Assume the following definitions:
Z \mathbb{Z} Z
The integers
Z + \mathbb{Z}^{+} Z +
The positive integers; i.e., { x ∣ x ∈ Z ∧ x > 0 } \big\{ x \; \big| \; x \in \mathbb{Z} \land x > 0 \big\} { x ∣ ∣ ∣ x ∈ Z ∧ x > 0 }
N \mathbb{N} N
The natural numbers; i.e., { x ∣ x ∈ Z ∧ x ≥ 0 } \big\{ x \; \big| \; x \in \mathbb{Z} \land x \geq 0 \big\} { x ∣ ∣ ∣ x ∈ Z ∧ x ≥ 0 }
Z − \mathbb{Z}^{-} Z −
The negative integers; i.e., { x ∣ x ∈ Z ∧ x < 0 } \big\{ x \; \big| \; x \in \mathbb{Z} \land x < 0 \big\} { x ∣ ∣ ∣ x ∈ Z ∧ x < 0 }
R \mathbb{R} R
The real numbers
Q \mathbb{Q} Q
The rational numbers; i.e., { x y ∣ x ∈ Z ∧ y ∈ Z + } \Big\{ \frac{x}{y} \; \Big| \; x \in \mathbb{Z} \land y \in \mathbb{Z}^{+} \Big\} { y x ∣ ∣ ∣ ∣ x ∈ Z ∧ y ∈ Z + }
π \pi π
The ratio of the circumference of a circle to its diameter; 3.1415926535…
Assume that Q + \mathbb Q^{+} Q + , Q − \mathbb Q^{-} Q − , R + \mathbb R^{+} R + , and R − \mathbb R^{-} R − are defined similarly to Z + \mathbb Z^{+} Z + and Z − \mathbb Z^{-} Z − .
Membership
Simple membership
Each of the following is either true or false; which one?
3 ∈ Z 3 \in \mathbb Z 3 ∈ Z
3.5 ∈ Z 3.5 \in \mathbb Z 3 . 5 ∈ Z
π ∈ Z \pi \in \mathbb Z π ∈ Z
3 ∈ Q 3 \in \mathbb Q 3 ∈ Q
3.5 ∈ Q 3.5 \in \mathbb Q 3 . 5 ∈ Q
π ∈ Q \pi \in \mathbb Q π ∈ Q
3 ∈ R 3 \in \mathbb R 3 ∈ R
3.5 ∈ R 3.5 \in \mathbb R 3 . 5 ∈ R
π ∈ R \pi \in \mathbb R π ∈ R
3 ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } } 3 \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\} 3 ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } }
{ 3 } ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } } \{3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\} { 3 } ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } }
{ 2 , 3 } ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } } \{2, 3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\} { 2 , 3 } ∈ { { 1 } , { 2 , 3 } , { 4 , 5 , 6 } }
{ 2 , 3 } ∈ P ( { 2 , 3 } ) \{2, 3\} \in \mathcal{P}\big(\{2, 3\}\big) { 2 , 3 } ∈ P ( { 2 , 3 } )
∣ { 2 , 3 } ∣ ∈ { 2 , 3 } |\{2, 3\}| \in \{2, 3\} ∣ { 2 , 3 } ∣ ∈ { 2 , 3 }
∣ { 2 , 3 } ∣ ∈ P ( { 2 , 3 } ) |\{2, 3\}| \in \mathcal{P}\big(\{2, 3\}\big) ∣ { 2 , 3 } ∣ ∈ P ( { 2 , 3 } )
∞ ∈ R \infty \in \mathbb R ∞ ∈ R
Closed sets
A set is said to be closed over an operation if applying that operation to members of the set always results in another member of that set.
Which (if any, or all) of the following operators is Z \mathbb Z Z closed over?
Which (if any, or all) of the following operators is N \mathbb N N closed over?
Which (if any, or all) of the following operators is R − \mathbb R^{-} R − closed over?
Which (if any, or all) of the following operators is Q \mathbb Q Q closed over?
Which (if any, or all) of the following operators is Q ∖ { 0 } \mathbb Q \setminus \{0\} Q ∖ { 0 } closed over?
Which (if any, or all) of the following operators is R \mathbb R R closed over?
