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2n
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Theorem1 Vn € N . Zx:(n+)n

PROBLEM 1 Proof by Induction

Prove the above theorem using induction.

Proof.

We proceed by induction.
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Base Case When n = 0 we have ZO =0 and ——

x=0

Inductive step Assume the theorem holds for some n € N: that is, Zx =
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evaluated at n + 1:
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which means the theorem holds at n + 1 as well.

By the principle of induction, the theorem holds for all n € N.
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= 0, so the theorem holds for n = 0.

5 . Consider the sum



PROBLEM 2 Proof by Contradiction

Prove the above theorem using contradiction and the well-ordering principle.

Proof.

We proceed by contradiction.
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r=n

1
Assume that the theorem is false; that is, 3n € N . Z T # M

2

must be a smallest such n; call that smallest n where the theorem is false ny.

0
Clearly ng > 0 because Zx =0=

x=0
m < ng and ng is the smallest value for which the theorem is false, the theorem must be true for m. This means
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Because the assumption that the theorem
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. Thus there must be a natural number m = ng — 1; since
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contradiction, the theorem must be true.

. By the well-ordering principle there
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You might consider grading your own work on the following rubric:

Inductive Proof
O Identifies induction as proof structure
Labels base case and inductive step
Base case is smallest allowable
Base case is shown to hold via algebra
Inductive case assumes theorem holds for n and considers n + 1

Inductive case reduces n + 1 to n via algebra

O 0O 0O oo O»d

Proof ends by stating some form of “by induction, holds for all n”

Proof by Contradiction
O Identifies proof by contradiction as proof structure
O Assumes the theorem is false
O Either assumes it is false for some n, or recognizes that =V = 3
O Uses well-ordering principle (considers smallest such n)
e Shows that n can’t be the smallest such n because

O true for n implies true for n — 1, and

O either there is always an n — 1, or by case analysis that the ns that do not have an n — 1 also meet
the theorem

O State explicitly that assuming not-theorem led to contradiction (noting it did so in all cases if case
analysis used)

O Proof ends with some form of “by contradiction, theorem true”



You might also try doing the same two proof types with other summation formulae, such as
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Please note: we expect you to be able to handle all of the following

e alternating series (i.e., with (—1)* terms)

3n—4
e arithmetic in both top and bottom of the summation bounds limits (e.g., Z )
2n

o0

¢ infinite sums (at least those based on geometric series) (i.e., Z)

0
* reverse sums (e.g., Z)

i=—n

¢ sums with free variables (e.g., the V& in the last example above)
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