

15 f o r (l ong y = −1; y <= 1 ; y++) {
f o r (l ong x = −1; x <= 1 ; x++) {

17 v a l += xflowR (s rc , i2D (i + y , j + x , w)) ∗

coe f [y + 1] [x + 1] ;
19 }

}
21 xflowW (d s t , i2D (i , j , w) , v a l) ;

}
23 }

and an array of simple, slave cores, each with individual L1 and

streambuffers and shared L2 (Leverich et al. compare local store

based streaming memory to traditional cache-based memory on

parallel systems and find that even cache-based systems can ben-

efit from stream programming models [10]). This target processor,

which we call Fractal, shares features in common with Cell [7],

GPUs [11], TRIPS [14], RAW [16], Merrimac [3], Imagine [8],

and our API is theoretically compatible with all of these. We aim

to build a programming interface that abstracts away the underly-

ing hardware while explicitly exposing parallelism and reducing

programmer workload.

Listing 1 demonstrates the implementation of a kernel in our re-

laxed streaming API. This kernel is used in an image filtering SDG

in Listing 2.

Our API is implemented in C++. The kernel definition in List-

ing 1 starts with the definition of a new kernel, firFunc, on line

1. The kargs block in lines 3–7 defines three parameters: a uni-

form, coef, and input and output streams, src and dst, respec-

tively. The kernel body is implemented in the block in lines 9–22.

dims(), in line 12, is a method defined on streams, which re-

turns an indexable vector containing the dimensions of the stream.

xflowR and xflowW are stream read and write routines. This

kernel implements a linear blur filter over a 3-by-3 neighborhood.

The SDG in Listing 2 uses firFunc and another kernel, re-

normFunc, to calculate a blur over an image stream, input and

store it in output. Intermediate results are stored in temp. Fist,

a context is defined for this SDG on line 5. The three streams are

defined in lines 8–11. Lines 15–23 instantiate the renormFunc

kernel. Its domain is specified on 15 and 16. Twenty names the

kernel, and 21 and 22 specify the input and output streams with

their associated patterns, respectively. The block beginning on line

25 does the same work for the blur filter from Listing 1, but note

the passing of a uniform parameter in lines 30 and 31. Thirty-seven

sees the launch of the SDG and on line 40 we block until the SDG

completes.

Listing 2: An image filtering algorithm in our relaxed stream-

ing model
1 vo id f i r (un s i gned cha r ∗ s rc , f l o a t ∗ ds t ,

i n t h e i gh t , i n t width ,
3 f l o a t c o e f [3] [3])
{

5 f rC o n t e x t c x t ; /∗ De f i n e a c o n t e x t ∗ /

7 /∗ Then d e f i n e t h e s t r e ams ∗ /

mem2idxflow <uns i gned char > i n p u t (s rc , 2 ,
9 he i gh t , w id th) ;

i dx f l ow < f l o a t > temp (2 , h e i gh t , w id th) ;
11 idxflow2mem < f l o a t > o u t p u t (d s t , 2 ,

h e i gh t , w id th) ;
13

/∗ I n s t a n t i a t e t h e k e r n e l s ∗ /

15 c x t . domain2D (0 , h e i g h t − 1 , 1 ,
0 , wid th − 1 , 1) {

17 /∗ Each r e n o rma l i z a t i o n t h r e ad consumes ∗

∗ one e l emen t and produces ano t h e r ∗

19 ∗ The p a t t e r n i s a 2D po i n t . ∗ /

ke rn e l k_renorm = cx t . genKernel (renormFunc) ;
21 k_renorm . in (i npu t , po i n t (2)) ;

k_renorm . out (temp , po i n t (2)) ;
23 }

25 c x t . domain2D (1 , h e i g h t − 2 , 1 ,
1 , wid th − 2 , 1) {

27 /∗ Each f i l t e r t h r e ad consumes a 3−by−3 ∗

∗ ne ighborhood o f t h e i n p u t s t r eam ∗

29 ∗ and produces a s i n g l e e l emen t . ∗ /

ke rn e l k _ f i r = c x t . genKernelParam (f i rFun c ,
31 coe f) ;

k _ f i r . in (ren_img , window2D (3 , 3)) ;
33 k _ f i r . out (edge_img , po i n t (2)) ;

}
35

/∗ Now f i r e o f f t h e SDG ∗ /

37 c x t . launch () ;

39 /∗ And wa i t f o r t h e r e s u l t ∗ /

c x t . wa i t () ;
41 }

3. BENEFITS OF A RELAXED STREAM-

ING MODEL
The Fractal API is implemented in C++. Data and task parallel

problems are easily implemented in Fractal, which attempts to ad-

dress the difficulty of parallel programming with a clean interface

and useful abstractions, while allowing programmers to provide

high level hints that, combined with the nature of streams, enable

the runtime and hardware to implicitly and safely perform useful

optimizations.

