
Ceviche: Capability-Enhanced Secure Virtualization of Caches

Arnabjyoti Kalita
University of Virginia
mje6jj@virginia.edu

Yilong Yang
University of Virginia
yyilong@virginia.edu

Alenkruth Krishnan Murali
University of Virginia

alenkruth@virginia.edu

Ashish Venkat
University of Virginia
venkat@virginia.edu

Abstract—Modern systems make extensive use of resource
virtualization to achieve high hardware utilization and min-
imize the total cost of ownership. However, sharing of physical
resources invariably opens the door to side-channel exploitation
where co-located attackers can covertly examine a victim’s
behavior and/or steal private information. Even though ap-
plications may not share data, they still compete for shared
physical resources, notably for cache capacity. Since cache
lookup is data/address-dependent, even the presence or absence
of data in the cache can reveal sensitive information.

This paper proposes Ceviche, a novel hardware virtual-
ization strategy that allows for the secure allocation and use
of physical cache resources among threads that belong to
different trust domains. Ceviche enables a capability-based
cache lookup by translating a given address-domain ID pair
into a capability that encodes the access rights and the allowed
set of operations on the physical cache line that it grants
access to. By constraining cache lookup to occur based on
a capability, Ceviche can achieve fine-grained partitioning of
the cache at the granularity of a cache line, enforcing a
wide set of confidentiality, availability, and fairness guarantees,
while maximizing cache utilization. The paper presents detailed
design mechanisms, policies, and optimizations along with ex-
tensive evaluation to demonstrate the feasibility of integrating
the secure virtualization layer into modern multicore cache
hierarchies.

Ceviche caches offer protections at all levels of the cache
hierarchy and incur an average performance degradation of
2.4% when compared to an insecure baseline, while only
imposing 1.8% additional performance degradation over state-
of-the-art secure caches Mirage and ScatterCache.

1. Introduction

Resource virtualization and access control have formed
the bedrock of modern computing systems. By abstracting
physical resources into virtualized pools, operating systems
and hypervisors enable secure, flexible, and on-demand
resource allocation among the users of a system, while
maintaining fairness and maximizing utilization. However,
organizing shared microarchitectural resources such as cache
memory into virtualized pools in a secure, efficient, and
scalable manner continues to be a challenging endeavor.

Conventional virtualization solutions such as those that
use Page Coloring [1] and Intel’s Cache Allocation Technol-
ogy (CAT) [2], [3] rely on providing exclusive access to all
or specific partitions of the cache by pinning particular sets
or ways, thereby minimizing interference among co-located
programs or virtual machines in the system. However, due
to their inherent inflexibility in organizing the cache into
fine-grained partitions, they often suffer from low utilization
and prohibitively high performance degradation when the
number of trust domains is scaled beyond a certain point.
Moreover, these solutions have been shown to be vulnerable
to side-channel inference through indirect confused-deputy
attacks [4] and cache occupancy attacks [5].

This paper proposes Ceviche, a novel hardware-based
virtualization strategy that enables the secure allocation and
use of cache resources at the cache line granularity, as
governed by the principle of least privilege [6] and the
principle of intentionality [7]. Ceviche enforces three key
properties. First, each entity in the system is granted access
to only those cache lines that have been specifically allo-
cated to it and the set of operations that may be performed
on such lines is restricted to the bare minimum it needs
to accomplish its task. Second, no entity in the system
is allowed to perform a cache operation without explicitly
asserting their access rights. Third, to ensure fairness and
availability, the allocation of cache resources is constrained
by predefined hard and soft limits.

The key to our approach is the notion of a capability-
based cache lookup, wherein a capability (a secure token
granting access to a physical resource) is issued upon the
successful allocation of a cache line during miss handling,
and subsequent accesses to that line are granted only upon
presenting the capability. To facilitate this, we introduce
a novel cache design that augments a conventional direct-
mapped SRAM data array with a content-addressable mem-
ory (CAM)-based capability register file (inspired by CAM-
tagged cache designs employed in low-power embedded mi-
croprocessors [8], [9], [10], [11]), allowing for the seamless
one-step translation of a given address-domain ID pair into
its corresponding capability, if available (i.e., if data at that
address has been allocated a cache line).

Each capability within the capability register file con-
tains the cache line number it provides access to, along with
the allowed set of operations (i.e., read, write, invalidate, and
share) on that line. An important property of capabilities is

that they are unforgeable, which means the contents of a
capability once burned, may not be modified, restricting an
entity to the access rights and permissions encoded in it
at the time of allocation. During its lifetime, a capability
may be copied to allow secure and intentional sharing of
cache lines with other entities in the system, as long as
its permissions vector allows sharing. Since we implement
capabilities as registers, entities sharing a cache line (e.g.,
threads running concurrently on different cores, but sharing
the same last-level cache line, or SMT threads sharing the
same private cache line) may simply map to the same
physical register, greatly simplifying the effort required for
tracking and managing copies of capabilities [6]. Further, a
capability may also be revoked by invalidating the appropri-
ate register, allowing entities to intentionally and gracefully
give up access to the cache lines they are in possession of.

An important consequence of the capability-based cache
lookup we introduce in this work is that it breaks the
tight coupling of the address bits to the actual physical
location (i.e., set number) of the cache line, allowing the
allocation strategy to pick any available cache line to place
data in (mimicking fully-associative caches), thereby lim-
iting address-dependent (and by extension, data-dependent)
contention, while simultaneously enabling a direct-mapped
lookup as the capability already contains the line number.
This has important security and performance implications.

First, by allowing the physical location of a cache line
to be independent of its address, we can thwart conflict-
based cache attacks [12], [13], [14], [15], [16], [17], [18]
that rely on constructing eviction sets based on address-
dependent contention. Second, since capability revocation
needs to be voluntary, intentional, and explicit, invalidation
of a cache line may only be triggered in the case of self-
evictions (i.e., the eviction of an entity’s own cache lines
where an entity could include one or more threads within the
same trust domain). In essence, this ensures that distrusting
parties cannot force the eviction of each others’ cache
lines. Third, our ability to explicitly disallow the sharing
of cache lines among distrusting parties (by specifying it in
a capability’s permission vector) prevents flush-based cache
attacks [19], [20], [21], [22] that hinge on flushing shared
lines. Fourth, owing to its CAM-tagged design, Ceviche
reaps the performance benefits of a flexible conflict-averse
fully associative allocation and a fast direct-mapped lookup.

The key contributions of this work are as follows:

• We introduce Ceviche, a novel capability-based
hardware virtualization solution that allows for the
secure allocation and use of cache resources among
multiple entities in a system, enforcing key security
properties that protect against conflict-based, flush-
based, occupancy-based, denial-of-service, and con-
fused deputy attacks.

• We present detailed design mechanisms and policies,
including hit procedures, miss handling, replacement
policies, and coherence logic, that together enable its
integration in a modern multi-level cache hierarchy.
Through CACTI [23] analysis, we show that the

additional hardware imposed by our solution incurs
a minor area and power overhead.

• By introducing an additional layer of virtualization,
Ceviche is able to break the tight coupling between
the address bits and the physical location of a cache
line, while also enabling a direct-mapped organiza-
tion with fully associative allocation. We observe
that Ceviche incurs an average of 2.4% performance
degradation over an insecure baseline. Ceviche also
protects all levels of the cache while only imposing
1.8% additional performance degradation over state-
of-the-art secure cache designs Mirage and Scatter-
Cache that only protect the last-level cache.

• We show that Ceviche has the ability to seamlessly
scale to multiple trust domains while maintaining
high cache utilization and low miss rates through the
mere reconfiguration of its soft limits that constrain
the allocation of capabilities.

2. Background and Related Work

Cache Hierarchies. Modern processors typically em-
ploy a multi-level cache hierarchy with each level succes-
sively larger in size, albeit with higher access latency. Each
core is equipped with private L1 and L2 caches. The L1
cache is closest to the core and thereby enables fast access. It
is typically organized as a split cache, with separate memory
arrays serving instructions and data. The L2 cache, on the
other hand, employs a unified organization that stores both
data and instructions. Further, all the cores in the processor
share a large last-level cache (LLC) that is farthest from
the cores and entails the highest access latency. Note that,
while the L1 and L2 caches are private to a physical core, in
designs that feature Simultaneous Multithreading [24], [25],
they are shared among the hardware threads in each core.

