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Abstract—High-performance automata-processing engines are
traditionally evaluated using a limited set of regular expression-
rulesets. While regular expression rulesets are valid real-world
examples of use cases for automata processing, they represent
a small proportion of all use cases for automata-based comput-
ing. With the recent availability of architectures and software
frameworks for automata processing, many new applications
have been found to benefit from automata processing. These
show a wide variety of characteristics that differ from prior,
popular regular-expression benchmarks, and these should be
considered when designing new systems for automata processing.
This paper presents ANMLZoo, a benchmark repository for
automata-based applications as well as automata engines for
both von-Neumann and reconfigurable dataflow architectures. To
demonstrate the usefulness of ANMLZoo, we first characterize
diversity in the benchmark suite. We then present insights from
five experiments showing how ANMLZoo can be used to expose
bottlenecks in both automata-processing software engines and
hardware architectures.

I. INTRODUCTION

Regular expressions are a language commonly used to
define search patterns in strings. Regular expression pattern
matches are usually recognized by converting to equivalent
finite automata, and simulating the automata on an input string.
While computing a small number of automata that fit in first-
level caches can be fast, rulesets of many parallel, complex
regular expressions can produce many large automata, requir-
ing massive amounts of memory bandwidth with low-latency
access to compute efficiently. For example, large, real-world
regular-expression rulesets such as Snort [1] contain many
thousands of rules that need to be matched simultaneously
against streaming input.

To help accelerate regular-expression pattern matching,
researchers have investigated algorithms for parallel com-
puter architectures. Single-instruction multiple-data (SIMD)
based graphics processing units (GPUs) and many-core and
vector accelerators such as Intel’s XeonPhi offer increased
parallelism, helping to compute more automata transitions
in parallel. Dataflow methods of automata processing on
reconfigurable fabrics can be used to implement automata,

and efficiently process a large number of automata transi-
tions in parallel. Other hypothetical custom architectures for
acceleration of automata processing have also been proposed
in the literature [2]. Recently, Micron has released the Au-
tomata Processor (AP) [3], a reconfigurable fabric of automata
matching elements that can efficiently process complex regular
expressions by executing non-deterministic finite automata in
hardware.

Because acceleration of automata processing has tradi-
tionally been motivated by network intrusion detection, new
automata-processing engines on different architectures are
evaluated using a small, relatively homogeneous set of existing
representative regular expression rulesets [1, 4, 5]. Synthetic
benchmark suites such as IBM’s PowerEN suite [6] allow
scientists to do more controlled studies of regular expression
processing. Becchi et al. [7] created a synthetic regular ex-
pression rule and stimulus generator to help researchers do
even more accurate sensitivity studies on regular expression
processing engines.

While these regular expressions applications and bench-
marks are valid and important real-world use cases for au-
tomata processing, they represent a very narrow range of
all useful automata. Regular expressions, as written by hu-
mans, tend to be converted by classic algorithms into non-
deterministic finite automata with very similar average struc-
ture, dynamic behavior, and matching complexity, and thus
do not represent a wide range of possible useful automata
structures or behavior.

Micron’s Automata Processor and accompanying software
development kit have made prototyping and development of
automata-based (rather than regular-expression-based) pattern
matching engines much easier. No good quantitative metric
exists to measure the relative merits of either approach, but
in our experience, directly constructing finite automata is an
easier and more intuitive way for defining complex regular
languages and pattern mining tasks. The availability of this
software and hardware has led to the development of a
large number of new, non-obvious automata-based applications
in domains such as big data analysis [8], data-mining [9],
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bioinformatics [10, 11, 12], high-energy particle physics [13],
machine learning [14], pseudo-random number generation and
simulation [15], and natural language processing [16] that can
differ significantly in static structure and dynamic behavior
from existing regular expression benchmarks [1, 4, 5, 6].

This new diversity in automata-based applications, devel-
opment tools, software recognition engines, and hardware
architectures for automata processing, motivates a standard but
flexible application and engine repository for fair evaluation
of new automata-processing algorithms, architectures, and
automata applications.

This paper presents ANMLZoo, a benchmark suite of
automata-based applications for prototyping and evaluation of
both software and hardware automata-processing engines. AN-
MLZoo contains 14 different automata-based applications that
represent four major classes of automata: regular expression
rulesets, string scoring meshes, programmable widgets, and
synthetic automata, all of which may stress automata process-
ing algorithms and architectures in different ways. Further-
more, ANMLZoo contains source code for high-performance
automata processing engines that we have deployed for CPUs,
Intel’s XeonPhi, and GPUs, and can accomodate new state-of-
the-art high-performance algorithms and architectures as they
are developed.

The main contributions of this paper are the following:
• The creation of a public repository for standardized finite

automata benchmarks and input stimuli, allowing for easy
and fair comparisons of von-Neumann and reconfigurable
fabric-based automata processing engines.

• The inclusion of parameterizable automata-generation
scripts for some benchmarks, allowing for sensitivity
studies of different static and dynamic automata prop-
erties of both real applications and synthetic automata.

• The analysis and categorization of automata using both
qualitative and quantitative metrics. We consider both
well-known metrics (node count, edge count, active set,
etc...) and novel metrics (activity compressability, char-
acter set complexity) to categorize automata benchmarks.
We show how some of these metrics impact performance
on different architectures.

• The creation of a public repository for automata process-
ing engines for several architectures for easy and fair
comparisons of new algorithms and implementations to
prior work. We include high-performance state-of-the-art
automata-processing engines that we developed for CPUs
(including Intel’s XeonPhi), and for GPUs.

• The designation of a common tool for ANMLZoo au-
tomata manipulation, optimization, transformation, and
analysis. Thus, new automata representations and opti-
mizations can be easily shared among researchers and
compared to prior work.

To demonstrate the usefulness of ANMLZoo, we investigate
performance of four automata processing engines on four
different macro architectures (Intel i7-5820K, Intel’s XeonPhi
3120, a Maxwell-based NVidia Titan X GPU, and Micron’s

first-generation Automata Processor) and identify relative bot-
tlenecks in each software engine and architecture pair.

