
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(3), 307–325 (MARCH 1994)

The Design and Implementation of Genesis

deborah whitfield
Department of Computer Science, Slippery Rock University, 106 Maltby Center, Slippery

Rock, PA 16057-1326, U.S.A. (email: dlwKsruvm.sru.edu)

and

mary lou soffa
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.

(email: soffaKcs.pitt.edu)

SUMMARY

Although code optimizations are necessary to parallelize code, few guidelines exist for determining
when and where to apply optimizations to produce the most efficient code. The order of applying
optimizations can also have an impact on the efficiency of the final target code. However,
determining the appropriate optimizations is difficult due to the complex interactions among the
optimizations, scheduler and architecture. To aid in selecting appropriate optimizations, an
optimizer generator (Genesis) is presented that produces an optimizer from specifications of
optimizations. This paper describes the design and implementation of Genesis and demonstrates
how such a generator could be used by optimizer designers. Some experiences with the generator
are also described.

key words: Parallelizing compiler optimizations Automatic generation Transformations

INTRODUCTION

Traditionally, code optimizations were applied to improve the space and time
performance of executable code. With the advent of numerous parallel architectures,
deciding what optimizations* to apply and the order of their application became
quite complex. The performance of the parallelized code is very much dependent on
both the underlying architecture and the scheduler that is used to schedule the
parallel events on the processors. For some architectures and schedulers, applying
particular optimizations would, in fact, degrade the performance on the parallel
system. Also, the order of application can have a significant impact on the perform-
ance of the optimized code. Owing to the dependence of optimizations on the
architecture, it may be beneficial to design or tailor the optimizations to match a
particular architecture. Since there does not exist a formal foundation that aids in
deciding which optimizations to apply and where, experimentation is essential to
determine the properties and value of the optimizations on program code.

One experimental approach to determine the most appropriate optimizations and

* The term optimization encompasses both traditional optimizations and optimizations used for parallelization.

CCC 0038–0644/94/030307–19 Received 8 September 1992
 1994 by John Wiley & Sons, Ltd. Revised 29 September 1993



308 d. whitfield and m. l. soffa

their application order is to implement a number of optimizations in an optimizer,
perform the optimizations on the code, and then evaluate the performance of the
optimized code on the parallel system that is to be used. However, actually
implementing an optimizer is a very time consuming process, especially when the
detection of complex conditions and global control and data dependency information
are required. Because of thead hoc manner in which such an optimizer is usually
developed, the addition of other optimizations or even the deletion of optimizations
may require a substantial effort to change the optimizer. In some cases, the entire
optimizer may have to be rewritten. The development of optimization systems such
as Parafrase-2,1 Parascope,2 and PTRAN3 used this approach.

Although automatic code generation has been used in the development of peephole
optimizers,4–7 it has yet to be exploited for high-level optimizations requiring global
dependency information, such as needed for parallelizing optimizations. In this paper,
an approach to producing optimizers is developed that entails users specifying the
desired optimizations in a specification language, theGeneralOptimization Specifi-
cationLanguage (Gospel). These specifications are then used to automatically generate
an optimizer that can be used in experimentation or in a production setting.8 This
paper focuses on the prototype implementation of an automatic optimizergenerator
(Genesis) that uses optimizations specified in Gospel. Thus, this approach extends
the automatic generation of lexical analyzers (e.g. LEX) and parsers (e.g. YACC)
to include the automatic generation of optimizers (e.g. Genesis).

Overview
The generation of an optimizer by Genesis requires the specification of those

optimizations to be included in the optimizer. In this work, parallelizing optimizations
are specified in the Gospel language and are input to the generator, Genesis. The
output from Genesis is executable code that implements the optimizations. For
generality, Genesis produces an optimizer for a high-level intermediate representation
of the source program that maintains loop control structures and array references.
Thus, the system is source code independent and can be used for any language that
can be represented by the intermediate code (e.g. FORTRAN, Pascal, C). The design
of Genesis allows the user to specify whether the optimization should be applied at
all valid program points or should be applied under user direction. The higher level
of the intermediate code (i.e. containing control structures) allows the user to
interact at the source level for loop optimizations that are typically applied for
parallel systems.

The value of such a tool is that it allows

1. the experimental investigation of the performance of the optimizations on the
system under consideration. The performance of an optimization may influence
its inclusion in the final optimizer.

2. an investigation into which optimizations should be included for a given
configuration of architecture and scheduler. Experimentation has shown that
some optimizations can be a detriment to some schedulers.9

3. an investigation into the order in which optimizations should be applied. An
examination of the interactions between optimizations may alter the order in
which the optimizer applies the selected optimizations.