Cache Organization and Addressing. Modern caches
are typically organized as N-way set-associative caches,
constraining data to be stored in one of N locations within
the cache. For example, the 48 KB private data cache
in Intel’s Icelake is organized into 12 ways and 64 sets,
allowing data being addressed at any given set to be stored
in one of 12 cache lines within that set, with each line
containing 64 bytes of contiguous data. Each line is tagged
by a set of address bits uniquely identifying the data in it.
Each cache access is then made in two steps – (a) indexing,
which involves identifying the appropriate set using a subset
of the address bits, and (b) tag matching, which involves
identifying the appropriate cache line within the set (i.e.,
way of a set) by matching the higher order bits of the address
with the tag. In a fully-associative cache, the indexing
process does not exist as the cache is organized as one large
set, and in a direct-mapped cache, each set contains only
one line and thus requires only one tag matching operation.
Consequently, fully-associative caches are conflict-averse
while set-associative and direct-mapped caches are prone
to conflicts where data at addresses with the same index
bits but different tag bits contend for the same set.

Conventional caches are thus organized into separate
data and tag arrays where a search across the appropriate
set within the tag array is used to identify the data line to be
read out from the corresponding set within the data array.
The tag arrays may be implemented using static random
access memory (SRAM) or content-addressable memory
(CAM) [8], [9], [10], [11], [23], [26]. In SRAM-tagged
caches, tag matching and data reads for all lines within
a given set (identified by the index bits) are performed in
parallel, with the result of the tag matching operation used to
select one of the data lines to be serviced up the hierarchy. In
CAM-tagged caches, an associative search of the tag array
is used to identify exactly one line to be looked up from the
data array in a direct-mapped fashion. While CAM-tagged
caches are conflict-averse and enable greater utilization, they
are also more expensive as standard CAM cells are known
to consume more area than standard SRAM cells [10], [23].
Both SRAM-tagged and CAM-tagged caches (especially
larger caches) are further divided into smaller banks to
reduce access time and lower power consumption.

Note that L1 caches are typically virtually addressed and
physically tagged (VIPT), which means the virtual address
is used for indexing, but the physical address is used for
tag matching, allowing address translation to overlap with
the indexing process. L2 and last-level caches are typically
physically addressed and physically tagged.

Inclusiveness. In an inclusive cache hierarchy, the
upper-level caches are included in the lower-level caches.
This means, for example, that all data contained in the L1
cache must also be present in the L2 cache. Conversely, if
a line in the L2 cache is evicted, the corresponding line in
the L1 cache must also be flushed out, if present. On the
other hand, in an exclusive cache hierarchy, the upper and
lower level caches contain data that are exclusive from each
other. Caches may also be non-inclusive where neither of
these restrictions apply.

Write Policies. Lower-level caches in an inclusive hier-
archy act as backing stores for the data in upper-level caches
that may implement either a write-through policy where all
data written to the cache is also immediately written to the
backing store, or a write-back policy where data is written
to the backing store only upon eviction of a dirty cache
line (i.e., whose data has been modified). Furthermore, in a
write-allocate cache, a store miss would entail loading data
from the backing store and then writing to it, whereas in
a write-around cache, a store miss would result in the data
being written directly to the cache line in the backing store.

Multicore and Coherence. Coherence issues may arise
in modern cache hierarchies because multiple cores could
end up maintaining copies of shared data/instructions in their
own private L1 and L2 caches, and when a copy becomes
stale, it needs to be invalidated. Coherence issues are typi-
cally resolved through cache coherence protocols that ensure
the single writer multiple reader (SWMR) invariant [27].
Modern processors employ some variant of the MESI co-
herence protocol that stipulates the allowed set of states
a cache line (typically tracked using a hardware directory
structure) may be in to modified (M), exclusive (E), shared

(S), and invalidated (I) (with some variants implementing
an owner (O) or forward (F) state), and further specifies the
appropriate set of transitions between these states.

Resource Virtualization. Resource virtualization en-
ables physical resources to be aggregated into virtualized
pools, allowing for a flexible allocation across various users
of the system, while simultaneously maximizing utiliza-
tion. Modern virtualization platforms such as VMWare’s
vSphere, Microsoft’s Hyper-V, and OpenStack perform re-
source virtualization at various levels, for sharing available
storage, network bandwidth, and even compute capacity. The
academic literature includes multiple secure virtualization
solutions geared towards flexible and efficient management
of system-level resources [42], [43], [44], [45], [46], [47],
[48], although the focus of this work is to enable secure
virtualization of the processor cache resources.

Capability-Based Security. Capability-based security
was introduced by Saltzer and Schroeder [6], and there
have been several hardware and software approaches [7],
[49], [50], [51], [52], [53], [54], [55], [56], [57] proposed
since to enforce capability-based protection. These systems
enforce the principle of least privilege providing every user
with the least set of permissions and privileges required
to accomplish its goal, enforced through capabilities that
authorize specific operations on a given resource. They also
enforce the principle of intentionality by stipulating that,
for every access, users explicitly assert their access rights.
Capabilities, by definition, are unforgeable, which means
once the privileges in it are burned, they cannot be altered.
However, copies of capabilities can be created for secure
delegation of access rights.

Cache Attacks. Side-channel attacks that target the
cache exploit the timing differences between hits and misses
to observe and draw inferences about a victim’s sensitive
data-dependent cache access patterns. These attacks can be
broadly classified into – (a) contention-based attacks [12],
[13], [14], [15], [16], [17], [58], [59], [60], [61] that hinge
on competing for cache lines that map to the same cache set
in a conventional set-associative cache, and (b) reuse-based
attacks [19], [20], [21], [22], [62] that rely on instructions
exposed by the hardware to flush a particular cache line
that contains data shared by the attacker and the victim
(e.g., in case of shared libraries or memory de-duplication).
Reuse-based attacks also include those that exploit coher-
ence protocols [63], [64] to force invalidations or generate
other observable timing signals. In either case, the hit/miss
timing behavior for secret data-dependent accesses could be
used to ultimately deduce the secret.

Secure Cache Designs. Multiple secure cache designs
have been proposed in response to microarchitectural attacks
that have targeted the cache as the dominant side channel.
These designs fall into two major categories.

First, hardware cache partitioning solutions [1], [2], [3],
[29], [33], [34], [35], [36], [38], [40], [41], [65], [66] aim at
mitigating cache attacks by constraining distrusting threads
to different partitions in the cache. CATalyst [3] supports
two trust domains by assigning two LLC ways to a secure
domain at boot time, thereby reserving the remaining eigh-

TABLE 1: Comparison against other secure caches

Secure Cache Solution
Type

Conflict-
based

Attacks

Cache
Policy

Attacks

Reuse-
based

Attacks

Cache
Occupancy

Attacks

Confused
Deputy
Attacks

Denial of
Service
Attacks

Caches
Protected

Domains
Supported

Random Fill [28] Randomization ✘ ✓ ✘ ✘ ✘ ✓ L1-D 2

Newcache [29] Randomization ✓ ✓ ✘ ✘ ✘ ✘ L1-I, L1-D # RMT IDs

CEASER [30] Encryption ✓ ✓ ✘ ✘ ✘ ✘ L3 ≤ (# L3 sets)

SCATTER [31] Randomization ✓ ✓ ✘ ✘ ✘ ✘ L2 8

MIRAGE [32] Encryption ✓ ✓ ✘ ✘ ✘ ✘ L3 256

PL Cache [33] Fine-Grained Partitioning ✓ ✓ ✘ ✓ ✘ ✓ L1-D ≤ (# lines in L1-D)

SecDCP [34] Way Partitioning ✓ ✓ ✘ ✓ ✘ ✓ L3 ≤ (# ways in L3)

RP Cache [33] Randomization ✓ ✓ ✘ ✓ ✘ ✓ L1-D ≤ (# L1-D sets)

NoMo Cache [35] Way Partitioning ✓ ✓ ✘ ✓ ✘ ✓ L1-D ≤ (# ways in L1-D)

SecSMT [36] Set partitioning ✓ ✓ ✘ ✓ ✘ ✓ L1-I/D, L2 2

CATalyst [3] Way Partitioning ✓ ✓ ✓ ✓ ✘ ✓ L3 2

MI6 [37] Set Partitioning ✓ ✓ ✓ ✘ ✓ ✘ L1, L2, L3 64

DAWG [38] Way Partitioning ✓ ✓ ✓ ✘ ✘ ✘ L1, L2, L3 ≤ (sockets x ways in
largest-way cache)