II. REGULAR EXPRESSIONS AND FINITE AUTOMATA

Regular expressions (regex(es)) are a convenient way to
describe simple search patterns in text. Each search pattern
defines a set of strings that belongs to a corresponding regular
language.

All regexes can be described by equivalent finite automata
and vice versa, making regular expressions and finite automata
equivalent in power. However, regexes can be much less intu-
itive and more difficult to define and use in practice. Regexes
are said to be generative, meaning that they define a set of
rules that can be used to produce strings in the corresponding
regular language. In practice, this makes them extremely useful
for defining patterns in strings where the paths through the
grammar are relatively simple. However, when attempting to
define generators for more complex regular languages, regexes
can quickly become unwieldy and unintuitive as a descriptive
medium.

Unlike generators, finite automata are said to be recognizers
and are machines designed to accept all strings in a language.
Finite automata are sets of states with transition rules describ-
ing transitions between states. A finite automaton computes by
following transition rules from start states based on the current
input symbol to the machine. An automaton recognizes a string
in the corresponding regular language when an input sequence
causes it to transition to an accept state.

Because they are equivalent, regexes are often converted
to finite automata recognizers for evaluation. The following
section details current state-of-the-art approaches to automata
processing, and the baseline automata processing engines
considered on each available architecture.

III. AUTOMATA PROCESSING

A. Von Neumann Automata Processing
Von Neumann automata processing involves simulating a

finite automaton on an input string of symbols in order to
recognize strings that belong to the corresponding regular
language. Non-deterministic finite automata (NFAs) allow for
an automaton to be in multiple active states at once. For each
symbol in the input stream, each active state in the finite
automaton must look up its appropriate transition rules in
memory and execute those transitions in the automaton. While
simple, this algorithm has an extremely low computational
intensity per rule fetch, and thus relies on high-bandwidth,
low-latency memory accesses for good performance.

Von Neumann architectures therefore perform better when
fewer memory accesses are required, and prior work has
investigated transformations, optimizations, and new automata
models to reduce the number of transitions per cycle necessary
to compute [2, 5, 17]. The most drastic of these transforma-
tions is the conversion of a non-deterministic finite automaton
(NFA) to a deterministic finite automaton (DFA). Because
DFAs only allow one transition per cycle, they are optimal
for architectures with limited memory accesses per cycle.



However, a DFA may require an exponentially larger number
of states to represent all possible combinations of NFA states;
this full transformation can often be prohibitively expensive
in both time and space.

Many techniques make trade-offs between these two repre-
sentations [2, 17] and attempt to find reasonable space/time
overheads to reduce the total number of average memory
accesses, and also support a larger feature set than traditional
finite automata. ANMLZoo is a collection of traditional, theo-
retical non-deterministic finite automata (NFA), as a baseline
for comparisons and evaluations of these techniques. Below we
describe each baseline von Neumann NFA processing engine
used in our evaluations.

VASim (CPU/XeonPhi): VASim is a high-performance,
open source Virtual Automata SIMulator for automata pro-
cessing research. The core execution architecture of VASim is
an optimized version of the classic NFA algorithm described
above. Each VASim thread is responsible for processing all
transitions in a set of automata, but only considers automata
states that are currently active. VASim is parametrically multi-
threaded in two dimensions: groups of distinct automata can
be assigned to parallel threads, and/or different sections of the
input symbol stream can be assigned to parallel threads com-
puting the same automata. Therefore, many thread contexts
can be launched to take advantage of parallel cores in multi-
core CPU architectures. We use VASim as the baseline NFA
engine on both server-class CPUs and Intel’s XeonPhi many-
core co-processor for our evalutions. While other complex
hybrid NFA/DFA automata processing methods exist [18, 19],
we consider fast, basic NFA emulation as the best baseline
for easily examining bottlenecks in architectures for automata
processing. Performance of other parallel CPU engines may
be considered and catalogued in the future.

VASim can also programatically manipulate and optimize
automata, and will act as a public tool for common automata
optimizations and transformations. As an example of VASim’s
usefulness as a transformation platform, we analyze its ability
to perform common prefix merging on automata. Common
prefix-merging attempts to eliminate redundant states (and
therefore state matching), and can greatly reduce the number
of required memory accesses and size of highly redundant
automata [20].

iNFAnt2 (GPU): Modern GPUs offer massive SIMD and
task-level parallelism, and thus are a tempting target for
acceleration of automata processing. We consider an optimized
version of the iNFAnt [21] tool–dubbed iNFAnt2–as our
baseline NFA processing engine for the GPU.

In the iNFAnt framework, the NFA transition tables are
organized using a symbol-first format with transitions grouped
by their incoming symbols. Each SIMD thread is assigned
a possible transition on an incoming symbol from a source
state to a destination state. Because the number of transitions
per incoming symbol is usually not uniform, a supplementary
array is used to store the offset in the NFA transition table
that indicates the first transition for each particular symbol.

All threads fetch the correct offset into this table based on the
incoming symbol. They then fetch and accomplish correspond-
ing transitions from the NFA transition table, but only threads
with source states that are currently active compute.Both the
NFA transition table and the supplementary array are stored
in GPU global memory due to their large size. Bit-vectors
are used to represent current and future state vectors and are
stored in GPU shared memory.

The main disadvantage of iNFAnt is that it assigns indi-
vidual SIMD threads to compute all possible transitions for a
particular incoming symbol across every state in the automata.
This can be very inefficient when the actual number of active
states is small. In contrast, VASim uses only one thread to
compute all necessary transitions. For baseline GPU automata
processing performance, we present iNFAnt2, which adopts
the iNFAnt framework with our own improvements, as well
as modifications inspired by Vasiliadis et al. [22]:
• Fast accept-state recognition by encoding accept states

with negative IDs
• Multi-byte input symbol fetches
• NFA transition tables stored in GPU texture memory

We used the new instruction level profiling capabilities of
Maxwell-based NVIDIA GPUs to pinpoint and relax perfor-
mance bottlenecks. We also augmented iNFAnt2 to report the
cycle and rule ID of each matched rule, an important and
previously unimplemented feature. Thus, we consider iNFAnt2
the state-of-the-art GPU NFA processing engine, and a good
baseline for evaluation against future research.