3.1 Convenience and Expressiveness
Fractal decouples sequential and parallel phases of execution.

When implementing Fractal applications, the programmer specifies

SDGs and then launches them. Sequential code can continue exe-

cution until it voluntarily blocks at a wait(). Programmers can

think about sequential and parallel code independently and need

only consider one synchronization point for an entire SDG, with-

out regard to the complexity of the dependency graph.

Fractal decouples data parallelism from task parallelism. Ker-

nels implement distinct tasks, the kernels themselves independent,

the dependencies of their inputs and output streams dictated by the

Listing 3: Sequoia requires explicit memory management with

knowledge of hardware parameters
i n s t a n c e {
name = matmul_mainmem_inst
t a s k = matmul : : i n n e r
runs_a t = main_memory
c a l l s = matmul_LS_ins t
t unab l e U = 128 , X = 64 ,V = 128

}

Listing 4: A sparse kernel in Brook requires a copy of the

sparse elements to a new stream and uses a dense kernel for

computation
f l o a t s rc < len > , h a l f _ s r c < l e n / 2 >;
f l o a t d s t < l e n / 2 >;

streamDomain (h a l f _ s r c , s rc , 1 , 0 , l e n / 2) ;
k e rn e lFunc (h a l f _ s r c , d s t) ;

SDG. At the same time, threads represent fine-grained units of data

parallelism. As a result, both levels of parallelism are exposed, but

simultaneously distinguished from each other, in a clean and easily

understood manner, which leaves space to optimize each specific

type of parallelism separately.

Fractal does not require explicit memory management. Maxi-

mum stream size is not limited by on-chip storage. Moreover, no

explicit double buffering or direct memory access (DMA) opera-

tions are required. The programmer need only specify high level

parameters about stream access patterns for each kernel. Patterns

describe the stream working set for each thread, which, in our expe-

rience, is easy for an average programmer to understand and work

with. The patterns give hints to the middleware and hardware to

manage data movement. Listing 3 shows a Sequoia specification

mapping, in which the programmer must specify hardware param-

eters that Sequoia uses in DMA operations, something which is

undesirable, in general, and not necessary in Fractal.

Fractal enables a kernel to access streams sparsely. A decou-

pled domain relaxes the constraint that one element corresponds to

one thread. In addition to dense kernels which consume the entire

stream element by element, Fractal allows sparse kernels that con-

sume or produce a subset of the stream. Sparse kernels are present

in many scientific computing applications; LU decomposition is

one example. In StreamC [4] and Brook [2], sparse kernels have to

be converted to dense kernels by copying a sparse subset of stream

elements to a new stream, and using a dense kernel to operate over

this derived stream (See Listing 4 for an example in Brook, with a

Fractal example in Listing 5).

Fractal arms each thread with visible indices to handle index-

Listing 5: A sparse kernel is instantiated in Fractal by adjust-

ing domain parameters
i dx f l ow < f l o a t > s r c (1 , l e n) , d s t (1 , l e n / 2) ;
c x t . domain1D (0 , l e n / 2 , 1) {
k e rn e lFunc . i i i (s r c) . ooo (d s t) ;

}

Listing 6: Part of an image filtering operator implementation in

StreamIt. The neighborhood operation requires explicit copy

and gather phases. Compare to the fractal example in Listing 2

which has direct access to the image as a stream
f l o a t −> f l o a t s p l i t j o i n
D i f f u s e Image (f l o a t c o e f [] []) {
/∗ Every 9 e l emen t s form a s t e n c i l ∗ /

s p l i t r o und rob i n (9) ;
f o r (i n t n = 0 ; n < ((ROWS − 2) ∗

(COLUMNS − 2)) ; n++)
add d i f f u s e F u n c (coe f) ;

j o i n ro und rob i n ;
}

f l o a t −> f l o a t f i l t e r d i f f u s e F u n c (f l o a t c o e f [] []) {
work pop 9 push 1 {
/∗ Gather t h e s t e n c i l and ∗

∗ compute one o u t p u t ∗ /

}
}

dependent control flow. Applications such as image processing

and fluid simulation all need special care to handle boundary con-

ditions. In StreamC [4] and Brook [2], streams have to be split

explicitly to handle the branch conditions. Fractal provides an alter-

native for programming convenience. Thread indices are assessable

as common variables (Listing 1). This is not only be used to access

multiple elements, but also to recognize boundary conditions and

influence the thread’s control flow.