SHARP [39] Random Replacement ✓ ✓ ✓ ✘ ✘ ✘ L3 ≤ (# lines in L3)

BCE [40] Set partitioning ✓ ✓ ✓ ✓ ✘ ✘ L3 512

Composable
Cachelets [41] Fine-Grained Partitioning ✓ ✓ ✓ ✓ ✘ ✓ L3 # (cachelets per enclave) x

enclaves
Ceviche Fine-Grained Partitioning ✓ ✓ ✓ ✓ ✓ ✓ L1-I/D, L2, L3 ≤ (# lines in L3)

teen ways for the insecure domain. PLCache [33] secures
the L1 data cache by locking lines of interest for creating
flexible partitions and disallowing cross-partition eviction.
Similarly, in NoMo cache [35], defenses for L2 and L3
caches are out of scope but it allows for flexible parti-
tioning of the L1 between two SMT threads. SecDCP [34]
offers LLC protection by ensuring one-way information
flow from public to confidential applications but it allows
for dynamically changing the partition size using cache
demand information. In contrast, DAWG [38] secures all
levels of the cache through coarse-grained way partitioning
that isolates the visibility of any cache state changes to a
single protection domain. MI6 [37] uses page coloring-based
set partitioning that maps pages from distrusting domains to
disjoint cache sets. Similarly, Bespoke Cache Enclaves [40]
perform scalable and flexible LLC set-partitioning wherein
each domain owns up to 512 clusters. On the other hand,
Composable Cachelets [41] employ both way and set-
partitioning to allow dynamic reconfiguration of existing
cachelet partitions while reserving some cache ways for non-
enclave applications.

Second, randomization-based solutions [28], [29], [30],
[33], [67], [68], [69] aim at randomizing the allocation
and access procedures for the cache, thereby preventing
deterministic conflict behavior. SCATTERCache [31] se-
cures shared L2 caches in embedded ARM processors by
randomizing the mapping of address to cache set using a key,
tag-index pair, and domain ID. The random fill cache [28]
replaces the demand L1 data cache fill by another random fill
within a neighborhood window so as to not completely forgo
the advantages due to locality. Similarly, Newcache [29]
introduces a layer of indirection in the L1-I and L1-D caches
where the address is first mapped to a logical direct-mapped

(LDM) cache and then each LDM cache line is mapped
in a fully associative and randomized way to a physical
cache line. MIRAGE [32] leverages the V-way cache de-
sign to allow for global random LLC evictions at an extra
tag storage cost. In contrast to the former randomization
approaches, CEASER [30] leverages encryption to achieve
randomization where a low-latency block cipher converts the
physical line address into an encrypted line address in the
shared LLC. SHARP [39], on the other hand, changes the
replacement policy such that attacker-induced evictions do
not generate inclusion victims in private caches. Most caches
in Table 1 self-report vulnerability to the attacks. Random-
ization does not inherently protect against reuse-based at-
tacks as cross-domain sharing or invalidation is still possible
(except for SHARP [39] which disables flushing). Only
the strictest partitioning-based solutions thwart occupancy-
based and denial-of-service attacks. For confused-deputy at-
tacks, we consider XLATE [4] style attacks, which only MI6
protects against. Deng [70] provides a more comprehensive
survey of these class of attacks.

While our solution falls into the partitioning-based ap-
proach, we not only enforce a greater set of security proper-
ties, but we protect all cache levels, including the instruction
cache, while being able to scale gracefully to several pro-
tection domains, as shown in Table 1.

3. Threat Model

Security Guarantees. The goal of Ceviche is to enable
secure and scalable virtualization of cache resources among
threads that belong to different trust domains, such that
each thread owns exclusive access rights to the cache lines
allocated to it (unless explicitly shared), and its cache timing

behavior may not be influenced by threads from a different
trust domain. We enforce the following security properties
and defend against attacks such as the ones enumerated in
Table 1 that seek to violate these properties.

a) Access based on Least Privilege: Each thread is
allowed to access only those lines that have been allocated to
it and the set of operations (i.e., read, write, invalidate, share)
that they can perform on the line are limited to the bare
minimum needed. This not only allows us to strictly partition
cache resources among mutually distrusting domains, but
enables the flexible enforcement of fine-grained permissions.
For example, this could allow a line to be shared as read-
only among multiple threads, with the caveat that it may not
be invalidated by a thread outside of its trust domain.

b) Unforgeability of Access Rights: The access rights
and permissions of a line are baked into capabilities that
are conferred upon a thread at the time of line allocation.
We enforce that these capabilities are unforgeable, in that
the contents of the register holding the access rights and per-
missions may not be altered, once burned. However, when
sharing is explicitly allowed by the owner of a capability,
sharer threads may map to the same capability register (see
Section 5.3 for details of the exact mechanism for sharing
of capabilities). Note that this prevents some Confused
Deputy [71] scenarios as authorization is still based on
the permissions encoded in the capability, regardless of
what entity performs the access. In other words, capability-
based protection inherently ensures that a privileged entity
deputized by an attacker would still perform accesses using
the access rights delegated to it by the attacker (achieved via
sharing of capabilities), rather than its own access rights.

c) Intentionality: No cache operations are allowed unless
access rights are explicitly exercised through capabilities.
Even though a thread has access to multiple lines through
different capabilities, each cache operation it undertakes
needs to be explicitly tied to and authorized by the cor-
responding capability. By supplanting the global notion of
access rights in favor of fine-grained capabilities, we are
able to securely share resources and delegate access rights to
other entities, preventing some confused deputy scenarios.
Note that, in the interest of transparency, our cache line
capability follows from the address that the thread is using
since modifying loads and stores to explicitly present a ca-
pability instead of an address entails a major ISA overhaul.

d) Address-Independent Cache Access: The capability-
based cache lookup allows us to enforce that virtual or
physical address bits do not directly influence the phys-
ical location of a cache line, thereby thwarting the evic-
tion set construction process used in conflict-based attacks
such as PRIME+PROBE [58], [59] that relies on address-
dependent cache accesses. This is because any register in
the capability register file can point to any cache line in the
data array and its CAM-based implementation ensures a fast
associative search of the entire register file, independent of
the address bits, rather than looking up a particular cache
set based on the index bits of the address, as is typical of
conventional SRAM-tagged set-associative caches.

e) Voluntary Revocation: We enforce that capabilities

owned by a thread may not be revoked involuntarily outside
of its trust domain. This allows us to implement strict
policies where cache line invalidation and replacement op-
erations are restricted to always occur within a trust do-
main, mitigating several contention-based, flush-based, and
occupancy-based attacks that hinge on evicting lines outside
of their domain. Once a capability is revoked, the corre-
sponding register is invalidated and released into a free pool,
preventing any use-after-free-style misuse of capabilities.

f) Availability: Finally, we enforce that any given entity
in the system will neither be deprived of allocating cache
lines up to a minimum guarantee limit, nor be allowed to
exceed its maximum allocation limit. These limits can be
specified per-thread or per-domain, so as to mitigate attacks
that rely on exploiting occupancy behavior.

Scope. While we provide software with the flexibility
to freely organize into trust domains, maintain domain IDs
in a dedicated model-specific register and establish trust
relationships as appropriate, we assume that hardware mod-
ules within the cache controllers responsible for creating
and maintaining capabilities, verifying access rights, and
performing cache operations are all trusted and tamper-
resistant. For example, we consider voltage/frequency scal-
ing, temperature, and electromagnetic attacks that attempt to
induce faults in capability registers or other hardware meta-
data structures to circumvent our unforgeability properties to
be out of scope. We also consider other side-channel attacks
such as those that target functional units and execution port
contention [72], [73], [74], branch predictors [75], [76], [77],
and TLBs [78] to be out of scope, similar to other existing
secure cache designs [3], [30], [32], [33], [34], [35], [39].

4. Overview of Hit and Miss Procedures

This section introduces key components of Ceviche that
facilitate capability-based allocation and lookup. To simplify
the discussion, we only consider a single-level cache and
a single-core, single-threaded processor below, but in Sec-
tion 5, we discuss detailed design mechanisms that enable
their integration in modern multithreaded and multicore
processors that feature a multi-level cache hierarchy.