In Section VIII, we also evaluate performance of a state-
of-the-art GPU DFA engine inspired by the implementation
in Becchi et al. [23, 24] and the multi-DFA implementation
of Vasiliadis et al. [22]. This engine was also tuned using
NVIDIA's new instruction-level profiling tools, and is consid-
ered close to state-of-the-art.

B. Data-flow Automata Processing
Knowing that efficient parallel simulation requires large

numbers of low-latency rule lookups, researchers have also
investigated methods of automata processing on data-flow
architectures. Prior work has exploited the reconfigurable
nature of field programmable gate arrays (FPGAs) to lay out
automata states and transitions in reconfigurable logic fabrics
and is summarized in Becchi et al. [17].

Micron, leveraging their experience and IP in memory
technology, has developed the Automata Processor (AP) [3], a
DRAM-based reconfigurable, native-hardware accelerator for
non-deterministic finite automata (NFA). The AP implements
an NFA using a reconfigurable network of state transition
elements (STEs)–analogous to NFA states–that all consume
a single input stream of 8-bit symbols. If an STE is enabled,
and matches the current input symbol, it activates, propagating
enable signals to other STEs via an on-chip routing matrix. All
transitions happen in parallel thus AP performance is always
linear in the size of the input symbol stream, and independent



of the dynamic activity in the fabric. STEs are capable of
single-bit reports, analogous to NFA “accepting states.”

Rather than restricting development of applications to reg-
ular expressions, Micron’s AP software development kit pro-
vides a software infrastructure to easily and programmatically
create arbitrary automata-based applications. Micron has cre-
ated both a standard language for defining automata (automata
network markup language or ANML) to define networks of
automata states, and also a software development kit to easily
and programmatically build automata [25]. Furthermore, new
high-level programming languages have been developed that
can be easily compiled to automata [26].

As a result of this new software infrastructure, many new
and non-obvious automata-based applications have been cre-
ated, which perhaps would never have been developed with
regular expressions.

IV. ANMLZOO: AN AUTOMATA BENCHMARK SUITE

This relatively new diversity in automata-based applications
motivates the creation of an automata benchmark suite for
prototyping and evaluation of both software and hardware
automata-processing engines. We present ANMLZoo, a suite
of 14 sets of automata that represent four major classes of
automata applications: regular expression rulesets, string scor-
ing meshes, programmable widgets, and synthetic automata,
which all have different major properties that may stress
automata processing algorithms and architectures in different
ways. ANMLZoo also contains the baseline implementations
of automata processing engines (discussed in Section III) that
can be used as reference points for future research.

A. Problems with Existing Rulesets and Generators
Research into fast regular expression processing engines has

traditionally been motivated by deep packet inspection, which
includes applications in the network intrusion detection system
(NIDS) community.

NIDS rulesets such as Snort [1], as well as virus detection
rulesets such as ClamAV [4], and synthetic rulesets such as
PowerEN [6] have been popular rulesets for benchmarking
existing regular expression engines [2, 17]. However, it is
desirable to have a common and flexible methodology for
benchmarking and conducting sensitivity analysis on regular
expression engines with parameterizable rulesets and input
stimuli. Becchi et al. [7] constructed a synthetic regular ex-
pression generation tool that parameterized regular expression
features that make DFA conversion expensive. This tool also
includes an automatic trace generation tool, which can tune
input streams to induce various levels of activity in any
automaton. However, this tool was motivated and designed
to generate regular expressions and inputs to better evaluate
deep packet inspection engines and architectures, and not for
arbitrary automata processing.

Similarly, new architectures for automata evaluation [2] are
designed for and evaluated using the above mentioned patterns,
or with simple exact match strings, highly compressable binary

trees [27], and/or finite automata with a very small number of
states.

As our characterization will show, existing regular ex-
pression and automata benchmarks are either very similar
in static and dynamic properties, or not publicly available,
easily accessible, or in a common format. This makes it
extremely difficult or even impossible to evaluate improve-
ments over existing state-of-the-art publications. Many state-
of-the-art software engines and infrastructures for automata
processing and transformation are also not publicly available,
again making it difficult or impossible to do fair evaluations of
existing automata-processing algorithms and implementations
on different architectures.

B. ANMLZoo: an Automata Processing Benchmark Suite
To address the above drawbacks with the current method-

ology for benchmarking of automata processing engines we
present ANMLZoo, a repository for automata benchmarks,
input stimuli, and software engines and infrastructures for
fair benchmarking of new automata processing engines. Each
ANMLZoo benchmark is shown in Table I.

Below we list each application in ANMLZoo, including
both existing popular regular expression benchmarks, as well
as a new set of recently published automata-based applications
that together form a much more diverse starting point for
benchmarking of automata-processing engines.

Snort[1] are regular expressions extracted from a snapshot
of the snort ruleset, commonly used to benchmark regular
expression processing engines.

Dotstar [23] is a combined set of synthetic regular expres-
sions from Becchi et al. [23] containing all variations of the
synthetic dotstar rules created from the backdoor Snort rules
and the spyware rules used in that evaluation.

ClamAV [4] is a set of regular expression signatures for
identifying virus signatures in files. Our benchmark includes
ClamAV rules with small (< 64) quantifiers and no ranges.

PowerEN [6] is a combination of over 2000 regular expres-
sions from the PowerEN “complex” regex rule set.

Brill [16] is a set of over 2000 Brill tagging rules.
Protomata [11] is a set of 2340 real and randomly gener-

ated protein motif signatures.
Hamming [10] is a set of 93 Hamming distance automata

used to calculate the number of mismatches between a ran-
domly generated encoded string and random input sequence.