Fractal allows efficient gathering and scattering. A kernel may

gather or scatter from multiple streams or multiple elements within

a stream. With decoupled domains and streams in Fractal, a thread

can access multiple streams. Each thread in Fractal is able to ac-

cess any stream elements within the space denoted by associated

patterns. StreamIt programs process one stream per kernel, allow-

ing a single stream to be split and merged using primitives such as

split and roundrobin. Brook has similar restrictions. The

regrouping and duplication required in both Brook and StreamIt

complicates code, reduces programmer productivity, and may in-

troduce complex sources of inefficiency. Listing 6 shows an except

from an image filtering application in StreamIt that does split and

gather operations to work in a 3-by-3 neighborhood.

Fractal eases constructing complex dependency graphs. No ex-

plicit dataflow primitives (e.g. pipeline, split-join, or feedback-loop

primitives) are needed. Instead, the SDG is inferred from kernels’

producer and consumer relationships. Significant effort is saved

when constructing complex SDGs, such as the one present in LU

decomposition (Figure 2). Synchronization is an implicit property

of the SDG (though additional mutual exclusion primitives are ex-

ported by the API for use within kernels). By allowing streams to

have elements produced by multiple, distinct kernels, the effort of

segmenting and merging streams is reduced, significantly improv-

ing programmability and code readability.

3.2 Opportunities for Optimization
Fractal reorganizes dependency graphs, optimizing data man-

agement and flow. Fractal middleware can rearrange the SDG

in a manner similar to the optimizations described by Gordon et

al. [6]. In Gordon’s work, granularity coarsening clusters kernels

with overlapping working sets into groups that have significantly

reduced communication overhead. Parallel clusters do not commu-

nicate, and represent distinct blocks of independent task level par-

allelism. Kernels within a cluster are assigned to cores with spatial

locality. A cluster can then be split into sequences of data parallel

kernels, and pipeline parallelism can be further applied to chains of

producers and consumers as they are deployed onto different cores.

All of these optimizations are achievable within a relaxed stream-

ing model.

Fractal reduces execution overhead for data parallel threads.

For architectures that accommodate SIMD execution, performance

and energy costs can be reduced by vector execution [9]. MIMD

systems can also benefit from the Fractal API with lower overhead

in the creation of fine-grained threads. Uniform parameters are dic-

tated once per kernel to each core for the lifetime of that kernel.

Fractal localized global thread working sets to patterns. Pat-

terns define the set of stream elements a thread will potentially

access, essentially defining the global working set of each thread.

With this information, middleware and hardware can implicitly co-

ordinate DMA transfers and automate bulk load.

Fractal enables efficient on-chip communication. With patterns

that describe the stream working set of a thread, communication

patterns can be deduced. The on-chip network is then able to con-

figure or reserve a virtual circuit to accelerate data movement.

4. CONCLUSIONS AND FUTUREWORK
We have proposed a relaxed streaming model that allows program-

mers to focus on high-level programming problems without being

unduly concerned with underlying hardware features. The relaxed

streaming model and API presented in this paper are being devel-

oped in conjunction with our new Fractal architecture. Fractal is

still under heavy development, but we present a brief description of

its features here, especially as they relate to relaxed streaming and

the Fractal programming model.

4.1 Fractal
Fractal is a MIMD manycore architecture that targets general pur-

pose computation with streaming. It distinguishes a non-inclusive

stream storage hierarchy, which includes first level streambuffers

and second level spill buffers, from the coherent cache hierarchy.

Fractal utilizes the concept of a domain to quickly spawn poten-

tially many thousands of data parallel threads, which greatly aids in

realizing the performance potential of parallel resources. Stream-

buffers can be used as staging areas in temporal multiplexing of

kernels, reducing pattern transfer overhead when switching kernels.

By aggregating threads that have overlapping access patterns into

thread groups and scheduling them on a single core, locality within

a single kernel can be increased. Preliminary results show that this

yields a speedup of over 2× over non aggregated threads when the
number of cores scale up to 32. Fractal allows us to issue bulk loads

automatically, but patterns make it possible to make efficient use of

indexed streams as end-to-end communication mediums. We are

exploring spatial multiplexing of kernels to further exploit tempo-

ral locality.