Hit Procedure. Conventional private caches are typi-
cally virtually-indexed and physically-tagged, allowing them
to index into the appropriate cache set using index bits
derived from the virtual address, while performing ad-
dress translation in parallel using the Translation-Lookaside
Buffer (TLB). The tag bits from the physical address are
then used to perform an associative lookup of the cache line
within that set through parallel tag comparisons. In contrast,
Ceviche L1 caches employ a CAM-based capability register
file (CRF) that can be looked up by providing a virtual
address (tag portion) and a domain ID pair.

Each capability register specifies the cache line it pro-
vides access to, along with a permissions vector that indi-
cates the set of authorized operations (read, write, invalidate,
and share) that may be performed on it. It also contains the
physical address tag bits to assist in resolving aliases as
described in Section 5.4. The CRF is provisioned to contain

Figure 1: Ceviche L1 Cache Hit procedure

Figure 2: (a) Capability Register (b) Model-Specific Register
encoding Cross-Domain Sharing Policies

as many registers as the number of lines in the L1 cache
(512 entries for the instruction cache and 768 entries for the
data cache). The access rights in the capability are verified to
explicitly ensure that the desired operation is allowed before
accessing the cache. Figure 1 illustrates this process.

Miss Handling. In conventional caches, a cache miss
would entail line allocation and line fill operations, as
governed by the cache’s insertion and replacement policies.
In Ceviche caches, a miss is detected when the CAM-based
lookup of the CRF fails to find a match, in which case a new
line would need to be allocated and a new capability would
need to be issued with the appropriate access rights. To
this end, we maintain a free pool of previously invalidated
capability registers and cache lines, similar to the physical
register allocation logic used in out-of-order processors [79].
If a free register is available, a new capability (shown in
Figure 2(a)) is generated as follows.

First, a cache line is pulled from another free pool that
maintains invalid lines, and that line number is recorded in
the capability. Note that this mimics a fully associative al-
location in that data is allowed to be placed in any available
cache line upon a miss, without regard to its address. If the
free pool is empty, a secure cache replacement procedure is
triggered (described in Section 5.2).

Second, a permissions vector is burned into the reg-
ister to indicate whether the allocated line can be read
from, written to, invalidated, and/or shared. We employ the
following rules to populate the permissions vector – (a)
the write bit in the permissions vector is not set if the
backing store in the lower-level cache (or the page table
entry, when the backing store isn’t available, i.e., if it is
the last inclusive cache in the hierarchy) indicates that it
contains read-only or execute-only content, (b) the share
bit is set if the thread intends to share the line outside
of its trust domain, and (c) the invalidate bit is set if
the thread voluntarily permits the line to be invalidated

by any thread outside of its trust domain. Note that the
latter two policies are implemented per-thread but cache-
wide, and can be configured by software through model-
specific registers (as shown in Figure 2(b)) that maintain
a bit vector indicating whether a shared cache line owned
by the current domain is readable, writable, flushable or
shareable outside of its domain. The rules together allow for
significant flexibility. For example, although not desired, in
systems that are less security-conscious, a highly permissive
policy could be implemented by turning on all bits in the
capability. A more restrictive policy could be implemented
by turning off only the write and invalidate bits, allowing
read-only sharing across trust domains. Finally, a strict no-
sharing across trust domains policy could be implemented
by turning off the share and invalidate bits in the capability.
We implement this latter policy by default.

Note that the RWX permissions burned into each cache
line capability typically follow from paging-based memory
protections, although we provide the flexibility to further
tune them at the cache level. For example, a read-only
sharing (follows from paging) without invalidation (new in
Ceviche) policy could prevent Flush+Reload attacks [19].
Moreover, paging-based protection checks are enforced later
in the pipeline at the commit stage resulting in Meltdown-
style attacks [80], [81]. However, Ceviche prevents the cache
state from being updated when the right capabilities aren’t
presented (e.g., wrong physical address, R, W, X, S, I bits),
providing a significant advantage as no information is dis-
closed without the need for inhibiting speculative execution.

Third, as soon as the TLB access is complete and the
physical address is available, the physical tag bits are burned
into the capability register. For all future accesses, the phys-
ical tag in the capability register is compared against that
obtained from the TLB access. This ensures that a capability
register does not contain a stale capability, preventing use-
after-free-style misuse. Section 5.5 discusses this in detail.

Finally, the virtual address-domain ID pair (key) and
the capability along with relevant metadata such as valid,
dirty, and replacement bits initialized appropriately (value)
are recorded in the appropriate entry within the CRF.

5. Design Mechanisms and Policies

This section delves into the design details of Ceviche and
discusses its integration into multi-level cache hierarchies in
modern multicore and multithreaded processors.

5.1. Integration with a Multi-Level Hierarchy

Capability Register File Organization. Figure 3 shows
the organization of Ceviche caches in a multi-level hierar-
chy. Each cache in the hierarchy maintains its own set of
capabilities to provide secure access to the lines contained in
it and is equipped with a dedicated banked CRF maintaining
as many registers as the number of lines in the cache it pro-
vides access to. Most modern cache designs (both SRAM-
tagged and CAM-tagged) typically employ a banked design
to reduce access latency and power consumption. During a

Figure 3: Integration with a Multi-Level Hierarchy

cache lookup, all CRF banks are probed in parallel using
the address-domain ID pair as the key. While we use the
virtual tag bits to probe the L1 CRF to overlap the matching
operation with the TLB access, we use the physical tag bits
to probe the L2 and L3 CRFs, allowing us to forgo storing
the physical tag bits in L2 and L3 capability registers. Note
that we are expected to find a match in exactly one entry
from one bank in case of a hit and none in case of miss. In
Section 5.4, we discuss mechanisms to resolve special cases
where more than one entry could produce a match due to
the virtually-addressed L1 CRF.

Data and Tag Array Organization. The organization
and lookup procedure of Ceviche caches mirrors that of
CAM-tagged caches [8], [9], [10], [11], [23], [26], where
the CRF is organized as a CAM and the data array is
organized as a direct-mapped SRAM structure. The data
array access is initiated only after the CRF access yields a
valid capability that contains the line number to be accessed
and its permissions vector affirms that the intended operation
on the line is allowed. We make no additional changes to
the cache parameters, including the number of banks, read,
write, and search ports. We examine the latency, power, and
area impact of Ceviche caches in detail in Section 9.3.

Inclusiveness. Since the L1 cache is virtually addressed
(i.e., the virtual address tag-domain ID pair is used to
obtain a capability), to maintain inclusiveness, for each
included cache line in the L2, we provide a direct link to
the corresponding line in L1, by maintaining a special set
of inclusion link (IL) bits as part of L2’s CRF. The IL bits
essentially contain the virtual address tag of the included line
in the upper-level cache, facilitating L1 CRF lookups during
potential cache line invalidations. . The IL bits may be
updated as part of handling an upper-level cache miss, which
already entails copying data over from the lower-level line
to the upper-level line, necessitating the lookup of both the
L1 and L2 capability registers. This simultaneous lookup of
both L1 and L2 capabilities due to back invalidations in the
L2 cache is extremely rare. For the SPEC2017 benchmarks,
an average of 2 and a maximum of 9 such simultaneous

Figure 4: Flowchart for the LLC replacement policy

Rebalancing interval 50k 100k 200k 500k
Cross domain eviction count 167 95 56 34

TABLE 2: Sweep of Rebalancing Interval

lookups were observed for every 1000 memory accesses.

5.2. Cache Replacement Policy

Since Ceviche caches employ a fully associative al-
location strategy, implementing recency-based replacement
would be inefficient due to the overhead of having to main-
tain and traverse large tree structures upon every access. We
instead turn to a randomized frequency-based policy [60],
[82] that maintains a 4-bit saturating counter per cache line.
The counter is initialized to a small non-zero value (to pre-
vent immediate eviction), which is incremented upon every
access and decremented upon reaching a preset expiration
interval. In our implementation, we start the counter at 5
and set the expiration interval to 64 cycles for L1 Icache,
128 cycles for L1 Dcache, 512 cycles for L2, and 4096
cycles for L3. During cache replacement, eight cache lines
are chosen at random, forming the candidate set of victim
lines for replacement. Among these candidates, the most
infrequently used line that belongs to the same trust domain
as the currently running thread is chosen as the victim.
Figure 4 illustrates this.