Comparison
For each of the following, fill in the blank with the first element of the following list that applies:
= = = if the two are identical; otherwise
⊂ \subset ⊂ or ⊃ \supset ⊃ if those are true; otherwise
⊆ \subseteq ⊆ or ⊇ \supseteq ⊇ if those are true; otherwise
disjoint if the intersection of the two is ∅ \emptyset ∅ ; otherwise
≠ \neq =
R \mathbb R R
Q \mathbb Q Q
N \mathbb N N
Z + \mathbb Z^{+} Z +
even numbers
odd numbers
prime numbers
odd numbers
{ 1 , 3 , 5 } \{1, 3, 5\} { 1 , 3 , 5 }
{ { 1 } , { 3 } , { 5 } } \{\{1\}, \{3\}, \{5\}\} { { 1 } , { 3 } , { 5 } }
{ 1 , 3 , 5 } \{1, 3, 5\} { 1 , 3 , 5 }
{ 5 , 3 , 1 } \{5, 3, 1\} { 5 , 3 , 1 }
{ 1 , 3 , 5 } \{1, 3, 5\} { 1 , 3 , 5 }
{ 5 , 3 } \{5, 3\} { 5 , 3 }
R ∖ Z \mathbb R \setminus \mathbb Z R ∖ Z
R ∖ Q \mathbb R \setminus \mathbb Q R ∖ Q
Q ∖ Z \mathbb Q \setminus \mathbb Z Q ∖ Z
{ 1 , 2 , 4 } \{1, 2, 4\} { 1 , 2 , 4 }
∅ \emptyset ∅
P ( ∅ ) \mathcal{P}(\emptyset) P ( ∅ )
{ 1 } \{1\} { 1 }
P ( { 1 } ) \mathcal{P}(\{1\}) P ( { 1 } )
Listing members and cardinality
For each of the following, list the members of the set:
P ( P ( ∅ ) ) \mathcal P \big(\mathcal P(\emptyset)\big) P ( P ( ∅ ) )
P ( P ( P ( ∅ ) ) ) \mathcal P \Big(\mathcal P \big(\mathcal P(\emptyset)\big)\Big) P ( P ( P ( ∅ ) ) )
Assume that A = { 25 , 0 , 1 } A = \{25,0,1\} A = { 2 5 , 0 , 1 } ; A ∪ P ( A ) A \cup \mathcal P(A) A ∪ P ( A )
Assume that A A A is the set of all 2-digit numbers; ∣ P ( A ) ∣ |\mathcal{P}(A)| ∣ P ( A ) ∣
Assume that A A A is the set of all 2-digit numbers; ∣ P ( A ) ∩ A ∣ |\mathcal{P}(A) \cap A| ∣ P ( A ) ∩ A ∣
Assume that A A A is the set of all 2-digit numbers; ∣ P ( A ) ∪ A ∣ |\mathcal{P}(A) \cup A| ∣ P ( A ) ∪ A ∣
Set-builder notation
Assume A = { 1 , 2 , 3 } A = \{1,2,3\} A = { 1 , 2 , 3 } and B = { 2 , 3 , 5 } B = \{2,3,5\} B = { 2 , 3 , 5 } . Write out each of the following in full.
Note that ∧ \land ∧ means and (like and
in Python or &&
in Java); ∨ \lor ∨ means or (like or
in Python or ||
in Java); and ¬ \lnot ¬ means not (like not
in Python or !
in Java).
{ x ∣ x ∈ A } \big\{ x \;\big|\; x \in A \big\} { x ∣ ∣ ∣ x ∈ A }
{ x ∣ x + 1 ∈ A } \big\{ x \;\big|\; x+1 \in A \big\} { x ∣ ∣ ∣ x + 1 ∈ A }
{ x ∣ x ∈ A ∧ x ∈ B } \big\{ x \;\big|\; x \in A \land x \in B \big\} { x ∣ ∣ ∣ x ∈ A ∧ x ∈ B }
{ x ∣ x ∈ A ∨ x ∈ B } \big\{ x \;\big|\; x \in A \lor x \in B \big\} { x ∣ ∣ ∣ x ∈ A ∨ x ∈ B }
{ x ∣ x ∈ A ∧ x ∉ B } \big\{ x \;\big|\; x \in A \land x \notin B \big\} { x ∣ ∣ ∣ x ∈ A ∧ x ∈ / B }
{ x + 1 ∣ x ∈ A } \big\{ x+1 \;\big|\; x \in A \big\} { x + 1 ∣ ∣ ∣ x ∈ A }
{ x + y ∣ x ∈ A ∧ y ∈ B } \big\{ x+y \;\big|\; x \in A \land y \in B \big\} { x + y ∣ ∣ ∣ x ∈ A ∧ y ∈ B }
{ { x } ∣ x ∈ A } \big\{ \{x\} \;\big|\; x \in A \big\} { { x } ∣ ∣ ∣ x ∈ A }
{ { x , y } ∣ x ∈ A ∧ y ∈ B ∧ x ≠ y } \big\{ \{x,y\} \;\big|\; x \in A \land y \in B \land x \ne y \big\} { { x , y } ∣ ∣ ∣ x ∈ A ∧ y ∈ B ∧ x = y }
{ { x , y } ∣ x ∈ A ∧ y ∈ B } \big\{ \{x,y\} \;\big|\; x \in A \land y \in B \big\} { { x , y } ∣ ∣ ∣ x ∈ A ∧ y ∈ B }
{ x ∣ x ⊆ A } \big\{ x \;\big|\; x \subseteq A \big\} { x ∣ ∣ ∣ x ⊆ A }
{ x ∣ x ⊂ A } \big\{ x \;\big|\; x \subset A \big\} { x ∣ ∣ ∣ x ⊂ A }
{ x ∣ x ⊆ A ∧ x ⊆ B } \big\{ x \;\big|\; x \subseteq A \land x \subseteq B \big\} { x ∣ ∣ ∣ x ⊆ A ∧ x ⊆ B }
{ x ∣ x ⊆ ( A ∩ B ) } \big\{ x \;\big|\; x \subseteq (A \cap B) \big\} { x ∣ ∣ ∣ x ⊆ ( A ∩ B ) }
{ x ∣ x ⊆ A ∨ x ⊆ B } \big\{ x \;\big|\; x \subseteq A \lor x \subseteq B \big\} { x ∣ ∣ ∣ x ⊆ A ∨ x ⊆ B }
{ x ∣ x ⊆ ( A ∪ B ) } \big\{ x \;\big|\; x \subseteq (A \cup B) \big\} { x ∣ ∣ ∣ x ⊆ ( A ∪ B ) }
{ P ( { x } ) ∣ x ∈ A } \Big\{ \mathcal P\big(\{x\}\big) \;\Big|\; x \in A\Big\} { P ( { x } ) ∣ ∣ ∣ ∣ x ∈ A }
{ x ∣ x ∉ A } \big\{ x \;\big|\; x \notin A \big\} { x ∣ ∣ ∣ x ∈ / A }
{ x ∣ x ∈ Z ∧ x ∉ A } \big\{ x \;\big|\; x \in \mathbb Z \land x \notin A \big\} { x ∣ ∣ ∣ x ∈ Z ∧ x ∈ / A }