4. the development of optimizations that are particularly targeted to the architecture



309the design and implementation of genesis

and/or scheduler. Optimizations may be developed to exploit a particular
architecture or scheduler.

5. the investigation of the cost versus the benefit of optimizations. The cost and
expected benefit of an optimization may be used to determine the merit of
including the particular optimization in a production optimizer.

Scenario using Genesis

Consider a scenario where a user is considering three parallelizing optimizations
to apply to parallelize a program segment. Knowing that optimizations can interact
and that determining an optimal order of application is unlikely, the user performs
experiments using Genesis to decide the best order in which to apply the three
optimizations. The user specifies the three optimizations in Gospel and inputs them
to Genesis. Genesis produces three separate optimizers (one for each optimization)
so that experimentation may be performed. Alternatively, one optimizer could be
produced containing all three optimizations.

For example, consider the application of loop fusion (FUS), loop unrolling (LUR),
and loop interchanging (INX) and assume that the more optimizations that are
applied, the better the resultant code. Experimentation finds that applying LUR creates
additional opportunities for applying INX and applying INX creates opportunities to
apply FUS. Also, an application of FUS destroys opportunities for applying INX.
Using the previous assumption, this experimentation determines that the ordering
kLUR, INX, FUS, LUR, INX, FUS,%l results in code that contains the most optimiz-
ations.

At this point in the scenario the user wants to examine the cost of applying the
optimizations under consideration. Genesis is used to indicate the relative cost of
applying transformations. Based on these costs, the user decides whether or not to
incorporate particular optimizations in the final optimizer. Further experimentation
may be carried out on a particular machine to determine the benefit of the optimiz-
ation versus the cost of applying the optimization.

THE DESIGN OF GOSPEL AND GENESIS

This section overviews the specification language, Gospel and its implementation
through Genesis. The reader is referred to previous work for more details about
Gospel.8 The power of Gospel is indicated by its use in specifying the 21 optimiza-
tions that appear in Appendix I.

The general optimization specification language

Gospel uses a set of constructs common to optimizations to develop well-formed
specifications. The overall format of a Gospel specification consists of a name, a
type section, a precondition section, and an action section. The format of a Gospel
specification is

Name
TYPE
PRECOND



310 d. whitfield and m. l. soffa

Code Pattern
Depend

ACTION

The Name of a specification associates a name with an optimization. The conversion
of the specification to executable code requires a unique identifier for each optimiz-
ation to be included in the generated optimizer. TheTYPE section declares the types
of the required code elements, which can be statements or loops, where loops can
be adjacent, nested, or tightly nested. ThePRECOND section is subdivided into the
Code Pattern andDepend sections. TheCode Pattern components express the patterns
in the code that are acceptable for the application of the optimization. Such patterns
permit verification of particular operands and opcodes in the intermediate code
statements. In theDepend section, the specification involves the description of
statement and operand dependences, direction vectors, and any necessary set member-
ship qualification. TheACTION section specifies the primitive code transformations
that combine to perform an optimization.

Gospel is source-language independent, but the prototype assumes an intermediate
level representation of the form:

Operand3 := Operand1 Opcode Operand2

whereOperand1 andOpcode are optional. Appendix II contains the grammar express-
ing the precondition for the prototype implementation of Gospel.

The example specifications of loop fusion (FUS) inFigure 1 and of constant

Figure 1. Gospel specification of loop fusion



311the design and implementation of genesis

folding (CFO) in Figure 2use the above format. Loop fusion combines two adjacent
loops when both iteration structures are equivalent. Such a transformation is used to
aid in the parallelization of sequential code.

The specification of FUS inFigure 1 declares five statements (Sn, Sm, Si, Sj, and
Sk) along with two adjacent loops (L1 and L2). The Code Pattern simply requires the
existence ofany two adjacent loops that have the same initial value, final value,
and loop control variable, whereany is a Gospel quantifier. TheDepend section
uses theno quantifier to ensure that there is not a dependence (flow, anti, or output)
between the two loops with a backward direction (backward loop dependences are
denoted with a., forward with a ,, and same iteration with a=). The second
dependency check also uses theno quantifier to ensure that there are no definitions
that reach into the loop. TheACTION specification fuses the two loops by modifying
the iteration structure and then removing the extraneous loop header and end. Note
that this specification requires the loop control variables to be the same, so it is not
necessary for this specification to modify the statements within the loop.

The specification of CFO inFigure 2 declares statementS1. The Code Pattern
checks for a statement that operates on two constants by verifying that the operands
are constant and the operation is not assignment. TheDepend is empty, as no
dependence checks are necessary for CFO. TheACTION specification folds the
expression by performing the operation and replacing the second operand with the
result and modifying the operation of the statement to be an assignment statement.