Levenshtein [12] is a set of 24 Levenshtein automata
designed to calculate the edit distance between an encoded
DNA sequence and an input DNA sequence.

Entity Resolution [8] is a set of automata designed to iden-
tify whether input name sequences match a certain encoded
pattern.

SPM [9] or Sequential Pattern Mining, is an automata-based
application to identify groups of related items in baskets.

Fermi [13] is a path recognition algorithm that looks for
sequential series of ordered coordinates defining a particle
path.



Benchmark Family States* Compressability Node Degree* Charset Complexity* Active Set* Activity Compressability
Snort Regex 34,480 50.04% 1.13 8.74 98.45 75.71%

Dotstar Regex 38,951 59.6% 1.01 8.28 3.25 92.79%
ClamAV Regex 42,543 14.12% 1.02 7.86 4.30 94.78%
PowerEN Regex 34,495 14.85% 1.06 8.11 31.15 66.20%

Brill† Regex 26,364 38.20% 1.49 8.75 14.28 99.14%
Protomata† Regex 38,251 8.95% 1.04 19.44 554.281 63.15%
Hamming Mesh 11,254 0.81% 1.71 9.89 240.1 15.78%

Levenshtein Mesh 2,660 4.45% 3.36 8.0 88.02 22.93%
Entity Resolution Widget 5,689 94.02% 6.38 8.60 10.62 99.11 %

SPM Widget 100,500 0% 2.1 6.58 6,331.32 0%
Fermi Widget 39,033 4.29% 1.48 8.18 3854.45 ∼0%

Random Forest Widget 71,574 5.00% 1.053 14.26 968.64 1.26%
BlockRings Synthetic 44,352 NA 1 8 192 NA
CoreRings Synthetic 48,002 NA 1 8 2 NA

TABLE I
ANMLZOO BENCHMARK SUITE. † NEWLY PUBLISHED AUTOMATA-INSPIRED REGEX-LIKE RULESETS. RESULTS ARE GATHERED USING REPRESENTATIVE
INPUT STREAMS SHOULD BE CONSIDERED BASELINE RESULTS, AND MAY CHANGE WITH NEW ALGORITHMS, IMPLEMENTATIONS, AND ARCHITECTURES.

Random Forest [14] is an encoded and compressed imple-
mentation of a random forest ensemble classifier for handwrit-
ing recognition.

BlockRings are synthetic automaton rings with determin-
istic behavior meant to occupy each block (192) on an AP
chip.

CoreRings are synthetic automaton rings with deterministic
behavior meant to occupy each core (2) on an AP chip.

The difference between automata constructed by regular
expressions and other modern automata-based applications in
ANMLZoo can be easily quantified by looking at both static
and dynamic properties.

Before we perform static or dynamic analysis, all automata
are compressed using common-prefix merging (CPM) [20].
CPM merges redundant states from the automata in a breadth-
first manner, from start states to end states, while preserving
automata correctness. This optimization can greatly reduce the
size of, and redundant traversals for, automata, and is thus
used for baseline static and dynamic evaluation of automata.
However, we do not claim that these are optimally minimized
automata, and thus they may be compressed further. Dynamic
properties can vary greatly depending on the corresponding
input stimulus, and so metrics like active set should also not
be considered inherent properties of the benchmarks, but rather
based on the quality of optimization and behavior provided by
a representative input.

We considered five metrics to quantify differences in au-
tomata applications. Each metric is described below:

• States: The total number of states (STEs) in the common
prefix-merged (CPM) automata graph. The capacity of an
AP chip is 49,152 STEs. State counts lower than this
number indicate lower utilization of on-chip resources
and a harder routing task for the AP compiler and fabric.
State counts higher than this number indicate the Micron
compiler was able to identify compression opportunities
other than CPM.

• State Compressability: The percentage of redundant
states removed by CPM. High compressability reduces
pressure on reconfigurable resources in FPGAs and the

AP, but also may improve cache behavior in von Neu-
mann engines.

• Node degree: The average output degree of each node.
Higher node degrees and more connectivity indicate a
harder place and route task for spatial automata process-
ing engines like FPGAs and the AP.

• Character set complexity: We use the Quine-McCluskey
algorithm [28] to calculate the minimum number of
boolean terms required to compute the boolean match
function corresponding to the character set of an au-
tomaton transition rule (STE). This metric reflects the
average difficulty in building a circuit to compute the
match function of a particular STE.

• Active Set: The average number of active states. Larger
numbers of active states require more transition rule
fetches. Thus, this is a proxy metric inverse to perfor-
mance in von Neumann architectures. Spatial architec-
tures like the AP are unaffected by active set because all
transitions are accomplished in parallel in a single cycle
if the design can successfully place and route.

• Activity Compressability: The average amount of re-
dundant activity removed by CPM. This metric roughly
indicates how much performance is gained on von Neu-
mann engines from the CPM optimization.

Table I shows that many benchmarks derived from reg-
ular expressions have similar static properties. Each regex
benchmark has an average node-degree of about 1, reflecting
the long strings of automata states that are often emitted
from typical regular-expression-to-automaton conversion algo-
rithms. In contrast, applications such as mesh automata and
Entity Resolution (which uses Hamming automata as a sub-
kernel) have many more output edges and represent a much
more complex structure and routing task for spatial automata-
processing fabrics. Regular-expression-like automata tend to
have a high number of common prefixes, reflected in high
state and activity compressability factors. In contrast, automata
widgets such as Fermi are designed to compute non-obvious
recognition tasks and generally have much less redundancy by
design. We explore automata compressability via CPM and its
effect on performance in Section V.



ANMLZoo provides the following features:
Diverse Automata Structure and Behavior: ANMLZoo is

originally divided into four major automata families: regular-
expression-derived automata (Snort, ClamAV, PowerEN, Brill,
Protomata), automata meshes for string scoring (Hamming,
Levenshtein), structured processing elements or ”widgets”
(SPM, Random Forest, ER, Fermi), and synthetic automata
with exact known properties (BlockRings, CoreRings). All ap-
plications are quantitatively diverse in both static and dynamic
properties, and reflect real-world uses of automata.