Further, in accordance with our goals of maintaining
fairness and availability, we extend our replacement al-
gorithm as follows. First, we impose a hard and a soft
limit on the number of capabilities granted for each trust
domain. These limits may be configured dynamically by
the system administrator or the runtime management engine
(the software interface is described in Section 6). Second, we
maintain counters to track the number of capabilities granted
(and thus the number of lines allocated) for each domain.
If the cache contains available lines, any new allocation

request is granted, as long as the counter has not reached
its hard limit. As soon as the counter reaches its hard limit,
all further cache line allocation requests are granted only
upon the successful replacement of an already allocated
line that belongs to the same trust domain, ensuring that
no single domain is allowed to monopolize the available
cache resources. On the other hand, if the cache is full and
the counter hasn’t yet reached its soft limit, a rebalancing
procedure is initiated to improve fairness. A rebalancing
operation involves evicting lines belonging to a domain that
has exceeded its soft limit, with the constraint that only
one eviction per rebalancing interval is allowed. To limit
the amount of cross-domain occupancy information leaked,
the rebalancing interval is configured to be a very long
time (100,000 cycles in our implementation). We arrive at
this rebalancing interval by performing a sweep of various
intervals while running highly and moderately-intensive pro-
grams contending for the shared L3 cache. As can be seen
from Table 2, with increase in the rebalancing interval, an
exponential decay trend is observed in the number of cross-
domain evictions. We select 100,000 cycles as a suitable
threshold considering fairness and relatively fewer cross-
domain evictions. Note that a single eviction every 100,000
cycles does not provide a fine enough granularity to create
memorygrams [5], [36] to launch a cache occupancy at-
tack and the eviction does not leak any spatial information
thereby limiting contention-based attacks.

5.3. Sharing and Coherence

In a multicore processor, threads running on different
cores may share data, requiring shared access to a last-level
cache line. We consider two types of sharing – (a) location-
aware sharing, where pages that map to the same physical
location on the disk are shared among different threads (e.g.,
shared libraries), and (b) content-aware sharing, where the
system coalesces unrelated pages with identical contents
(a.k.a memory deduplication). While sharing happens at the
granularity of a memory page, Ceviche offers flexibility to
set or override sharing permissions at the granularity of a
cache line by allowing software to configure per-domain
sharing policies (described in Section 6).

Capability Sharing. If the threads intending to share a
cache line belong to the same trust domain, we implicitly al-
low sharing as the two threads would use the same physical
tag-domain ID pair to access the shared last-level CRF entry.
If the threads belong to different trust domains, sharing
would need to be intentionally permitted by and agreed upon
by both threads. To check if cross-domain sharing is permit-
ted, we extend the last-level CRF lookup as follows. First,
the model-specific register encoding cross-domain sharing
policies is looked up for the thread requesting to potentially
share a line. If cross-domain sharing is allowed, the last-level
CRF lookup is performed with the domain ID masked. If
the lookup results in a hit, the capability is examined to
see if the permissions vector has the share bit turned on,
indicating whether cross-domain sharing has been allowed
by the owner of the cache line. As misses are serviced

up the hierarchy, the capabilities providing access to the
line’s copies in each core’s private caches would inherit the
same permissions as the ones in the LLC capability. On
the other hand, if sharing is disallowed by either thread, a
trap is issued to the operating system instructing it to remap
the virtual page to a copy of the underlying physical page,
similar to copy-on-write.

Note that this enforces the principle of intentionality as
the decision to share a line across domains is made only
after both threads explicitly declare their intent to share a
capability, and all sharers are further bound by the permis-
sions initially burned to and contained within the capability.
This, for example, allows us to implement a restricted mode
of sharing by disabling write and invalidate permissions.

Maintaining Coherence. Conventional processors
maintain in-cache directories that keep track of the state of
every line, alongside a list of cores that store a copy of the
line in their respective private caches, and resolve coherence
issues by issuing invalidation requests to all cores holding
stale copies. In an inclusive hierarchy, Ceviche caches
are also able to seamlessly take advantage of the same
directory coherence mechanisms. This is because in-cache
directories only extend the LLC tag array to maintain
directory information, and the LLC CRF in Ceviche caches
can be extended to include this information with other
existing metadata such as valid, dirty, and replacement
bits. When the LLC is non-inclusive, a separate physically
tagged full directory may be employed to track shared L2
lines and their corresponding capabilities. In either case,
when a coherence transaction fails due to misconfigured
permissions in the capability (e.g., when reading, writing,
and sharing are allowed, but invalidation is disallowed), a
general protection fault (GP) is raised.

5.4. Simultaneous Multithreading

In SMT designs, private caches are shared between the
threads running on the same physical core. Since our L1
CRFs are virtually tagged, we run the risk of incurring
synonym aliases (different virtual addresses point to the
same physical addresses) and homonym aliases (same vir-
tual addresses from different threads point to data at different
physical addresses). In order to ensure that these aliases are
resolved, the L1 CRF is extended to be keyed using two
virtual tag-domain ID pairs, albeit only one virtual address-
domain ID pair is supplied at the time of lookup. When a
line is not shared by the two hardware threads, its CRF entry
is keyed by only one virtual tag-domain ID pair. However,
when a line is shared, its CRF entry is keyed by two virtual
tag-domain ID pairs, one for each thread, thereby resolving
potential synonym aliases. This is possible because, upon
an L1 miss and a subsequent L2 hit, it can be detected that
the two threads already share a line in the L2 cache and the
corresponding line is included in the L1, at which point, the
L1 CRF entry is updated to also be keyed using the virtual
tag-domain ID pair of the sharer thread.

Further, during an L1 CRF lookup, a match with any
one of the two keys is considered to be a hit, provided

the physical tag maintained in the corresponding capability
register also matches with the translation obtained using the
TLB, thereby resolving potential homonym aliases. Thus,
even though an L1 CRF probe could result in two conflicting
matches across all banks, the physical tag matching step
ensures that the conflict is resolved.

5.5. Temporal Sharing

In addition to being spatially shared by threads running
concurrently on different logical/physical cores, cache re-
sources may be temporally shared by threads transitioning
in and out of the CPU through context switches. Upon
a context switch, the incoming thread could potentially
incur homonym aliases with outgoing thread. However, the
physical tag matching step described above is expected to
seamlessly resolve such aliases. Further, the incoming thread
could potentially evict the cache lines of the outgoing thread
if they belong to the same domain. Note that an eviction
operation triggers the revocation of a capability, resulting in
and entailing two key operations. First, the valid metadata bit
of the capability is cleared. Second, the corresponding CRF
entry is rekeyed to its initial invalid state, so that when the
owner thread switches back into execution, future accesses
to the line being evicted will be detected as misses.

5.6. Interplay with Hardware Prefetchers

A hardware prefetcher typically resides between two
cache levels and learns patterns in the misses it observes.
Based on the learned pattern, it issues prefetch requests that
instruct the cache controller to speculatively bring missing
lines into the cache, with the expectation that they will be
used in the near future. The key distinction in Ceviche
is that the miss patterns are made up of a sequence of
physical address and domain ID pairs rather than physical
addresses, and just like regular cache misses (i.e., those
coming from the CPU), prefetch requests also go through
the same capability-based allocation and lookup procedures,
ensuring that prefetch requests pertaining to one domain do
not result in the eviction of a line from another domain,
preventing cross-domain leakage. We note that this does not
necessarily prevent an attacker from mistraining speculative
structures within the prefetcher to influence the prefetching
behavior (and thus the cache timing behavior) of a victim.
Similar to related work on secure cache designs [3], [28],
[29], [30], [32], [33], [34], [35], [39], we consider the prob-
lem of designing secure prefetchers that are resilient against
mistraining speculative structures within the prefetcher to
be orthogonal, as our primary goal is to enable the secure
virtualization of cache resources in a scalable manner among
multiple domains.

6. Software Interface

Our flexible software interface augments the al-
ready well-established Intel’s Cache Allocation Technology

(CAT) [3], [83], which ensures priority-based shared hard-
ware resource allocation. Similar to CAT, the processor in
Ceviche exposes a predefined number of domains into which
applications (or individual threads) can be assigned, where
each domain is represented by a domain id and for each
logical processor, an MSR is exposed to allow the operating
system to specify a domain when an application is scheduled
for execution. The domain id may change when a different
thread is scheduled for execution after a context switch.