Design of Genesis

Genesis analyzes Gospel specifications of optimizations and generates program
code to perform the appropriate pattern matching, check for the required data
dependences, and call the necessary primitive routines to apply an optimization.
Genesis produces an optimizer (OPT) that requires an extended intermediate represen-
tation of a program and computed data dependences. The intermediate program code
and the data dependences are input to OPT along with any user options, and
optimized intermediate code is produced, as depicted inFigure 3. Genesis can produce
an optimizer that performs one optimization or multiple optimizations.

Figure 2. Gospel specification of constant folding



312 d. whitfield and m. l. soffa

Figure 3. Overview of Genesis

There are three components in the Genesis design; a translator, a library, and a
constructor. The translator analyzes the Gospel specifications and then generates the
data structures and code for each of the three sections of a Gospel specification,
producing optimizations-specific code. The generation and execution of this code are
discussed in the next section.

The generated code relies on a set of predefined routines found in the Genesis
library. These routines are optimization independent and implement actions typically
needed to perform optimizations. The library contains pattern matching routines, data
dependence verification procedures, and list manipulation routines. The pattern match-
ing routines search for code elements such as loops and statements. Once a pattern
is found, the pattern matching routines can verify other required syntactic items such
as operands, opcodes, and initial and final values of loop control variables.

The constructor compiles the library routines and the generated code to produce
an optimizer OPT. The constructor also generates an interface to execute the various
optimizations. The interface to an optimizer reads the source code, generates the
intermediate code and computes the data dependences. The interface also queries the
user for interactive options permitting the user to execute any number of optimizations
in any order. The user may elect to perform an optimization at one application point
(possibly overriding dependence constraints) or at all possible points in the program.
The interface permits the user to decide if the data dependences should be recalculated
between execution of each optimization.

PROTOTYPE IMPLEMENTATION OF GENESIS

A prototype implementation of Genesis was written to generate C code that
implements a specified optimization. Genesis begins its work by parsing each section



313the design and implementation of genesis

of the Gospel specification (recallFigures 1 and 2). A generated optimizer consists
of a standard driver that calls four procedures specific to the optimization: aset up
procedure initializes data structures required for the specific optimization as a result
of parsing theCode Pattern section of the specification, amatch procedure consists
of code that searches for patterns specified in theCode Pattern section of the
specification, apre condition procedure consists of code that implements the checks
requested in the specifiedDepend section, and anaction procedure that implements
the code modifications specified in theACTION section. The generation of an optimizer
is described separately from the execution of an optimizer in the following sections.

Description of the generator

The implementation of the generator consists of translating Gospel specifications
into C code using LEX and YACC for lexical and syntactical analysis, respectively.
The translation of the specifications generates four optimization-specific procedures
and is described algorithmically inFigure 4. The algorithm depicts the translation of
the four parts of the specification:TYPE, Code Pattern, Depend, and ACTION.

The TYPE section translation enters the appropriate type (statement, loop, nested

Figure 4. Translation algorithm



314 d. whitfield and m. l. soffa

or adjacent loops) for each declared variable into a translation table (TransTbl). The
Code Pattern translation generates the appropriate control structure from theany and
all quantifiers to pattern match for the specified elements. Translation of theDepend
section results in the generation of the appropriate control structures for satisfying
the specified dependences. Translation of theACTION section produces code to
perform each of the actions (add, delete, modify, move, and copy) and possibly
repeat the actions.

The generation of the C code introduced a number of implementation problems.
The data structures needed for translation and the translation of the specification
sections are discussed in this section; the execution of the generated code and
structures needed for execution are discussed later.

Translation table data structure

In order to generate code that implements the code elements found in Gospel
specifications, a data structure,TransTbl (translation table) is created and used by
the generator. A pictorial representation ofTransTbl is given in Table I.

This table contains the defining parts of the statement and loop code elements
only, as other structures typically found in code can be defined using these two
code elements. For a code element, an indication that the element is used with an
all quantifier is needed, so all code elements with the specified restrictions are
collected for verification. A loop element may additionally require a flag to specify
that it is an adjacent or nested loop. Finally, information about loop constants and
induction variables may be required for some optimizations.Table I illustrates four
of the entries that exist for FUS as specified inFigure 1.

Translation of a Gospel specification

TYPE section translation.Translation of theTYPE section results in the creation
of the TransTbl as described above. TheTransTbl contains an entry for each declared
variable of theTYPE section. When processing the precondition section, the quantifier
flag is set in the table.

