
CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich
Practice exercise in class friday march 6, 2020 Practice 07

problem 1 Products and Powers

Write out the following in full.

1. {1, 2} × {3} × {1, 4} = {(1, 3, 1), (1, 3, 4), (2, 3, 1), (2, 3, 4)}

2. {56}3 = {(56, 56, 56)}

3. {1, 2} × 𝒫({1}) = {(1, {}), (1, {1}), (2, {}), (2, {1})}

4. {(1, 2)} × 𝒫({(1, 2, 3, 4)}) =

{(1, 2, {}), (1, 2, {(1, 2, 3, 4)})}; some uses will treat singleton sets as their
one element to get {(1, 2, {}), (1, 2, 1, 2, 3, 4)} or chose not to flatten to get

{((1, 2), {}), ((1, 2), {(1, 2, 3, 4)})} or {((1, 2), {}), ((1, 2), (1, 2, 3, 4))} instead.

5. {a, b}2 = {“aa”, “ab”, “ba”, “bb”}

6. {4, 1} × {1, 2} = {(4, 1), (4, 2), (1, 1), (1, 2)}

7. {4} × {1, 2} × {3}3 = {(4, 1, 3, 3, 3), (4, 2, 3, 3, 3)}

8. 𝒫({})2 = {({}, {})}

problem 2 Members of Products and Powers

Give two different example members of each of the following sets. Make them different from one another:
different lengths, different internal patterns, etc., is the set allows that. If there are not enough elements of
the set to give two different elements, leave some blanks blank.

9. {a, b, c}4 contains “aaaa” and “cbac”

10. {a, b, c}1 contains “a” and “c”

11. {a, b, c}0 contains “” and

12. {a, b, c}∗ contains “ba” and “cababacc”
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13. {“good”, “fun”}2 contains “goodgood” and “fungood”

Give two strings of length 3 belonging to

14. {“a”, “ok”}∗: “aaa” and “aok”

15. {“a”, “bb”, “ccc”}∗: “bba” and “ccc”

problem 3 Subsequences

Definition 1 A subsequence is a sequence that can be derived from another sequence by deleting zero or more elements
without changing the order of the remaining elements.

What are the subsequences of the string “OK”? “”, “O”, “K”, “OK”

What is the longest subsequence shared by “MATHEMATICS” and “COMPUTERS”? “MTES”

problem 4 Summation proofs

Prove the following theorems by induction.

16. ∀𝑛 ∈ ℕ .
𝑛

∑
𝑖=0

𝑖 =
(𝑛)(𝑛 + 1)

2
Proof.

We proceed by induction.

Base Case When 𝑛 = 0 we have
0

∑
𝑖=0

𝑖 = 0 and
(0)(1)

2 = 0, so the theorem holds for 𝑛 = 0.

Inductive step Assume the theorem holds for some 𝑛 ∈ ℕ: that is,
𝑛

∑
𝑖=0

𝑖 =
(𝑛)(𝑛 + 1)

2 . Adding 𝑛 + 1

to both sides, we have 𝑛 + 1 +
𝑛

∑
𝑖=0

𝑖 = 𝑛 + 1 +
(𝑛)(𝑛 + 1)

2 ; the left-had side is equivalent to
𝑛+1
∑
𝑖=0

𝑖 by the

definition of summation; the right-hand side can be rearranged using algebra to get
2(𝑛 + 1) + (𝑛)(𝑛 + 1)

2 =
(2 + 𝑛)(𝑛 + 1)

2 =
(𝑛 + 1)((𝑛 + 1) + 1)

2 ; this means that
𝑛+1
∑
𝑖=0

𝑖 =
(𝑛 + 1)((𝑛 + 1) + 1)

2 , or in other words that

the theorem holds for 𝑛 + 1.

By the principle of induction, the theorem holds for all 𝑛 ∈ ℕ.
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17. ∀𝑛 ∈ ℕ .
𝑛

∑
𝑥=0

1
2𝑥 =

2𝑛+1 − 1
2𝑛

Proof.

We proceed by induction.

Base Case When 𝑛 = 0 we have
0

∑
𝑥=0

1
2𝑥 = 1 and

21 − 1 = 1
20 = 1

= 1, so the theorem holds for 𝑛 = 0.

Inductive step Assume the theorem holds for some 𝑛 ∈ ℕ: that is,
𝑛

∑
𝑥=0

1
2𝑥 =

2𝑛+1 − 1
2𝑛 . Adding

1
2𝑛+1

to both sides, we have
1

2𝑛+1 +
𝑛

∑
𝑥=0

1
2𝑥 =

1
2𝑛+1 +

2𝑛+1 − 1
2𝑛 ; the left-had side is equivalent to

𝑛+1
∑
𝑥=0

1
2𝑥 by the

definition of summation; the right-hand side can be rearranged to get
1 + 2(2𝑛+1 − 1)

2𝑛+1 =
2𝑛+2 − 1

2𝑛+1 ; this

means that
𝑛+1
∑
𝑥=0

1
2𝑥 =

2𝑛+2 − 1
2𝑛+1 , or in other words that the theorem holds for 𝑛 + 1.