For each cache, we maintain two MSRs for storing
the hard and soft limits respectively. These MSRs may
be configured dynamically during runtime using privileged
WRMSR instructions [84], [85], [86], [87], [88]. Further-
more, as mentioned in Section 4, sharing and invalidation
policies are encoded in an MSR that maintains a bitmap
of per-domain policies. While any given thread is allowed
to modify this MSR through an unprivileged instruction
exposed through the ISA, writes are restricted through a
bitmask based on the domain ID, allowing updates to only
those bits in the MSR pertaining to the thread’s domain.

We also leverage Intel’s Resource Director Technol-
ogy feature that allows monitoring of shared hardware re-
sources by tagging each core by a Resource Monitoring ID
(RMID) [89], to monitor cache occupancy at all levels. In
addition, similar to capacity bitmasks (CBM) exposed by In-
tel’s CAT to enforce fixed size partitioning of the LLC across
the different classes of service, we maintain programmer-
invisible per-domain counter registers which maintain L1,
L2, and LLC cache occupancy information, allowing us to
enforce our fairness and availability guarantees through hard
and soft limits as described in Section 5.2.

System software for Ceviche can leverage these ex-
isting interfaces, thereby ensuring that no additional de-
veloper effort is required. Moreover, the programmer-
invisible counter registers can also be virtualized as ap-
propriate. We recommend that the soft limit be set to
num cache lines/num active domains and the hard
limit to slightly larger than the soft limit, but adjusted based
on application priority and other constraints. Modern cloud-
based virtualization solutions already use these strategies to
improve utilization and quality-of-service metrics.

Finally, we expose instructions to the OS crash handler
for gang revocation of capabilities that belong to a crashing
domain. These instructions may be enabled or disabled
through BIOS configuration.

7. Security Discussion

The rest of this section discusses how the security prop-
erties enforced by Ceviche protect against several known
classes of cache attacks.

Conflict-Based Attacks. These attacks [12], [13], [14],
[15], [16], [17], [18] rely on contending for shared cache
resources with a co-resident victim to glean sensitive in-
formation. This involves constructing an eviction set of
addresses that map to a particular cache set that the attacker
and the victim contend for, thereby allowing the attacker to
execute and time its own set of accesses, with the difference

in the hit/miss timing revealing information about a victim’s
data-dependent cache access behavior. Ceviche mitigates
these attacks in two key ways. First, it thwarts eviction set
construction by decoupling the address from the physical
location (i.e., cache set). In particular, Ceviche mimics a
fully-associative allocation strategy where any capability
register may point to any line in the cache with no regard to
the address, due to which the attacker has no control over the
mapping of addresses to a particular location in the cache
(like the limit case described by Vila, et al. [90]). Second, it
prevents cross-domain conflicts by restricting a thread from
evicting lines outside of its domain.

Attacks exploiting Cache Policies. Stealthier variants
of cache attacks have been proposed that exploit replacement
and write policies [91], [92], [93]. These attacks hinge on
influencing the replacement states of a victim’s cache line
that shares a set with the attacker. In Ceviche caches, these
attacks are not possible as cache replacement can occur only
within a trust domain. The only exception to this is when a
thread meets its hard allocation limit, but even in that case,
the rate at which information is leaked is extremely small
since we impose a strict limit that only one cross-domain
eviction may occur within a 100,000 cycle interval, and the
only information revealed that way was that a thread from
a different domain was using the cache beyond the allowed
soft limit, which is too coarse-grained to carry out practical
attacks that exploit secret data-dependent behavior [13].

Cache Occupancy Attacks. These attacks seek to ob-
serve the overall cache occupancy of a victim without
directly contending for particular cache sets, and further
correlate cache occupancy information with certain sensitive
attributes of the victim. For example, Shusterman et al. [5]
describe a website fingerprinting attack that exploits the
cache occupancy channel. Ceviche caches significantly mit-
igate cache occupancy attacks as follows. First, it imposes a
hard limit on the number of capabilities that can be issued to
(and thus, the number of lines that can be allocated to) any
given thread. This prevents an attacker thread from learning
about the occupancy in the rest of the cache outside of its
hard limit. Second, once a thread reaches its soft allocation
limit and the cache is full, it is further constrained to operate
only within its soft limit, thereby not allowing it to glean
any more information than the fact that the cache is full.
Third, when the attacker thread hasn’t reached its soft limit
and the cache is full, to ensure fairness, we allow evictions
to occur across domains, but as noted above, this process is
deliberately slow, significantly limiting the attacker’s ability
to make accurate correlations regarding the victim’s activity.

Reuse-Based Attacks. These attacks [19], [20], [21],
[22], [94] leverage shared virtual memory (such as shared
libraries or page deduplication), and the ability to flush a
shared cache line by the virtual address. In this case, the
attacker may observe victim accesses to the shared cache
line by either timing flushes or reload operations to that line.
Since the default policy in Ceviche is to disallow sharing
of cache lines between two distrusting parties, these attacks
are completely mitigated. Note that this does not necessarily
mean that sharing is entirely disallowed. In fact, the default

policy allows sharing within a domain, but disallows sharing
of cache line across domains. However, this policy is con-
figurable such that cross-domain sharing be allowed with
the caveat that the lines are to be shared in a read-only
fashion, with write and invalidate permissions turned off, as
discussed in Section 4.

Confused-Deputy Attacks. Van Schaik, et al. [4] de-
scribe an indirect cache attack on systems employing way-
or set-based cache partitioning, where an attacker abuses
hardware modules such as the page table walker as confused
deputies to access trusted cache partitions. These attacks are
possible because the privileged entities acting as confused
deputies access trusted partitions based on their own access
rights on behalf of the attacker, even though the system’s
access control policy disallows the attacker from explicitly
accessing trusted partitions. Ceviche thwarts some of these
attacks through safe delegation of access rights via the per-
domain capabilities contained in the CRF. This, for example,
prevents an attacker from obtaining elevated access rights by
abusing a trusted hardware or software module, as the cache
lines that that module can access on behalf of the attacker are
still limited by the capabilities granted to the attacker, rather
than the capabilities granted to the trusted module. Note that,
as mentioned in Section 3, loads and stores do not directly
present a cache line capability, and instead the capability
is derived from the effective address. While this ensures
transparency, in the absence of memory capabilities (e.g.,
as enforced in CHERI [7]), one could deputize a privileged
entity to flush shared lines within its domain by providing a
rogue address. However, we ensure that cache lines are not
arbitrarily shared or flushed across different domains unless
explicitly allowed at allocation.

Denial-Of-Service Attacks. Finally, we note that Ce-
viche caches are resilient against denial-of-service attacks
as no thread is allowed to allocate beyond its hard limit,
and when the cache is full, it is further restricted to operate
within its soft limit, which forms the basis of our minimum
guarantee resource allocation policy.

New Side-Channels in Ceviche. The CAM-based CRFs
are inherently fully-associative, so conflict-based attacks
are not possible. Reuse-based attacks aren’t possible either
because there is no mechanism to flush individual CRF
entries. There is also no contention or timing-dependent
behavior for structures such as the free list due to the 1:1
mapping between the CRF and the number of cache lines.

8. Experimental Methodology

In this section, we describe our modeling assumptions
and workload generation process used to evaluate the perfor-
mance, power, and area overheads of Ceviche in single-core,
multi-core, and SMT environments.

Performance Modeling. We use the Gem5 v20 [95]
architectural simulator with the Ruby cache model for a
detailed microarchitectural performance evaluation. We use
a modern out-of-order superscalar processor with a multi-
level cache hierarchy as our baseline, modeled after Intel’s
Icelake microarchitecture [96], [97] (shown in Table 3).