PRECOND section translation.Translation of the GospelCode Pattern specification
in the PRECOND section includes the generation of code to create anOptTyp table
needed when the generated optimizer executes. TheOptTyp table contains an entry
for each element of theTransTbl that has a non-null quantifier, thus recreating the

Table I.TransTbl

Character Quantifier Statement or Loop
identifier flag loop flag information

Sn No Statement
Sm No Statement
Sk Null Statement
L1 Any Loop Adjacent
L2 Null Loop Adjacent



315the design and implementation of genesis

elements of theTransTbl that require further verification. The code to createOptTyp
table entries is generated whenCode Pattern statements that begin withall or any
are encountered. For example, suppose the Gospel specification includes

all Stmt 1: patterns

This results in code to create a new set for the statements that matchpatterns when
the optimizer is executed. Thepatterns part of the specification results in the
generation of amatch procedure that consists of conditions that verify code elements.

The translation of the GospelDepend section of a specification is controlled by
the any, all, andno quantifiers in the specification. These operations dictate the major
control structures of the generatedpre condition procedure and the dependence
conditions become conditions in the generated optimizer.

The code generated for each of the quantifiers varies. For anany quantifier, a
loop is generated to search for the next single occurrence of the specified conditions.
For an all quantifier, a loop is generated to collect all of the specified intermediate
code statements that meet the condition. Ano quantifier signals the generation of
code identical to the code generated for anall quantifier, except that anIF statement
is also generated to ensure that the reverse condition exists. Additionally, a specified
mem operator results in the generation of a loop that is used to determine whether
a variable is a member of the specified set. (The set specification may include union
and intersection expressions). An example of the code generated for theall operation
is given later along with an explanation of its execution.

ACTION section translation.Each of the specified actions in the GospelACTION
section is directly translated into a procedure call within the generatedaction
procedure. There are two exceptions from this direct translation. First, some specified
code elements are greater than one code unit in size (e.g. the pre-header of a loop).
When such objects are identified, a loop is generated to perform the same action
on the entire object. Secondly,forall Stmts in expression may precede the specified
actions. When such a Gospel construct is found, aWHILE loop is generated to
manipulate all of the elements referred to byStmts in expression.

Description of the optimizer

An optimizer produced by the Genesis prototype consists of the generated optimiz-
ation-specific code and non-optimization-specific code that is required by all optimiza-
tions (i.e. library routines). These parts are assembled by a constructor. The execution
of the generated optimizer is explained next.

The main procedure of the generated optimizer is a driver that controls the
execution of the optimization specific code. The format of the driver is the same
for any optimizer generated in that the driver calls on the four optimization-specific
procedures. However, some optimizers have complex patterns to be matched resulting
in the generation of multiplematch procedures. Hence, a call interface is used as a
link between the driver and the optimization-specific procedures. A high-level descrip-
tion of the standard driver is given inFigure 5. Notice that the driver requires the
existence of four optimization-specific procedures and requests the call interface to
call the generated optimization-specific code.



316 d. whitfield and m. l. soffa

Figure 5. The driver algorithm

Optimization table data structure

An OptTyp table maintains data about each variable that is qualified in the
PRECOND specification. TheOptTyp table may not have as many entries as the
TransTbl, which contained an entry for each declared variable.

When the optimizer executes, each entry in theOptTyp table requires a field to
describe its code location,pointer to code location. For statements, this field is a
simple pointer to the intermediate code statement, but loop-typed elements are more
complex and require several pointers to locate the loop elements:

Loop Header (Initial, Final loop values)
Loop Body

Loop End

The skeleton of theOptTyp table is given inTable II. This table illustrates the
possible fields of the specification variables at run time and gives an example of
valid entries for the execution of loop fusion. The first four fields are a copy of the
TransTbl entries. The last field indicates the intermediate code locations for the loop
head, initial value, final value, and start and end of the loop.

Execution of the generated optimizer

Consider a scenario where loop fusion is to be applied to a given source program.
The interaction of the Genesis routinues during this scenario is illustrated inFigure 6.

Table II.OptTyp table

Character Quantifier Statement or Static loop Location of
identifier flag loop flag information loop parts

L1 Any Loop Adjacent 7,8,9,11,18
L2 Any Loop Adjacent 19,20,21,23,26



317the design and implementation of genesis

Figure 6. Application of loop fusion

The driver callsset up within the call interface which in turn callsset up FUS to
complete the initializations. Next, the driver indirectly callsmatch FUS to attempt
to satisfy the specified code patterns in the source program. If this attempt fails,
then the pattern matcher is restarted from the last code segment attempted; if a
pattern is found, the specified dependences are verified. The dependences are verified
by pre condition FUS which is called bypre condition from within the call interface.
If the verification of the dependences fails, then the pattern matcher is restarted. The
search continues until the end of the code is found or all specified conditions are
met, at which point the actions of loop fusion are executed by indirectly calling
action FUS. As the execution ofset up, match, and action procedures is obvious,
only the execution ofpre condition is described in greater detail.

