
Name: CompID:

Theorem 1 The sum of all positive odd integers less than 2n is n2.

problem 1 Prove theorem 1 using induction



Name: CompID:

Theorem 1 The sum of all positive odd integers less than 2n is n2.

problem 1 Prove theorem 1 using contradiction and the well-ordering principle



Name: CompID:

problem 1 Fill in these combinatorics blanks

You may answer any question with factorial, choose, and unresolved arithmetic notation, but may not use

ellipses. For example, the following are all OK: 120 , 5! , 5 · 4 · 3 · 2 · 1
(2 · 1)(3 · 2 · 1)

,
(
5

3

)
.

1. A seven-character computing ID is 3 letters, 1 digit, and 3 more let-
ters. All 26 letters are used, but digits are limited to 2 through 9 (no 0 or 1). How many seven-character
computing ID can this scheme create?

2. How many 6-element subsets of a 10-element set are there?

3. Which is larger:
(
45

10

)
or

(
45

50

)
?

4. How many 6-element sequences can be made from elements of a 50-
element set without repeating elements?

5. How many 6-element sequences can be made from elements of a 50-
element setwhere no element can appear twice in a row? For example, (1, 2, 1, 2, 1, 2) isOK, but (1, 2, 2, 1, 2, 1)
is not OK.

6. If I randomly shuffle a list containing 10 ds and 16 xs, what is the
probability the shuffle will result in the exact sequence "ddddddddddxxxxxxxxxxxxxxxxxx"?

7. In a fair raffle, every participant has an equal chance of winning. I
participate in two fair raffles: one with 10 people (myself included), one with 100 (myself included). What
is my chance of winning at least one raffle?

8. Which adds more options when constructing sequences: doubling
the number of options for each spot in the sequence or doubling the length of the sequence? Answer with
one of options, length, or same. You may assume both the options and length are initially at least 2.



Name: CompID:

Consider the following sets : A = {8, 4, 5}, B = {2, 3, 4}, C = P
(
{8, 2}

)
problem 1 Show all members of each set

1. = C

2. = A ∪B

3. = A ∩B

4. = A \B

5. =
{
3x

∣∣ (x ∈ N) ∧ (2x ∈ A)
}

6. = {1} ∩ P
(
{1}

)

7. =
{
x
∣∣ (x ∈ A) ∧ (2x ∈ B)

}

8. =
{
{a, b}

∣∣∣ (a ∈ A) ∧
(
b ∈ {4, 5}

)}

problem 2 Answer each question

9. = |A|

10. =
∣∣P(A)

∣∣
11. =

∣∣∣P(P(A)
)∣∣∣

12. = 8 ∈ A

13. = {8} ∈ A

14. =
{
{8}

}
∈ A



Name: CompID:

Consider the following discrete structures questions.

problem 1 Write out in full

1. = {1} × {1} × {2, 3}

2. =
∣∣{1, 2}4∣∣

3. = all the subsequences of "ook"

4. = a subsequence of "fun" that is not a substring of "fun"

5. = the image of {0, 3} under R(x) = x+ 2

6. = the set of edges of the graph 1©→ 2©� 3©

problem 2 Draw

7. ©−→©←−−→©←−© add a minimal number of edges to make this the graph of a transitive relation

8. ©−→©←−−→©←−© add a minimal number of edges to make this the graph of a reflexive relation

problem 3 Logarithms

9. Simplify log2(5) + log2(3):

10. Re-write log3(x
q) without exponentiation:

11. Re-write log4(x) using base-3 log(s) instead of base-4:

12. Fill in the blank: log4(9) = log2

( )



Name: CompID:

Consider the following logic questions. You do not need to specify your domains, propositions, or
predicate definitions, though you may if you wish.

problem 1 Convert the underlined parts to logic

1. “we know that any quiznidic number is prime”

2. “are there any three-element sets in Q?”

3. “Every woozle is a dingalo.”

4. “At least one hefalump is a bear.”

problem 2 Convert to English

domain: all animals
M(x): x is a monkey

L(x, y): x loves y

p: Peevy
5. Write a clear English sentence that means ∀x . ∃y 6= x . L(x, y).

6. Write a clear English sentence that means ∀x, y . L(x, p) ∨
(
M(y)→ L(y, x)

)
.