By the principle of induction, the theorem holds for all 𝑛 ∈ ℕ.
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18. ∀𝑛 ∈ ℕ .
2𝑛
∑
𝑥=𝑛

𝑥 =
3(𝑛 + 1)𝑛

2
Proof.

We proceed by induction.

Base Case When 𝑛 = 0 we have
0

∑
𝑥=0

0 = 0 and
3(0)9

2 = 0, so the theorem holds for 𝑛 = 0.

Inductive step Assume the theorem holds for some 𝑛 ∈ ℕ: that is,
2𝑛
∑
𝑥=𝑛

𝑥 =
3(𝑛 + 1)𝑛

2 . Consider the sum

evaluated at 𝑛 + 1:
2(𝑛+1)

∑
𝑥=𝑛+1

𝑥 = −𝑛 + 2𝑛 + 1 + 2𝑛 + 2 +
2𝑛
∑
𝑥=𝑛

𝑥

= 3𝑛 + 3 +
2𝑛
∑
𝑥=𝑛

𝑥

= 3𝑛 + 3 +
3(𝑛 + 1)𝑛

2

= 3𝑛 + 3 +
3𝑛2 + 3𝑛

2

=
6𝑛 + 6 + 3𝑛2 + 3𝑛

2

=
3(𝑛2 + 3𝑛 + 2)

2

=
3(𝑛 + 2)(𝑛 + 1)

2

=
3((𝑛 + 1) + 1)(𝑛 + 1)

2

which means the theorem holds at 𝑛 + 1 as well.

By the principle of induction, the theorem holds for all 𝑛 ∈ ℕ.
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19. ∀𝑥 ∈ {𝑎 ∣ 𝑎 ∈ ℤ ∧ 𝑎 ≥ −1} .
𝑥

∑
𝑘=−1

12 − 2𝑘 = 26 + 11𝑥 − 𝑥2

Proof.

We proceed by induction.

Base Case When 𝑥 = −1 we have
−1
∑

𝑘=−1
12 − 2𝑘 = 14 = 26 − 11 − 1, so the theorem holds for 𝑥 = −1.

Inductive step Assume the theorem holds for some 𝑥; that is,
𝑥

∑
𝑘=−1

12 − 2𝑘 = 26 + 11𝑥 − 𝑥2. Consider the

sum evaluated at 𝑥 + 1:
𝑥+1
∑

𝑘=−1
12 − 2𝑘 = 12 − 2(𝑥 + 1) +

𝑥
∑

𝑘=−1
12 − 2𝑘

= 10 − 2𝑥 + 26 + 11𝑥 − 𝑥2

= (11 − 1) − 2𝑥 + 26 + 11𝑥 − 𝑥2

= 26 + (11 + 11𝑥) − (1 + 2𝑥 + 𝑥2)
= 26 + 11(𝑥 + 1) − (𝑥 + 1)2

which means the theorem holds at 𝑥 + 1 as well.

By the principle of induction, the theorem holds for all 𝑥 ∈ {𝑎 ∣ 𝑎 ∈ ℤ ∧ 𝑎 ≥ −1}.
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You might also try doing inductive proofs with other summation formulae, such as

𝑛
∑
𝑖=0

𝑖2 =
(𝑛 + 1)(2𝑛 + 1)(𝑛)

6
𝑛+1
∑
𝑖=1

𝑖2 =
(𝑛 + 2)(2𝑛 + 3)(𝑛 + 1)

6
𝑛+2
∑
𝑖=2

𝑖2 =
(𝑛 + 3)(2𝑛 + 5)(𝑛 + 2)

6

6
𝑛

∑
𝑖=0

𝑖3 − 𝑖 = (
𝑛 + 2

4 )

𝑛
∑
𝑥=0

𝑥2 − 1
𝑥 + 1 =

(𝑛 + 1)(𝑛 − 1)
2

𝑛
∑
𝑥=0

𝑥3 − 𝑥2 =
(𝑛 + 1)(3𝑛 + 2)(𝑛)(𝑛 − 1)

12
𝑛

∑
𝑖=0

3𝑖2 + 2𝑖 =
(2𝑛 + 3)(𝑛 + 1)(𝑛)

2
𝑛2

∑
𝑥=𝑛

𝑥 =
𝑛 + 𝑛4

2
2𝑛
∑
𝑥=0

(−1)𝑥𝑥 = 𝑛

𝑛
∑
𝑖=1

1
2𝑖 =

2𝑛 − 1
2𝑛

0
∑

𝑘=−𝑛
𝑘 =

(𝑛 + 1)𝑛
−2

𝑛
∑
𝑖=1

1
3𝑖 =

3𝑛 − 1
3𝑛2

∀𝑘 ≠ 1 . ⎛⎜
⎝

𝑛
∑
𝑖=1

1
𝑘𝑖 =

𝑘𝑛 − 1
𝑘𝑛(𝑘 − 1))

Note: at least one of the above formulae is false. In the process of proving it you should find the normal
methods not working, revealing the non-truth.