Typically, the dependency conditions are quantified withany, all, or no. The code
executed for these quantifiers varies. However, a generalized description of theall
quantifier is given in this section to indicate a typical segment ofpre condition.

The occurrence ofall in a Gospel specification results in the generation of code
as seen inFigure 7. All statements other thanSi that are flow dependent onSj are

Figure 7. Example ofall



318 d. whitfield and m. l. soffa

to be found. After locatingS1 in the OptTyp table, a set is created to hold all of
the statements that meet the requirements. The functionfirst dep locates a statement
that is flow dependent onSj and marks the dependences so that futureflow dep
calls do not re-examine dependences. Next, aWHILE loop is used to verify that the
first element and any others found are notSi. If the element meets all conditions,
then it is added to the set. Once all verified elements are collected inSet S1, an IF
statement determines the cardinality of the set. An empty set for anall quantifier
indicates that failure should be returned to the driver.

Different combinations of the three quantifiers (any, no, and all) and the mem
operator can be used in the specifications and result in the corresponding code
segment being automatically generated.

EXPERIENCE WITH GENESIS

Four kinds of experiments performed using Genesis are reported here. First, the
correctness of the generated code was examined by comparing optimizers produced
by Genesis to hand-coded optimizers. Secondly, the efficiency of the generated code
was examined by implementing and verifying a cost analysis of the optimizers.
Thirdly, a number of experiments were performed to determine ways to improve the
efficiency of optimizers. Fourthly, the frequency that several optimizations occur in
practice was investigated.

A representative sample of eleven optimizations were chosen for experimentation:
constant propagation (CTP), dead code elimination (DCE), constant folding (CFO),
invariant code motion (ICM), loop unrolling (LUR), copy propagation (CPP), loop
circulation (CRC), bumping (BMP), parallelization (PAR), loop fusion (FUS), and
loop interchanging (INX). These eleven optimizations were applied to ten test
programs to determine if the optimizations were performed correctly, if all application
sites were found, and the frequency of their occurrence. Test programs were obtained
from a HOMPACK test suite* and a numerical analysis test suite.10 Ten programs
were chosen that displayed programming constructs that might enable parallelization
(i.e. loops that used arrays). No attempt was made to use programs in which certain
optimizations might be applicable.

Experimental comparison of Genesis

The eleven optimizations were applied to the test programs and the optimized
code was compared to the optimized code produced by a hand-generated optimizer,
Tiny.11 A comparison of Tiny’s optimizations and the Genesis optimizations revealed
that the automatically generated optimizations did not introduce any extraneous code
into the optimized intermediate code. These first experiments successfully tested the
Genesis system for correctness and produced evidence that the quality of code
generated is equivalent to that of a hand-generated optimizer. Also, the robustness
of Genesis is demonstrated by the ability to specify a wide range of optimizations.

* HOMPACK was obtained via anonymous ftp from netlibKmcs.anl.gov



319the design and implementation of genesis

Cost analysis of generated optimizers

In order to estimate the cost of applying optimizations, an analysis can be
performed using the specification in Gospel. The cost analysis approximates the
computational complexity of an optimization by assigning cost units to the primitive
actions and dependency conditions that are involved in applying an optimization. By
using the cost analysis, the user can approximate the cost without an actual implemen-
tation. Also, reduction in the cost of applying an optimization may be found and
reduced by changing the specification. A technique to determine the cost of applying
an optimization may be used to establish the cost of a proposed optimization from
its specification. Each time a specification variable is referenced, a unit charge of
one is assessed, as the lookup in theOptTyp table would be needed in the
implementation of an optimizer. Likewise, each reference to a data dependence is
assessed a unit charge. The primitive actions performed by the optimizer (i.e. move,
copy, delete, add, modify) are assessed charges according to the relative cost of
the operation.

In order to validate this approach, the cost analyses for seven optimizations were
compared with their actual execution timings. These values are reported inTable III
for CTP, DCE, CFO, LUR, CPP, FUS, and INX12 (two implementations of FUS
and INX: FUXSCA, FUSVCA, INXSCA, and INXVCA are reported and are described
later). The Cost column indicates the cost assigned by the cost analysis and
the Timing column is the actual execution timing (in microseconds) of applying
the optimization.

A graph of the cost versus the execution timings of these optimizations is displayed
in Figure 8. This graph reveals that the cost analysis is approximately linearly related
to the machine timings of applying the optimization (the coefficient of regression
for nine sample points is 0·968).