(continued on reverse)



problem 3 Apply axioms

Show that
(
(P ∧ Q) ∨ (K ∧M)

)
` (P ∨K) by direct proof and/or proof by cases. You may mix math and

English if you wish; we are looking for sound logic, not prose proof technique.



Symbols

Concept Java/C Python This class Bitwise Other
true true True > or 1 -1 T, tautology
false false False ⊥ or 0 0 F, contradiction
not P !p not p ¬P or P ~p
P and Q p && q p and q P ∧Q p & q PQ, P ·Q
P or Q p || q p or q P ∨Q p | q P +Q
P xor Q p != q p != q P ⊕Q p ^ q P⊻Q
P implies Q P → Q P ⊃ Q, P ⇒ Q
P iff Q p == q p == q P ↔ Q P ⇔ Q, P xnor Q, P ≡ Q

Concept Symbol Meaning
equivalent ≡ “A ≡ B” means “A↔ B is a tautology”
entails � “A � B” means “A→ B is a tautology”
provable ` “A ` B” means both “A � B” and “I know B is true because A is true”“` B” (i.e.,

without A) means “I know B is true”
therefore ∴ “∴ A” means both “` A” and “A is the thing we wanted to show”

Graphs and Relations

Term Definition
Walk An alternating sequence of vertices and edges

• starting and ending with a vertex,

• each edge (x, y) in the walk follows vertex x and is followed
by vertex y

Path A walk that does not visit any vertex twice
Closed Walk A walk that begins and ends at the same vertex
Cycle A closed walk that is a path except for its last vertex

The related definitions on relations R : A→ A are
Term Definition
R is Reflexive ∀x ∈ A . x R x
R is Irreflexive ∀x ∈ A . ¬(x R x)
R is Symmetric ∀x, y ∈ A . (x R y)→ (y R x)
R is Asymmetric ∀x, y ∈ A . (x R y)→ ¬(y R x)
R is Antisymmetric ∀x 6= y ∈ A . (x R y)→ ¬(y R x)
R is Transitive ∀x, y, z ∈ A . (x R y) ∧ (y R z)→ (x R z)

And those lead to these terms:
Term Definition
Strict partial order transitive and asymmetric
Weak partial order transitive, reflexive, and antisymmetric
Equivalence relation transitive, reflexive, and symmetric



The following operators are both associative (you can add and remove parentheses around them) and com-
mutative (you can swap their operands’ position): ∧, ∨, ⊕

The following operator is commutative but not associative: ↔

form 1 form 2 Name of rule
A→ B ¬A ∨B

A ∧ (B ∨ C) (A ∧B) ∨ (A ∧ C) Distributive law
A ∨ (B ∧ C) (A ∨B) ∧ (A ∨ C) Distributive law
¬(A ∧B) (¬A) ∨ (¬B) De Morgan’s law
¬(A ∨B) (¬A) ∧ (¬B) De Morgan’s law
(A↔ B) (A→ B) ∧ (B → A)
(A⊕B) (A ∨B) ∧ ¬(A ∧B)

form 1 form 2 Name of rule
A⊕B ¬(A↔ B)
A↔ B ¬(A⊕B) xnor

P → (A ∨Q) (P ∧ ¬A)→ Q

Given Entails Names
∀x ∈ S . P (x) P (s), for any s ∈ S we care to pick universal instantiation
∃x ∈ S . P (x) s ∈ S ∧ P (s) where s is an otherwise-undefined new variable existential instantiation
s ∈ S ` P (s) ∀x ∈ S . P (x) universal generalization
P (s) ∧ s ∈ S ∃x ∈ S . P (x) existential generalization

Given Entails Name
A ∨ ¬A excluded middle

A ∧B A
A and B A ∧B
A A ∨B
A ∨B and ¬B A disjuctive syllogism
A→ B and B → C A→ C hypothetical syllogism; transitivity of implication
A→ B and A B modus ponens
A→ B and ¬B ¬A modus tolens
A↔ B A→ B
A→ C, B → B, and A ∨B C
A→ B, C → D, and A ∨ C B ∨D
A→ B A→ (A ∧B)
¬(A ∧B), A ¬B

A proof that assumes A and derives B entails that A→ B.
A proof that assumes A and derives ⊥ entails that ¬A.
logab(x) = b−1 loga(x)
(a ∈ Z) ∧ (a > 1) � (a has at least two factors)
(a ∈ Z) ∧ (a > 1) ∧ (a has exactly two factors) ≡ (a is prime)


