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Motivations

With the microprocessor industry's shift to multicore 
architectures, research in parallel computing is essential to ensure 
future progress in mainstream computer systems. This in turn 
requires standard benchmark programs to compare platforms, 
identify performance bottlenecks, and evaluate potential solutions. 
Several current benchmark suites provide parallel programs, but 
only for conventional, general-purpose CPU architectures. 

However, various accelerators (e.g. GPUs) are increasingly 
popular because they are becoming easier to program and offer 
dramatically better performance for many applications. These 
accelerators differ significantly from CPUs in architecture, 
middleware and programming model. Understanding these 
accelerators' architectural strengths and weaknesses is important 
for gaining insight into the most effective data structures and 
algorithms for each platform.  Yet there is no benchmark suite we 
are aware of that provides a diverse set of applications for GPUs.

We present Rodinia benchmark suite, a set of applications and 
kernels we have developed for research to address these concerns. 
The application descriptions and codes of Rodinia are released 
online at http://lava.cs.virginia.edu/wiki/rodinia

Measurement Results

Rodinia extends applications described in our previous analysis of 
GPU performance [1], and we have also done preliminary comparisons 
with FPGAs for several applications [2]. We are structuring the suite to 
span a range of parallelism and data-sharing characteristics according to 
the Berkeley’s motifs. Rodinia currently includes nine applications in 
seven dwarves and nine application domains for both GPUs and 
multicore CPUs using CUDA and OpenMP.   
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The benchmarks have been evaluated on an NVIDIA GeForce 
GTX 280 GPU with 1.3 GHz shader clock and a multi-core Intel 
Xeon CPU with two 3.2 GHz hyperthreaded dual-core processors. 

We plan to extend our Rodinia work by including more applications 
from other dwarves (e.g., sorting and sparse matrix) and by comparing 
applications written in other languages (e.g., OpenCL and VHDL). To 
ensure the Rodinia benchmarks are well distributed within the 
workload space and suitable for various platforms, we will evaluate our 
benchmark programs using architectural-independent metrics such as 
instruction mix, branch behavior, register traffic characteristics, 
computation-to-communication ratio and so on. 

Future Work
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The Rodinia benchmarks exhibit a variety of behaviors, for 
example, speedups range from 2.9 to over 72.5 over single-thread 
CPU programs and from 1.0 to 35.4 over four-thread CPU 
programs, varying synchronization overheads (5ms-110ms), and 
varying power consumption overheads (40W-83W). 

App/Kernel Dwarves Domains
Leukocyte Det./Track Structured Grid Medical Imaging

SRAD Structured Grid Physics Simulation
HotSpot* Structured Grid Image Processing

Back Propagation* Unstructured Grid Pattern Recognition
Needleman Wunsch Dynamic Programming Bioinformatics

K-means Dense Linear  Algebra Data Mining
DES Combinational Logic En/Decryption

Breadth-First Search* Graph Traversal Graph Algorithms
Similarity Scores* MapReduce Web Mining

Table 1 Applications, kernels and domains (* denotes kernel)

[1] S. Che, et al., “A Performance Study of General-Purpose Applications on Graphics 
Processors using CUDA,” J. Parallel Distrib. Comput., Oct. 2008
[2] S. Che, et al., “Accelerating Compute Intensive Applications with GPUs and 
FPGAs,” SASP 2008.
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• The GPU’s lack of persistent state in the shared memory results in 
less efficient communication among producer and consumer kernels. 

• GPUs do not easily allow runtime load balancing of work among 
threads within a kernel, and thread resources can be wasted as a result 
(e.g., Needleman-Wunsch). 

• GPUs also offer no global barrier other than a new kernel call.
Discrete GPUs also have high kernel-call and data-transfer costs. 

• The GPU offers a very low ratio of on-chip storage to number of 
threads, but also offers specialized memory spaces that can mitigate 
these costs — the shared memory (e.g., SRAD, HotSpot and DES), 
constant (e.g. Leukocyte), and texture memories (e.g., Kmeans).

• We use a multi-iteration ghost-zone technique, trading off redundant 
computation to reduce expensive synchronization between thread 
blocks (e.g., HotSpot)

• We use lookup tables to avoid high SIMD divergence penalties when 
an application performs irregular branching in implementing bit-level 
permutations (e.g., in DES). 

Architectural Challenges and Optimizations


