
Rodinia: A Benchmark Suite for Heterogeneous Computing
LAVA: Laboratory for Computer Architecture at Virginia

University of Virginia, Charlottesville, VA 22904

http://lava.cs.virginia.edu

Motivations

With the microprocessor industry's shift to multicore
architectures, research in parallel computing is essential to ensure
future progress in mainstream computer systems. This in turn
requires standard benchmark programs to compare platforms,
identify performance bottlenecks, and evaluate potential solutions.
Several current benchmark suites provide parallel programs, but
only for conventional, general-purpose CPU architectures.

However, various accelerators (e.g. GPUs) are increasingly
popular because they are becoming easier to program and offer
dramatically better performance for many applications. These
accelerators differ significantly from CPUs in architecture,
middleware and programming model. Understanding these
accelerators' architectural strengths and weaknesses is important
for gaining insight into the most effective data structures and
algorithms for each platform. Yet there is no benchmark suite we
are aware of that provides a diverse set of applications for GPUs.

We present Rodinia benchmark suite, a set of applications and
kernels we have developed for research to address these concerns.
The application descriptions and codes of Rodinia are released
online at http://lava.cs.virginia.edu/wiki/rodinia

Measurement Results

Rodinia extends applications described in our previous analysis of
GPU performance [1], and we have also done preliminary comparisons
with FPGAs for several applications [2]. We are structuring the suite to
span a range of parallelism and data-sharing characteristics according to
the Berkeley’s motifs. Rodinia currently includes nine applications in
seven dwarves and nine application domains for both GPUs and
multicore CPUs using CUDA and OpenMP.

Application Domains

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Sang-Ha Lee, Jeremy W. Sheaffer, Kevin Skadron

The benchmarks have been evaluated on an NVIDIA GeForce
GTX 280 GPU with 1.3 GHz shader clock and a multi-core Intel
Xeon CPU with two 3.2 GHz hyperthreaded dual-core processors.

We plan to extend our Rodinia work by including more applications
from other dwarves (e.g., sorting and sparse matrix) and by comparing
applications written in other languages (e.g., OpenCL and VHDL). To
ensure the Rodinia benchmarks are well distributed within the
workload space and suitable for various platforms, we will evaluate our
benchmark programs using architectural-independent metrics such as
instruction mix, branch behavior, register traffic characteristics,
computation-to-communication ratio and so on.

Future Work

This work is supported by a grant from NVIDIA Research and NSF grant nos. IIS-0612049 and CNS-0615277.

The Rodinia benchmarks exhibit a variety of behaviors, for
example, speedups range from 2.9 to over 72.5 over single-thread
CPU programs and from 1.0 to 35.4 over four-thread CPU
programs, varying synchronization overheads (5ms-110ms), and
varying power consumption overheads (40W-83W).

App/Kernel Dwarves Domains
Leukocyte Det./Track Structured Grid Medical Imaging

SRAD Structured Grid Physics Simulation
HotSpot* Structured Grid Image Processing

Back Propagation* Unstructured Grid Pattern Recognition
Needleman Wunsch Dynamic Programming Bioinformatics

K-means Dense Linear Algebra Data Mining
DES Combinational Logic En/Decryption

Breadth-First Search* Graph Traversal Graph Algorithms
Similarity Scores* MapReduce Web Mining

Table 1 Applications, kernels and domains (* denotes kernel)

[1] S. Che, et al., “A Performance Study of General-Purpose Applications on Graphics
Processors using CUDA,” J. Parallel Distrib. Comput., Oct. 2008
[2] S. Che, et al., “Accelerating Compute Intensive Applications with GPUs and
FPGAs,” SASP 2008.

0

10

20

30

40

50

60

70

80

SR
AD

Ho
tS
po

t

Ba
ck
pr
op

DE
S

NW

K-
m
ea

ns

Le
uk

oc
yte SS BF

S

Sp
ee

du
p

Single Thread

Four Threads

• The GPU’s lack of persistent state in the shared memory results in
less efficient communication among producer and consumer kernels.

• GPUs do not easily allow runtime load balancing of work among
threads within a kernel, and thread resources can be wasted as a result
(e.g., Needleman-Wunsch).

• GPUs also offer no global barrier other than a new kernel call.
Discrete GPUs also have high kernel-call and data-transfer costs.

• The GPU offers a very low ratio of on-chip storage to number of
threads, but also offers specialized memory spaces that can mitigate
these costs — the shared memory (e.g., SRAD, HotSpot and DES),
constant (e.g. Leukocyte), and texture memories (e.g., Kmeans).

• We use a multi-iteration ghost-zone technique, trading off redundant
computation to reduce expensive synchronization between thread
blocks (e.g., HotSpot)

• We use lookup tables to avoid high SIMD divergence penalties when
an application performs irregular branching in implementing bit-level
permutations (e.g., in DES).

Architectural Challenges and Optimizations