These execution timings suggest that the cost assignments are a realistic measure
of the performance of optimizations. Also, the execution timings produced by a
prototype implementation of Genesis demonstrate that the automatic generation of
optimizers is a reasonable approach in the design and implementation of optimizers.

Table III. Cost versus execution timings

Optimization Cost Timing

CTP 11 1·0
DCE 12 1·8
CFO 27 2·6
LUR 23 3·8
INXVCA 54 17·2
INXSCA 181 23·6
FUSVCA 329 44·2
CPP 434 65·4
FUSSCA 485 81·4



320 d. whitfield and m. l. soffa

Figure 8. Graph of cost and execution timings

Figure 9. Statement comparison algorithm (SCA)

Alternate optimizer implementation

Through experimentation it was discovered that the generator implemented some
optimizations such that unnecessary costs were incurred by the optimizer. Unnecessary
overhead can occur when comparing the dependences and direction vectors of
statements in various loops. There are two approaches to this comparison: (1) find
all statements in the loops and then examine their dependences and direction vectors,
or (2) for each statement in one loop, determine those dependences that terminate
(i.e. the sink of the dependence arc) in the other loop and then examine those
direction vectors.

The implementation described in this paper generated code for dependence testing
that compared one statement involved in the test to all other statements in the range
(i.e. the first approach). For example, the implementation of loop interchange is
given in Figure 9.

Hence, the described implementation examined the dependences of all statements
in the nested loops and then compared their direction vectors. An alternative
implementation would examine the direction vectors of all statements that are flow
dependent onSm and if they were(,,.) would check to see if the statement was
an element of the inner loop. The alternative implementation of loop interchanging
is given in Figure 10.

Specifications that involve testing the membership of two or more specification

Figure 10. Direction vector comparison algorithm (VCA)



321the design and implementation of genesis

variables could be implemented using either of the approaches depicted in these
algorithms (e.g. FUS and INX). The difference in the performance of the two
algorithms depends on the number of statements in the loop versus the number of
dependences per statement that exist in the source program. Thus, when the optimiz-
ation is being generated, it is not known which algorithm performs better.

A comparison of the performance of the two Algorithms is illustrated inTable IV
by examining several applications of FUS and INX. The cost of using the statement
comparison algorithm (SCA) is given in the first column for 4 applications of FUS
and 4 applications of INX. Column 2 depicts the cost of using the Direction Vector
Comparison Algorithm (VCA) at the same application sites. The last column is the
percentage of reduction that VCA produces. In some cases, this percentage is negative
indicating that VCA increases the optimization time.

In these experiments, when VCA performed better, it did so tremendously. On
the average, the results with VCA were better, and in the case of FUS all applications
using VCA were better. However, three out of four were worse for INX. Thus,
there is not a clear indication that one algorithm is better than the other.

A heuristic that decides which implementation to choose could be incorporated as
part of the optimizer. This heuristic needs several data items:

1. Number of data dependences per statement—di (known value, produced by data
dependence analyzer).

2. Number of statements that occur in the loop—L (known value, produced
by parser).

3. Estimate of the percentage of dependences that occur within loops—D (estimated
by running numerous programs).

With this information, a heuristic was developed for the optimizer to select the
implementation that performs better. The heuristic sums the number of data depen-
dences that occur per statement in the loop and multiplies this number with the
estimated percentage of dependences that emanate and terminate within loops (i.e.
loop-carried dependences) to produce the number of data dependences that occur in
a loop. This value is then compared to the number of statements within the loop
as follows:

Table IV. Comparison of implementation tech-
niques

Cost SCA Cost VCA Percentage
reduction

FUS
270 53 80
509 86 83

3758 108 97
2282 398 83

INX
10 19 −90

589 132 78
34 41 −21
25 28 −12



322 d. whitfield and m. l. soffa

SOL
i=0

diD D , L

If the inequality is true, then VCA is more efficient. In other words, if the estimated
number of dependences within the loop is less than the number of statements, then
fewer iterations would be made through step 2 of VCA than step 2 of SCA.

An estimate of the value ofD was produced by automatically calculating the
number of dependences that occurred between loops. This calculation was performed
on ten test programs. The average percentage of loop dependences (i.e.D in the
heuristic) in these test cases is 59. The heuristic was applied to the four INX test
runs and correctly chose the algorithm to use in each of these cases.

The direction vector comparison algorithm was developed to improve the efficiency
of the optimizer. However, after examining various specifications, some patterns that
occur in the specification suggest that this algorithm may also become expensive.
Identifying possible ‘costly’ specification patterns for VCA aides in the decision of
which algorithm should be used to produce an efficient optimizer. If such patterns
are found, a tool such as Genesis could produce both implementations and call on
the appropriate technique dynamically.