Frequency 3.3 GHz Number of Cores: 1, 2, 4, 8, 12
ICache 32 KB, 8-way DCache 48 KB, 12-way
Superscalar width 10 µops ROB 352 entries
Register file 256 INT/FP LQ/SQ 128/72 entries
L2 Cache 512 KB 8-way L3 Cache 8 MB 16-way

TABLE 3: Baseline Configuration

Latency Overhead
Baseline (ns/cycles) Ceviche (ns/cycles)

L1-ICache 0.696/3 0.944/4
L1-DCache 1.218/5 1.551/6

L2Cache 2.184/8 2.617/9
LLC 4.606/16 5.105/17

TABLE 4: Latency Estimation

We use C and C++ benchmarks from SPEC CPU 2017
suite [98] to construct workloads based on the simpoint
methodology [99]. Using PinPlay [100] and Gem5’s check-
pointing feature, we generate multiple simulation points that
each span 100 million dynamic x86 instructions. While we
use these simpoints directly for evaluating single-threaded
workloads, for our scalability analysis on SMT and multi-
core designs, we construct joint simpoints as follows. First,
we classify the applications into CPU-intensive, memory-
intensive, and balanced, based on the instruction-level par-
allelism (ILP) and memory behavior of each application. In
particular, we group wrf, exchange, nab and povray into the
CPU-intensive cluster; mcf, fotonik, xalancbmk and xz into
the memory-intensive cluster, and gcc, deepsjeng, leela and
perl into balanced cluster, per the characterization study by
Panda, et al [101]. Second, we create joint checkpoints by
considering simpoint combinations within a cluster. To make
simulations tractable, we limit ourselves to simpoints that
have the highest weight (i.e., the most representative region
of the benchmark). We perform both multithreaded (2-way
SMT) and multicore (2, 4, 8, and 12-core) simulations. For
all the multi-core experiments, the LLC has a 75% hard limit
and a 2-core design has 50% soft limit, 4-core has 25% soft
limit and so on. For SMT experiments, all of the caches
have a 75% and 50% hard and soft limit respectively.

For multicore and SMT experiments, we evaluate the
performance of Ceviche against an insecure and a secure
baseline in terms of normalized throughput (i.e., instructions
committed per cycle across all cores), LLC cache miss rates,
and LLC utilization. While the insecure baseline is modeled
after the cache hierarchy in Intel’s Icelake microarchitecture
(Table 3), the secure baseline is implemented as follows. In
a multi-core environment, the secure baseline is a statically
partitioned LLC cache with N way-partitions, where N is
the number of trust domains in the system. In our experi-
ments, we assume the number of unique trust domains to
be equal to the number of cores, and threads belong to
different domains are scheduled on different cores. In an
SMT environment, static way-partitioning is introduced at
all levels of the cache wherein the number of way partitions
is set to two, the number of hardware threads within each
physical core. We ensure that all threads always perform the
same amount of work by limiting the number of instructions

executed by each thread to 10 million dynamic instructions.
Note that the default cache sizes in Ceviche are con-

sistent with commercial XeonE-21X4/22X4 processors, al-
though we conservatively choose a fixed 8MB LLC for all
configurations to highlight the impact of LLC contention
among memory-intensive applications in our multithreaded
workloads. In our scalability experiments, we find that Ce-
viche performs significantly better on larger LLCs.

Power, Area, and Latency Estimation. We use CACTI-
P [26] to estimate the area, power, latency overheads as-
sociated with Ceviche. We use the 32nm technology node
to model our memory structures owing to its maturity and
reliability [32], [102], [103]. We perform RTL analysis using
Synopsys DC compiler [104] to estimate the latency, power,
and area overheads entailed by the victim search logic and
the free list. CACTI can model memory structures as a
CAM, SRAM (cache), or DRAM (main memory) at various
process nodes with specified ports and banks. The CRF
is modeled as a CAM structure in CACTI and the virtual
address tag and domain ID is used as the key for the look
up. We bank all of the structures similar to the baseline’s
SRAM-tagged caches (i.e., 4 banks for L1I and L1D, 16
banks for L2, and 32 banks for L3). Ceviche’s data array
is modeled as a direct-mapped multi-banked data array. We
also use the standard low power (LOP) cells from the Inter-
national Technology Roadmap for Semiconductors (ITRS)
for the CAM-tagged cache implementation as assumed in
prior works [8], [9], [10], [11]. Finally, since CACTI does
not allow modeling of caches with an associativity that is
not a power of two, we estimate the latency, power, and
area overheads of our baseline 48KB 12-way set-associative
L1 data cache from Intel’s Icelake using a average of
32KB 8-way and 64KB 16-way set-associative caches, albeit
skewed slightly towards the larger cache, accounting for the
complexity entailed by the non-power of two associativity.
Table 4 shows the latencies computed using CACTI for both
the baseline and Ceviche. Overall, due to our CAM-tagged
implementation we incur one extra cycle latency across all
levels of the cache hierarchy.

Furthermore, modern LLCs are sliced in that they are
typically divided into as many slices as there are number
of cores sharing the LLC, and each slice is identified by
means of a hash calculation. Our CACTI analysis shows
that thirty-two L3 CRF banks (each holding 4096 16-bit L3-
capabilities) may be looked up in parallel within the extra
cycle added to the hit latency (Table 4), providing access
to (and enabling flexible partitioning among) a cluster of
four 2MB slices. For larger caches, more banks are needed;
thus, a hash of the address/domain-ID pair would have
to determine the slice cluster and its corresponding CRF.
For e.g., Xeon-Platinum-83XX (32-40 cores/48-60MB LLC;
beefier than Intel-12900k) would feature eight multi-banked
L3 CRFs, each serving a cluster of four 1.5MB slices, but
only one CRF is looked up for any given L3 access. The
hash computation to identify the slice cluster would not
involve ciphers, and hence no additional latency is incurred
to access a slice cluster.

pe
rl

ex
ch

an
ge

xa
lan gc

c

lee
la wr
f

de
ep

sje
ng na
b

mcf xz lbm

fot
on

ik

po
vr

ay

na
md

Ge
om

ea
n0.80

0.84

0.88

0.92

0.96

1.00

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Insecure Baseline MIRAGE ScatterCache Ceviche (This Work)

Figure 5: Single-Threaded Performance Comparison

SMT 2-core 4-core 8-core 12-core0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SMT 2-core 4-core 8-core 12-core0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SMT 2-core 4-core 8-core 12-core0%

20%

40%

60%

80%

100%

LL
C

Ut
iliz

at
io

n
Ra

te

SMT 2-core 4-core 8-core 12-core0%

20%

40%

60%

80%

100%
LL

C
Ut

iliz
at

io
n

Ra
te

(a) Ceviche (this work)

(b) Secure Baseline (way partitioning)

CPU-Bound Balanced Memory-Bound

Figure 6: Performance Comparison for SMT/Multicore

9. Results

In this section, we first present results from our exper-
imental evaluation in a single-core environment and then
present our scalability analysis on SMT and multicore de-
signs, in addition to discussing the storage, area, and power
overheads of Ceviche.

9.1. Single Core Environment

Figure 5 shows the performance (IPC) of Ceviche
and two state-of-the-art defenses, Mirage [32] and Scatter-
Cache [31], normalized to the insecure baseline. We make
several key observations. First, the benchmarks that suffer
the most are the memory-intensive ones such as mcf (maxi-
mum degradation of 7.8%) that spends most of its time in a
pointer-chasing loop with irregular memory accesses. These
benchmarks get penalized primarily due to the increased hit
latency of CAM-tagged caches in Ceviche and cipher-based
set-index computation for the last-level caches in Mirage and
ScatterCache. Second, not all memory-intensive benchmarks
observe a degradation. For example, we observe a speedup
in fotonik due to a substantial uptick in the hit rates at
the L2 and L3 caches, owing to the conflict-averse fully-
associative allocation policy in Ceviche. Third, the memory
accesses from applications exhibiting high instruction-level
parallelism such as perlbench, exchange, namd, and povray

are mostly L1-bound and even those accesses typically
tend to get resolved in the processor through store-to-load
forwarding, due to which they hardly incur any overhead.
Fourth, benchmarks such as gcc, xz, and leela suffer a slight
performance degradation due to pollution in the instruction
cache, caused as a side effect of the fully-associative al-
location strategy in Ceviche, coupled with the already high
branch misprediction rate in these benchmarks forcing them
to fetch unnecessary cache lines along mispredicted paths.
Mirage and ScatterCache don’t incur these overheads as they
don’t protect the private data and instruction caches.

On average, Ceviche incurs only 2.4% slowdown over
the insecure baseline that does not implement any protec-
tions against cache attacks, while being able to provide
substantial security guarantees. In comparison to Mirage and
ScatterCache, we impose only an additional 1.8% degrada-
tion in performance, while protecting all levels of caches
rather than just the last-level cache.