Standard Candles: Each ANMLZoo benchmark provides
at least one file that defines a standard set of automata that max
out the resources of a single first-generation Micron D480 AP
chip. While there is no one “correct” way to standardize trade-
offs among both automata state-size, activity, and connectivity,
we chose this metric as a compromise to allow easy and
fair comparisons between different reconfigurable data-flow
architectures and von Neumann automata processing engines.
We call these standardized automata the ANMLZoo standard
candles. Because standard candle automata max out the re-
sources of an AP chip, we can easily and fairly compare appli-
cation performance on other automata processing architectures
against different deployment scenarios of small 4W AP D480
chips. For example, performance of 1 AP rank (8 parallel
AP chips consuming 8 parallel input streams), is trivial to
deduce via multiplying the performance of one AP chip by 8.
This feature is exemplified in Section X. Each standard candle
benchmark is also accompanied by a corresponding stimulus
of 1MB and 10MB, for testing and evaluation respectively.
Versions of standard candles and input stimulus may evolve
to adapt to the needs of the community, but automata and input
stimuli will never be removed from the suite allowing for easy
and fair comparisons to prior work.

Written in ANML: Each application is defined using
Micron’s Automata Network markup language [25] or ANML.
ANML allows a standard but flexible method for defining
automata networks. ANML is an XML-like language that is
used to define automata computation graphs. Applications that
are defined as regular expressions can be converted to ANML
automata using Micron’s SDK [25]. If a benchmark is derived
from regular expression rulesets, these rules are also included
in the suite.

Parametric Automata Generation Scripts: Where pos-
sible, automata generation scripts have been provided to fa-
cilitate sensitivity analyses of different automata-processing
applications and architectures. For example, Section VI shows
how performance of von Neumann architectures is impacted
by varying fixed properties of synthetic automata and Sec-
tion IX shows how AP chip utilization is affected by varying
dimensions of mesh automata (Hamming, Levenshtein). These
sensitivity analysis cannot be done using the fixed benchmarks
like the standard candle automata.

Baseline Automata Processing Engines: ANMLZoo also
includes source for baseline CPU and GPU finite automata
engines discussed above, and is an open repository for addi-

tional high-performance algorithms and implementations for
varying computer architectures. ANMLZoo also provides a
common software framework to manipulate, optimize, and
convert automata written in ANML to other formats required
by other engines.

To demonstrate the usefulness of ANMLZoo, the follow-
ing sections present five different experiments exploring the
sensitivity of different engines to different types of automata,
exposing bottlenecks in automata processing engines on von
Neumann and dataflow architectures, and relative advantages
of automata processing on each available architecture. For each
CPU experiment, we use a 6-core (12-thread) Intel i7-5870K
clocked at 3.3GHz with 32GB of RAM clocked at 2166MHz.
This server also acts as the host CPU for the following
accelerators. For each many-core CPU accelerator experiment,
we use a 57-core (228-thread) Intel XeonPhi 3120p clocked
at 1.1GHz. For each GPU accelerator experiment, we use an
NVIDIA Maxwell-based GTX Titan X clocked at 1GHz. For
each AP fabric utilization experiment, we use Micron’s AP
SDK version 1.6.5.

V. PARALLEL AUTOMATA RULE SCALING

Many regular expression processing applications are con-
cerned with the number of parallel “rules” or automata that
a given engine or architecture can process. For von Neu-
mann architectures, more automata computed in parallel may
mean more transitions to compute, and more pressure on
the memory hierarchy. For data-flow, reconfigurable fabric
automata-processing architectures, more parallel automata lead
to a higher number of states, and thus more pressure on
the underlying reconfigurable fabric capacity and routing re-
sources. Thus, the more rules an engine is capable of quickly
processing, the more desirable the engine.

However, “number of rules” is a poor metric to measure
the amount of work being done by an automata engine. As
an example, we consider two applications from ANMLZoo
(Entity Resolution and Fermi) and vary the number of rules
processed by a single thread on the CPU, measuring the sen-
sitivity of performance of VASim to the number of automata
being computed. Figure 1 shows the results of our experiment.

We plot normalized performance of common-prefix-merged
versions of the automata rules (compressed) and the original
(uncompressed) versions of the automata rules for both Entity
Resolution and Fermi. The common-prefix-merged version of
Entity Resolution, while initially incurring a severe penalty
for additional rules, quickly reaches a point where additional
rules have little impact on performance. This is due to the
high activity compressability of Entity Resolution, as the
redundant states removed by common-prefix merging were
also responsible for a high amount of redundant activity in
the original automata.

Figure 1 also plots the performance cost of adding rules
without the benefit of common-prefix merging. The perfor-
mance penalty of additional rules is much more severe, and



Fig. 1. Sensitivity of VASim performance in response to additional automata
rules. Performance of automata with many common prefixes and high activity
compressability (ER) are less sensitive to additional rules. This indicates
average automata activity after common optimizations, rather than total rule-
count, is a better predictor of performance.

does not plateau, indicating new rules require significant
additional activity and computation when uncompressed.

For the Fermi application, both the CPM and non-CPM ver-
sions have near-identical performance characteristics. This is
because Fermi has an extremely small activity-compressability
factor. Specially-designed automata like Fermi are therefore
extremely important to consider when characterizing new
automata engines and optimizations, as they are harder to
compress, and therefore pay a larger penalty when computing
additional rules.

VI. VISITED SET AND ACTIVE SET SENSITIVITY

Because automata processing on von-Neumann architec-
tures requires many sequential accesses to memory, perfor-
mance of automata processing on these architectures has
been shown to be limited by access latency in the memory
hierarchy [2, 27]. However, this bottleneck and its impact can
greatly depend on the underlying automata engine algorithm
and implementation. In the previous section, we saw that
automata activity, rather than “number of rules,” was the main
factor hurting performance, but this activity was not measured
or controlled for.