Application frequency

When implementing an optimizer, the implementation team must decide what
optimizations to apply. Part of this decision is based on how frequently the optimiz-
ation to be included is expected to be applied. As data involving the application
frequency of optimizations is helpful in the design of an optimizer, eleven optimiza-
tions were applied to the ten source programs. The results are displayed inTable V.
The first column displays the number of application points that were found for the
particular optimization. The second column displays the number of programs in
which these application points were found. Notice that invariant code motion was
not found, as these optimizations were applied to an extended intermediate code

Table V. Application frequency

Application Program
frequency occurrences

DCE 34 5
CTP 97 6
CPP 5 2
CFO 5 1
ICM 0 0
LUR 49 4
FUS 11 4
INX 13 3
BMP 52 4
CRC 4 1
PAR 26 3



323the design and implementation of genesis

format where array references were not expanded. The large numbers of application
points for DCE, CTP, and LUR are attributed to the enabling of these optimizations.13

These data suggest that the application of DCE, CTP, and LUR should be highly
considered for application in an optimizer. It also suggests that ICM should not be
applied when array references are explicit, but may be considered when array
references are fully calculated. Also, the application of INX should be considered
before CRC as it does not appear as often. Data may also be collected to determine
how the optimizations interact, study the relationship between interactions and
the ordering of the optimizations, and the effect these orderings have on the
resultant code.14

CONCLUSION

This paper describes a prototype implementation of an automatic optimizer generator
that produces optimizers from specifications. The Gospel specifications are used as
input to the Genesis tool. The generator produces optimization specific code that is
used in the construction of an automatically generated optimizer. A prototype of this
tool was developed, verified, and used for experimentation. The automatic generation
of an optimizer may be used for several purposes: the interaction of optimizations
could be studied for determining possible orderings,14 the cost and benefit of an
optimization could be determined to decide if an optimization should be included in
a production optimizer, and optimizations can be easily tailored using Genesis and,
thus, a comparison of the effectiveness of the optimizations may be performed.

Experimentation revealed that the execution of optimizers generated by Genesis
did not introduce any new code into the optimized intermediate code. Further
experimentation suggests that although sequential optimizations may be applied to
the entire program, parallelizing optimizations should be applied on a point-by-point
basis since different orderings are needed in disjoint parts of the same program.
Also, experimentation determined that the theoretical interactions11 that may occur
among optimizations do occur in practice.

acknowledgement

This work was partially supported by the U.S. National Science Foundation under
Grant CCR-9109089 to the University of Pittsburgh.

APPENDIX I: OPTIMIZATIONS SPECIFIED IN GOSPEL

BMP: Bumping—increases the loop bounds and all uses of the loop control
variable by a set amount, the bump.

CFO: Constant folding—replaces a binary operation with the result of that
operation.

CPP: Copy propagation—propagates copies to the uses of that variable.
COL: Loop collapsing—changes a doubly nested loop into a singly nested

loop.
CRC: Loop circulation—interchanges the outermost and innermost loops of

multiply nested loops (an extension of loop Interchanging).
CSE: Common subexpression elimination—replaces a recomputation of a

subexpression by assigning the subexpression to a variable that is used



324 d. whitfield and m. l. soffa

in its place.
CTP: Constant propagation—propagates a constant to a single use.
DCE: Dead code elimination—deletes a statement that defines a variable that is

never used.
DIS: Loop distribution—splits one loop into two adjacent loops (inverse of

FUS).
FUS: Loop fusion—converts two adjacent loops into one loop.
ICM: Invariant code motion—moves loop invariant code outside of the loop.
INX: Loop interchanging—interchanges two tightly nested loops.
IVE: Inducation variable elimination—removes unnecessary induction variables

and replaces them with computations involving one loop induction
variable.

LUR: Loop unrolling—unrolls a loop, forming two loops.
NRM: Loop normalization—normalizes the step increment of a loop to be one.
PAR: Parallelization—modifiesDO to PAR, signifying parallel execution of the

loop.
PEL: Loop peeling—removes a single iteration from a loop.
SCE: Scalar expansion—expands scalars to arrays when used with arrays in

binary operations.
SMI: Strip mining—replaces a single loop with two loops where the upper

bound of the outer loop is the length of the vector register.
SRE: Strength reduction—changes statements involving multiplication to

addition.
UNS: Loop unswitching—replaces a loop with a conditional by a conditional

with two loops.