4.2 Future work
Data-dependent streams need to be integrated into the Fractal API.

This is useful for applications such as rendering. In triangle ras-

terization, every three vertices can produce zero to n, where n can

be in the millions, fragments—an internal representation of data

that may later color a pixel in graphics hardware—which need to

be added to an output stream. Although we can coarsely define a

maximum length, it would be highly desirable to have a variable

sized I/O primitive rather than over-provisioning for this type of

problem.

The fractal architecture and simulator are still works in progress,

and are developed hand-in-hand with with the API and program-

ming model. We are getting preliminary results from this infras-

tructure, but it is still far from complete. We look forward to per-

forming the types of performance simulations that Fractal will al-

low.

5. ACKNOWLEDGEMENTS
This research was funded in part by NSF grant no. IIS 0612049. We

would also like to thank John Owens for his helpful comments on

streaming architectures. The ideas in this paper is built upon initial

work done for a course project in CS 754 in Fall 2006 <http://www.
cs.virginia.edu/ skadron/wiki/cs754/index.php/Main_Page>

6. REFERENCES
[1] J. F. Anwar Ghuloum, Eric Sprangle. Flexible parallel

programming for tera- scale architectures with Ct. White

paper, Intel, Apr. 2007.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,

M. Houston, and P. Hanrahan. Brook for gpus: stream

computing on graphics hardware. In SIGGRAPH ’04: ACM

SIGGRAPH 2004 Papers, pages 777–786, New York, NY,

USA, 2004. ACM Press.

[3] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn,

J. Gummaraju, M. Erez, N. Jayasena, I. Buck, T. J. Knight,

and U. J. Kapasi. Merrimac: Supercomputing with streams.

In SC ’03: Proceedings of the 2003 ACM/IEEE conference

on Supercomputing, page 35, Washington, DC, USA, 2003.

IEEE Computer Society.

[4] A. Das, W. J. Dally, and P. R. Mattson. Compiling for stream

processing. In E. R. Altman, K. Skadron, and B. G. Zorn,

editors, PACT, pages 33–42. ACM, 2006.

[5] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R.

Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally,

and P. Hanrahan. Sequoia: Programming the memory

hierarchy. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, 2006.

[6] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting

coarse-grained task, data, and pipeline parallelism in stream

programs. SIGARCH Comput. Archit. News, 34(5):151–162,

2006.

[7] M. Gschwind. Chip multiprocessing and the cell broadband

engine. In CF ’06: Proceedings of the 3rd conference on

Computing frontiers, pages 1–8, New York, NY, USA, 2006.

ACM Press.

[8] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and

B. Khailany. The Imagine stream processor. In Proceedings

2002 IEEE International Conference on Computer Design,

pages 282–288, Sept. 2002.

[9] R. Krashinsky, C. Batten, M. Hampton, S. Gerding,

B. Pharris, J. Casper, and K. Asanovic. The vector-thread

architecture. IEEE Micro, 24(6):84–90, 2004.

[10] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,

M. Horowitz, and C. Kozyrakis. Comparing memory

systems for chip multiprocessors. In ISCA ’07: Proceedings

of the 34th annual international symposium on Computer

architecture, pages 358–368, New York, NY, USA, 2007.

ACM Press.

[11] D. Luebke and G. Humphreys. How gpus work. Computer,

40(2):96–100, 2007.

[12] W. R. Mark, S. Glanville, and K. Akeley. Cg: A system for

programming graphics hardware in a C-like language. ACM

Transactions on Graphics, August 2003.

[13] NVIDIA Corporation. NVIDIA CUDA compute unified

device architecture programming guide, 2007.

http://developer.download.nvidia.com/compute/cuda/

08/NVIDIA_CUDA_Programming_Guide_0.8.pdf.

[14] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, D. B.

J. Huh, S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP,

and DLP with the polymorphous TRIPS architecture. In

Proceedings of the 31st Annual International Symposium on

Computer Architecture, pages 422–33, June 2003.

[15] M. Segal and K. Akeley, editors. The OpenGL Graphics

System: A Specification (Version 2.0 - October 22, 2004).

Silicon Graphics Inc., Oct. 2004.

[16] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,

B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,

A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,

M. Frank, S. Amarasinghe, and A. Agarwal. The raw

microprocessor: A computational fabric for software circuits

and general-purpose programs. IEEE Micro, 22(2):25–35,

2002.

[17] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A

language for streaming applications. In International

Conference on Compiler Construction, Grenoble, France,

Apr. 2002.