In general, it can be difficult or impossible to guarantee
certain properties of automata for controlled experiments. It is
therefore important to have a set of automata benchmarks (or
generation tools) in the benchmark suite that can precisely vary
metrics such as the visited set (the set of states consistently
visited during computation) and the active set (the number
of active states which need to perform memory accesses
per cycle). These synthetic automata and synthetic automata
generation tools allow for controlled experiments measuring
the specific impact of memory hierarchy latency or throughput
on total performance.

We present a parametric synthetic automata design to con-
trol for the ratio of active set to visited set. The synthetic
automata design is shown in Figure 2.

Each automaton is organized as a ring of stages. Each stage
in the ring has a fixed number of states that is always activated

Fig. 2. Parameterizable synthetic automata design. Each ring is guaranteed
to have a constant active set and visited set, and is driven by an easy-to-
generate input string. This instance has width 3, thus active set 3. Each stage
is fully connected with its succeeding stage to form a continuous ring. The
circumference, n, is derived using the equation n = d visited

width e.

by the previous stage. This property guarantees that at any one
cycle, the active set in any one ring is equal to the width of
the stage. Each ring is also of a fixed circumference (i.e. the
number of stages in the ring). Therefore, the total visited set
of the automaton is the width of the stage times the number of
stages in the ring. This design allows us to individually control
for both active set and visited set, and isolate the impact of
each on performance of different automata-processing engines.
Below shows the results of VASim performance while varying
active set and visited set independently. We vary the visited set
of a single ring by multiples of 10 states from 100 to 100,000
states, and vary the active set of each ring by 1 from 1 to 20.

Fig. 3. Sensitivity of automata simulation performance to changes in the
active set (number of states considered per cycle) and the visited set (number
of states consistently visited). Performance is much more sensitive to increases
in active set. The visited set impacts performance when its size grows larger
than the size of an available level of cache.

The more average states visited, the larger the pressure
on the caches in the memory hierarchy of a von Neumann
architecture. Therefore, guaranteeing that the visited set fits
into L1 or L2 caches of a CPU can be extremely important
for high-performance.

When the number of states is between 100 and 10,000,



increasing the size of the visited set has little impact on
performance. This indicates that the entire visited set fits
within a single level of the memory hierarchy, and so a
larger number of states does not impact the performance of
computing transitions for the active set. However, there is a
relatively large impact when increasing the size of the visited
set from 10,000 to 100,000.

While increasing the size of the visited set does impact
performance, slight increases in active set can have extremely
large impacts on performance. Because automata structure can
be irregular and behavior is often unpredictable, it is difficult to
guarantee locality of access. Therefore, to improve automata
processing performance on the CPU, VASim must work to
reduce the size of the average active set via automata opti-
mizations and transformations, but also maintain an automata
visited set size that optimizes performance.

VII. AUTOMATA VS INPUT-LEVEL PARALLELISM SCALING

Because it can be difficult or impossible to reduce the active
set of automata, and improving memory latency at the architec-
tural level can be extremely expensive, automata engines often
attempt to exploit parallelism among independent automata
and among automata input streams to hide the latency of
individual transitions and increase throughput of automata
engines. This section explores sensitivity of automata engines
and architectures to these two dimensions of parallelism–
parallel automata and parallel input streams. Distinct automata
can be divided into an equal number of groups (G), and the
input stream can be divided into an equal number of sections
(S). Thus, we can launch G× S number of CPU threads or
GPU thread-blocks to compute in parallel.

We pick three applications: Protomata, Hamming, and Ran-
dom Forest to illustrate how different families of applications
(regex, mesh, and widget) respond to varying automata group
and stream parallelism. For each application, we pick 4 sets
of groups and vary the number of parallel streams on both the
VAsim (CPU) and iNFAnt2 (GPU) baseline engines. Results
are presented below.

A. CPU Parallel Scaling
Results from varying automata groups and parallel input

streams on VASim, our baseline CPU automata engine, are
shown in Figure 4.

Hamming automata seem to favor more parallel automata
groups and are not accelerated by increasing the number of
parallel packet streams. This is because Hamming automata
have relatively little activity compression and so parallel
threads computing parallel automata are more likely to be
doing distinct, non-redundant work. Thus it is better to have
single threads operate on smaller, distinct automata that may
have good behavior in an individual CPU’s L1 cache.

Protomata is much more responsive to both automata-level
and input-level parallelism. This is because Protomata has a
small number of automata that have a much greater level
of activity than others. Because VASim is not equipped to

Fig. 4. Hamming automata benefit most from automata-level parallelism.
Protomata benefits from parallelism in both dimensions. Random Forest only
benefits from automata-level parallelism.

parallelize work within individual automata, the threads that
are responsible for these “problem” automata run much slower
and bottleneck performance. While automata-level parallelism
cannot accelerate problem automata, stream-level parallelism
can. Thus Protomata performs best with eight parallel au-
tomata groups (8), but a larger number of packet streams (12).

Random Forest has an extremely low level of activity com-
pressability and so benefits most from distributing automata
across many threads. Random Forest benefits so much from
parallel automata computation, that any additional thread con-
texts for computing parallel input streams hurts performance,
even when cores are underutilized. This indicates that shared
per-chip (as opposed to per-core) resources like L2 and L3
cache are over-utilized, and important for performance where
active set is high.

These experiments shows that parallelization strategies for
CPU-based automata processing depend highly on the au-
tomata topography, compressability, and dynamic behavior.

B. GPU Parallel Scaling
Results from varying automata groups and parallel input

streams on iNFAnt2, our baseline GPU automata engine, are
shown in Figure 5.