APPENDIX II. PRECOND GRAMMAR FOR THE GOSPEL PROTOTYPE

Precon → DEPEND Precon list
Precon list → Quantifier Code list: Mem list Condition list; Precon list u «
Quantifier → ANY u NO u ALL
Code list → StmtId StmtId list
Mem list → Mem list OR Mem list

→ Mem list AND Mem list
→ Mem(StmtId, Set Exp)

Mem → MEM u NO MEM
Set Exp → INTER (Set Exp, Set Exp)

→ UNION (Set Exp, Set Exp)
→ ID
→ PATH (ID, ID)
→ CTRL DEP (ID)

Condition list → NOT Condition list
→ Condition list AND Condition list
→ Condition list OR Condition list
→ Type (StmtId, StmtId Dir Vect)
→ (StmtId Rel Op StmtId)

Type → FLOW DEP u OUT DEP u ANTI DEP u CTRL DEP
Dir Vect → (Dir Dir List) u «



325the design and implementation of genesis

Dir List → , Dir u «
Dir → Rel Op u ANY
Rel Op → , u . u ,= u .= u = u !=
StmtId → ID u POS(ID)
StmtId list → , StmtId u «

REFERENCES

1. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. Leung and D. A. Schouten,
‘Parafrase-2: an environment for parallelizing, partitioning, synchronizing and scheduling programs on
multiprocessors’,Proc. of 1989 International Conference on Parallel Processing, St. Charles, Illinois,
August 1989, pp. 39–48.

2. Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKinley and Haspal Subhlock, ‘The
ParaScope editor: an interactive parallel programming tool’,Proc. Supercomputing ’89, Reno, Nevada,
pp. 540–549.

3. F. E. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hseh and V. Sarkar, ‘A framework for determining
useful parallelism’,Proc. 1988 International Conference on Supercomputing, St. Malo, France, February
1988, pp. 207–215.

4. Jack W. Davidson and Christopher W. Fraser, ‘Automatic generation of peephole optimizations’,Proc.
ACM SIGPLAN ’84 Symposium on Compiler Construction, 1984, pp. 111–115.

5. Christopher W. Fraser and Alan L. Wendt, ‘Automatic generation of fast optimizing code generators’,
Proc. SIGPLAN ’88 Conference on Programming Language Design and Implementation, June 1988,
pp. 79–84.

6. Robert Giegerich, ‘Automatic generation of machine specific code optimizer’,Proceedings of Ninth
Annual ACM Symposium on Principles of Programming Languages, January 1982, pp. 75–81.

7. Robert R. Kessler, ‘Peep—an architectural description driven peephole optimizer’,Proc. ACM SIGPLAN
’84 Symposium of Compiler Construction, SIGPLAN Notices, 19, (6), 106–110 (1984).

8. Deborah Whitfield and Mary Lou Soffa, ‘Automatic generation of global optimizations’,ACM SIGPLAN
’91 Conference on Programming Language Design and Implementation, June, 1991, pp. 120–129.

9. Tia Watts, Mary Lou Soffa and Rajiv Gupta, ‘Techniques for integrating parallelizing transformations
and compiler based scheduling methods’,Supercomputing ’92, Minneapolis, MN, 1992.

10. Richard Burden and J. Douglas Faires, inNumerical Analysis, Prindle, Weber & Schmidt, Boston,
MA, 1989.

11. Michael Wolfe, ‘Tiny: a loop restructuring research tool’, Oregon Graduate Institute of Science and
Technology, 1989.

12. David A. Padua and Michael J. Wolfe, ‘Advanced compiler optimizations for supercomputers’,Communi-
cations of the ACM, 29, (12), 1184–1201 (1986).

13. Deborah Whitfield and Mary Lou Soffa, ‘An approach to ordering optimizing transformations’,Proc.
Second ACM SIGPLAN Symposium on Principles & Practices of Parallel Programming, March 1990,
pp. 137–146.

14. Deborah Whitfield and Mary Lou Soffa, ‘Investigation properties of code transformations’,Proc. 1993
International Conference on Parallel Processing, St. Charles, Illinois, August, 1993, Vol. 2, pp. 156–160.


	SUMMARY
	INTRODUCTION
	Overview
	Scenario using Genesis

	THE DESIGN OF GOSPEL AND GENESIS
	The general optimization specification language
	Design of Genesis

	PROTOTYPE IMPLEMENTATION OF GENESIS
	Description of the generator
	Translation table data structure

	Description of the optimizer
	Optimization table data structure
	Execution of the generated optimizer


	EXPERIENCE WITH GENESIS
	Experimental comparison of Genesis
	Cost analysis of generated optimizers
	Alternate optimizer implementation
	Application frequency

	CONCLUSION
	APPENDIX I: OPTIMIZATIONS SPECIFIED IN GOSPEL
	APPENDIX II. PRECOND GRAMMAR FOR THE GOSPEL PROTOTYPE