Unlike the CPU-based engine, Hamming automata on the
GPU overwhelmingly favor more parallel input streams. Ham-
ming performs best when each CUDA thread block operates on
all meshes simultaneously and there are more than 560 parallel
blocks operating on different sections of the input stream. This
highlights the ability of the GPU to hide the latency of any
individual memory access by executing an extremely large



Fig. 5. Protomata, Hamming, and Random Forest all benefit from a massive
amount of stream level parallelism, however appropriate care must be taken
to tune automata groups to match GPU core resources.

number of parallel tasks. Because there may be a relatively
small number of parallel accesses in any one benchmark (e.g.
Hamming has an average active set of 240 over 49 distinct
automata when prefix merged) it is generally better to exploit
input stream-level parallelism for latency hiding on the GPU.

Protomata shows similar performance characteristics to
Hamming. However, a single group does not universally per-
form best. Dividing the automata into eight groups performs
better as the number of parallel streams is increased. This
reflects sensitivity to utilization of per-GPU stream-processor
resources such as shared memory and L1 cache. The total
performance of the GPU engine relies on a balance of NFA
transition table size and stream-level parallelism that is highly
application specific.

Random Forest, as discussed earlier, has a small amount
of activity compressability, and therefore favors computation
by more parallel groups, with smaller, more efficient NFA
transition tables. Random Forest performs best on the GPU
when split into 48 distinct groups. However, it is still the
case that too many automata groups will limit stream level
parallelism, and reduce the ability of the GPU to hide the
latency of transition table lookups.

These experiments show that GPU automata processing
engines mostly favor parallelization via parallel input streams.
If an application allows its input stream to be divided among
parallel threads, the GPU can better hide the long latencies
associated with SIMD control-flow and memory divergence.

VIII. NFA VS. DFA ENGINES ON THE GPU
The variable topography and dynamic parallelism of NFAs

can be especially difficult to efficiently map to the GPU’s

SIMD architecture. Thus, deterministic finite automata (DFA)
have been explored as a possible alternative method of au-
tomata processing to better exploit the GPU’s available re-
sources [22, 23]. DFAs are equivalent automata that are con-
structed so that only one state can be occupied at any one time.
A DFA state therefore represents a particular configuration
of NFA states. Because of this relationship, DFAs can be
potentially exponentially larger than their equivalent NFAs,
and exponentially expensive in time to construct.

We use the DFA generation tool developed by Becchi [5] to
convert as many ANMLZoo NFAs to DFAs as was possible.
Some ANMLZoo applications took too long, or required too
much memory to be converted to a reasonable number of DFAs
and were ignored. The GPU DFA engine in iNFAnt2 assigns
individual CUDA threads within a thread-block to processes
a particular DFA. In contrast, the iNFAnt2 NFA engine maps
the computation of entire NFAs to CUDA thread-blocks.

Figure 6 shows the relative performance between our base-
line NFA and DFA engines achieved using the optimal block
and grid size, and thread and stream configuration for each
application. The DFA-based engine traverses exactly one state

Fig. 6. Relative performance of NFA and DFA engines over all benchmarks
in ANMLZoo. DFAs for ClamAV, Protomata, and SPM were too expensive
to construct due to space or time costs.

per symbol, independent of the automaton and input stream,
while the NFA-based processing engine follows a number of
state transitions.

Unsurprisingly, Figure 6 shows that the DFA engine–when
DFAs are able to be created–is the best solution for every
benchmark with the exception of ER. This is due to the relative
simplicity of the DFA kernel, and the reduced number of total
instructions required to compute the automata. We compared
profiling information gathered by NVIDIA's profiling tool
nvprof on the Levenshtein automata. The NFA kernel executed
over 5,700 times more control flow instructions than the equiv-
alent DFA kernel, and 43 times more memory instructions per
input symbol.

In some applications (Snort), DFAs do not give significantly
better performance compared to NFAs in iNFAnt2. This is
because very few NFAs can be combined into single DFAs.
Specifically, for the ER benchmark, the large number of



required DFAs causes the iNFAnt2 DFA engine to perform
worse than the iNFAnt2 NFA engine.

IX. MESH SCALING AND AP FABRIC UTILIZATION

Mesh automata, such as the Hamming and Levenshtein
automata, score input strings by positionally keeping track of
input mismatches with an encoded string.

Hamming-distance automata have been shown to help ac-
celerate both DNA and protein [10] motif search algorithms.
These automata use a simple kernel–match or mismatch–to po-
sitionally keep track of the number of mismatches between the
input and encoded string using automata states. A mismatch
will force a transition to a new row of states that represent
mismatches one greater than the previous row. In practice, it
is usually only important to keep track of mismatches up to
a particular score threshold, and so rows can be pruned from
Hamming distance automata to decrease unnecessary states
and computation. Because Hamming distance automata only
ever considers the match or mismatch kernel, the fan-out and
fan-in of any individual state is always less than or equal to
2, no matter the length of the input string, or the number of
mismatches the automaton is programmed to compute.

Levenshtein automata use a more complex kernel to keep
track of differences between an encoded string and an input
string. While Hamming distance only considered matches and
mismatches, Levenshtein automata additionally keep track of
possible insertions in the input string and deletions from the
encoded string, ultimately scoring the number of ”edits” (edit
distance) required to transform one string to the other up to a
certain edit threshold. Because the Levenshtein automata must
account for any number of deletions up to the threshold, the
maximum fan-out and fan-in of any individual state grows
linearly with the size of the threshold.

This increase in the connectivity is not problematic for von
Neumann-based automata processing engines, where arbitrary
automata networks can be easily stored in memory. However,
high connectivity can be problematic for spatial architectures
that rely on a reconfigurable routing matrix to lay out all
possible datapaths in the automata networks. To show impacts
of connectivity in mesh automata on spatial architectures,
we vary both encoded string length and a score threshold
for Hamming and Levenshtein automata. We then compile
the designs for the AP and measure their on-chip routing
utilization. Figure 7 plots the resulting routing complexity vs.
encoded string length for ten different automata.

Hamming automata are relatively insensitive to increases
in both dimensions–the encoded string length and the score
threshold–of the automata. This reflects the constant fan-
in/fan-out per match/mismatch kernel. While the number of
these kernels increases, their routing complexity remains rel-
atively flat.

In contrast, the routing complexity of Levenshtein automata
is highly sensitive to changes in the score threshold. This is due
to the linear scaling of fan-in/fan-out to account for a number
of deletions up to the score threshold. Figure 7 shows that a

Fig. 7. Hamming automata have a constant fan-in/fan-out per STE and
therefore have relatively low routing complexity that is not impacted by the
dimension of the mesh. The node degree of Levenshtein automata grows
linearly in the size of the encoded edit distance threshold, therefore routing
complexity is very sensitive to this dimension.

Levenshtein automaton with length 24 and score threshold 5
takes about 4 times more routing resources than a Levenshtein
automaton with a score threshold of 3, and 10 times more
routing resources than a Hamming automaton with a score
threshold of 5 and encoded string length of 24. Levenshtein
automata with a score threshold of 5, and length greater than
24 fail to route on the current generation of the AP architecture
and place-and-route tools.

X. CROSS-ARCHITECTURE APPLICATION EVALUATION

We evaluate the performance of each baseline NFA
automata-processing engine over all standard-candle ANML-
Zoo benchmarks. Results are shown in Figure 8. While this
does not represent an absolute ranking of the performance
of each architecture, it does represent the current state of
the baseline evaluation engines included in ANMLZoo as
compared to the AP. We present the estimated performance
of the first generation AP hardware [3].

VASim tends to perform worse on the XeonPhi than the i7
CPU. While the XeonPhi has many more individual cores (57
rather than 6), the CPU's large L3 cache is more important
than parallel cores for accelerating the VASim algorithm. A
XeonPhi-specific baseline automata-engine to take advantage
of its vector units, similar to iNFAnt2, is therefore desirable
for a more fair evaluation of these architectures. The XeonPhi
performs better than the CPU on the PowerEN and Leven-
shtein benchmarks, indicating that the VASim algorithm is
more bottlenecked by parallelism, and less bottlenecked by
rule-transition latency, for these benchmarks.

The GPU NFA engine performs better than our baseline
CPU engine in 10 out of 14 benchmarks, indicating that
the GPU’s massively parallel resources are important for
parallel automata-processing. However, the CPU engine out-
performs the GPU engine on Brill, ClamAV, BlockRings, and
CoreRings. This is most likely due to both a small active set
and visited set in these applications, allowing for more ideal
cache behavior on the CPU.



Fig. 8. Performance of all standard candle benchmarks on each available architecture. AP performance is estimated to be 133MB/s, however, we expect to
see performance degradations due to output reporting constraints when using the real hardware. We expect to include performance of real hardware in the
final version of the paper. Because each ANMLZoo standard candle automata maxes out an AP chip, it is easy and fair to estimate the performance of an
AP Rank (8 chips) as 8 times the performance of an individual AP chip.

The simulated AP's chip's data-flow style architecture gen-
erally outperforms all von-Neumann-style NFA automata en-
gines. One notable exception is the synthetic CoreRings
benchmark, where VASim is capable of achieving upwards of
230MB/s. CoreRings has an extremely low activity relative
to the number of states. Section VI showed that the CPU
can achieve 50MB/s per core per active state. Thus, the
impressive performance for the full multi-threaded version
of CoreRings is unsurprising. This motivates heterogeneous
automata-processing engines and architectures with both von
Neumann and data-flow engines operating on portions of
automata that best suit them.

Because each standard-candle automata benchmark maxi-
mizes the resources of an individual AP chip, we can easily,
and fairly, estimate performance of other deployment scenarios
of AP chips. Because each AP chip can operate on a separate,
parallel portion of the input stream, AP performance is ex-
pected to scale perfectly linearly in the real hardware. As an
example of this feature of the benchmark suite, we also include
estimated AP Rank performance in Figure 8.

For each architecture, we explored both dimensions of
automata parallelism to attempt find the best-performing con-
figuration. However, exploring every possible configuration
was not feasible and so optimal performance is not guaranteed.
Data-flow architectures such as the AP do not have this
dimension of complexity, and thus guarantee deterministic per-
formance with no dynamic performance tuning. This property
is extremely desirable for real-time applications such as deep-
packet inspection and on-line machine learning.

Moving forward, new algorithms, automata-representations,
automata-processing engines and new automata-processing
architectures can be easily evaluated and compared using
ANMLZoo. We encourage researchers to contribute any of
these components as they are developed, so that new research
can fairly and easily compare to prior work.

XI. CONCLUSIONS AND FUTURE WORK

This paper presented ANMLZoo, a diverse benchmark suite
of finite automata for easy and fair evaluation of automata
processing engines. ANMLZoo benchmarks are quantitatively
diverse in both static structure and dynamic behavior and
represent a wide range of well known and new applications

for automata processing. ANMLZoo also acts as a repository
for automata-processing engines for a wide range of new
architectures, allowing easy access to prior work for quick
and fair evaluations of new automata-processing engines and
old engines on new hardware architectures.

Using ANMLZoo, we were able to show bottlenecks in
von Neumann computer architectures for automata processing.
CPUs perform well when the average activity in an automata
is small, and the average number of visited automata states
is small. GPUs and Intel’s XeonPhi can perform well, but
exploiting the computational power of SIMD units to compute
the irregular parallelism of automata is difficult. Thus, these
architectures generally benefit from input stream parallelism,
rather than automata-level parallelism. The AP is the fastest
automata-processing hardware but its capacity is very sensitive
to automata topography and cannot place-and-route automata
states with large fan-in/out.

Future work may include more in-depth analysis of micro-
architectural bottlenecks to automata processing within indi-
vidual hardware architectures. Future work may also explore
automata processing engines on other architectures such as
FPGAs and changes in performance of automata applications
over multiple generations of CPU, GPU, FPGA, and AP
architectures. Future work may also evaluate relative power
efficiency, instead of pure performance, of each architecture.
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