9.2. Multicore and SMT Environment

To evaluate the scalability of Ceviche to multiple trust
domains, we construct multiprogrammed mixed workloads
as described in Section 8, such that each program within
the workload belongs to a different trust domain and further
schedule them to different hardware threads (in the SMT
design) or cores (in the multicore design). Figure 6 shows

Storage Overhead (in KB) Area Overhead (in mm2) Power Overhead (in W)
Baseline Ceviche Baseline Ceviche Baseline Ceviche

L1 ICache Tag 2.25 0 0.019 0 0.006 0
CRF 0 9.063 0 0.079 0 0.030

Free List 0 1.125 0 0.011 0 0.03
Data Array 32 0.173 0.046

L1 DCache Tag 3.375 0 0.109 0 0.023 0
CRF 0 13.594 0 0.221 0 0.085

Free List 0 1.688 0 0.015 0 0.036
Data Array 48 0.663 0.117

L2 Cache Tag 32 0 0.124 0 0.010 0
CRF 0 106 0 0.406 0 0.074

Free List 0 20 0 0.13 0 0.164
Data Array 512 1.997 0.360

LLC Tag 464 1152 1.519 0 0.058 0
CRF 0 9.063 0 3.577 0 0.278

Free List 0 416 0 0.251 0 0.3
Data Array 8192 13.998 0.125

Total Overhead 1227 KB 2.919 mm2 0.9 W

TABLE 5: Raw Storage, Area and Power Estimates

Cores
/LLC Size

Baseline
Storage (KB)

Ceviche
Storage (KB)

Storage
Overhead

Baseline
Area (mm2)

Ceviche
Area (mm2)

Area
Overhead

Baseline
Power (W)

Ceviche
Power (W)

Power
Overhead

4C/8MB 8807 10366 17.70% 130.5 135.0 4% 685.0 686.8 0.20%
8C/16MB 17613 20668 17.30% 258.2 267.7 3.60% 1366.3 1369.9 0.30%
16C/32MB 35226 41336 17.30% 513.1 531.6 3.60% 2933.6 2938.5 0.20%
32C/64MB 70452 82761 17.30% 1026.3 1063.1 3.60% 5867.2 5877.0 0.20%
64C/256MB 279400 320990 14.80% 4105.1 4252.6 3.60% 23468.8 23507.9 0.20%

TABLE 6: Raw Storage, Area and Power Impact with Core/Cache Scaling

Domains 32 256 1024 4096
L1-I 9.06 KB 9.25 KB 9.38 KB 9.5 KB
L1-D 13.59 KB 13.8 KB 14.06 KB 14.25 KB

L2 106 KB 109 KB 111 KB 113 KB
L3 1152 KB 1200 KB 1232 KB 1264 KB

Total 1280.65 KB 1332.05 KB 1366.44 KB 1400.75 KB

TABLE 7: Storage Impact with Domain Scaling

normalized throughput and utilization of the LLC of these
workloads on a single-core SMT, 2-core, 4-core, 8-core, and
12-core designs for Ceviche (top) and our secure baseline
that performs way partitioning (bottom). The utilization of
the LLC is computed as the average number of valid cache
lines in the LLC over the duration of the experiment.

We observe that both Ceviche and our secure baselines
with way partitioning perform only slightly worse than
the insecure baseline with no protections for the CPU-
bound and balanced workloads, and for the memory-bound
workloads in SMT and 2-core scenarios. However, as we
scale to 4, 8, and 12 cores, we see that the performance
of the way partitioning design starts to incur prohibitively
high degradation. This is because partitioning at the coarse
granularity of cache ways is inherently prone to high LLC
miss rates and low overall utilization as the number of
trust domains is scaled beyond a certain point. For instance,
the LLC is utilized by 25% more in Ceviche as opposed
to way-partitioning in the 8-core design, and even when
the LLC is underutilized in the 2-core and SMT scenarios
due to the other cores being idle, we still observe lower
utilization and degradation in the secure baseline with way
partitioning. Further, while Ceviche is able to continue to

maintain a low performance degradation for the CPU-bound
and balanced workloads in 8-core and 12-core scenarios, the
way partitioning baseline starts to degrade drastically due to
fewer cache ways available for allocation per-thread. Finally,
way partitioning also incurs greater performance degradation
in the SMT scenario for the memory-intensive workload as
not just the LLC is partitioned equally, but even the private
caches get partitioned into two to cater to the two SMT
threads, effectively halving cache capacity across all levels.

On the other hand, Ceviche degrades much gracefully
due to its fine-grained partitioning solution and competi-
tive allocation policy that together not only removes the
restriction on partitions having to include contiguous lines
in a way, but also allow partitions to grow beyond their
configured soft limits when space is available, thereby
achieving low miss rates and high utilization rates that are
comparable to the insecure baseline. Also note that, although
the overall performance increases with more cores, per-core
IPC significantly decreases due to LLC contention among
memory-intensive workloads. Hence, Ceviche experiences a
smaller slowdown as the cache size increases.

9.3. Power, Area, and Storage Overheads

The storage overheads in Ceviche caches arise due to
the additional free list and the extra bits in the CRF –
address tags, domain ID, metadata bits, and capabilities
containing the cache line number and access rights (shown
in Figure 3. Table 5 provides a detailed breakdown incurred
due to these additional tagging and metadata across the 3-
level cache hierarchy. It should be noted that the storage

size of the data arrays remain constant for both baseline and
Ceviche. Overall, across all levels, Ceviche consumes 13.2%
more storage than the insecure baseline, in comparison to a
recent secure LLC design, Mirage [32], that adds 17-20%
extra tag storage. Further, we measure the area overhead
imposed by the combinational logic used for capability-
based lookup and replacement to be 2.3 mm2 with neg-
ligible impact on clock latency. The CAM-tagged design
further adds 2.9 mm2 overhead and 0.9 W in power, which
is negligible in comparison to the overall chip area (tens
of square millimeters) and power (tens of Watts) in most
modern processors [32]. Furthermore, we would observe
some savings in power and area due to our decision to
use a direct-mapped data array in place of a set-associative
array. This savings would come from the reduction in the
multiplexing logic and conflict resolution logic that could be
found in a set-associative data array. Table 5 also provides
the raw storage, power, and area overheads incurred due to
the additional structures we add.

Table 6 shows the area, storage, and power overhead
with increase in the number of cores and the size of the
LLC. Note that the area and power analysis includes the
cumulative area and power consumed by the processor,
memory, peripherals, and the cache subsystem. The area and
the power overheads stay consistent even after scaling the
number of cores and the LLC size. Similarly, Table 7 shows
the storage overhead while scaling the number of domains
supported by Ceviche. We find that the storage overhead
scales linearly with the number of domains.

10. Conclusion

This work introduces Ceviche, a novel virtualization
solution for caches that offers protection against conflict-
based, reuse-based, occupancy-based, confused deputy, and
denial-of-service attacks. The key to Ceviche is a secure
virtualization layer that translates an address-domain ID
pair into a capability that encodes the access rights and
the permitted set of operations on a cache line, enforcing
the principle of least privilege. By decoupling the address
from the physical location of a cache line, Ceviche enables
fully associative allocation and fine-grained cache partition-
ing, maximizing utilization and amortizing the virtualization
cost. Ceviche incurs an average slowdown of 2.4% over
an insecure baseline, while gracefully scaling to multiple
domains, outperforming way partitioning-based solutions.

Acknowledgments

The authors would like to thank the anonymous review-
ers and the Shepherd for their insightful suggestions and
comments. This research was supported by NSF grants CCF-
2238548 and CNS-2213700, and a DARPA I2O cooperative
agreement FA8750-24-2-0002.

References

[1] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: a dynamic cache
partitioning system using page coloring,” in PACT, 2014.

[2] K. T. Nguyen, “Introduction to Cache Allocation Technology
in the Intel® Xeon® Processor E5 v4 Family,” 2016,
https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.html.

[3] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating Last-level Cache Side Channel Attacks
in Cloud Computing,” in HPCA, 2016.

[4] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
management unit: Why stopping cache attacks in software is harder
than you think,” in USENIX Security, 2018.

[5] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust website fingerprinting through the cache
occupancy channel,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 639–656.

[6] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” IEEE, 1975.

[7] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in ISCA,
2014.

[8] P. J. Wilson, “Cache organization and method,” 2018, uS Patent
10,025,720.

[9] E. Witchel, S. Larsen, C. S. Ananian, and K. Asanovic, “Direct
addressed caches for reduced power consumption,” in MICRO, 2001.

[10] M. Zhang and K. Asanovic, “Highly-associative caches for low-
power processors,” in Kool Chips Workshop, MICRO, 2000.

[11] M. Zhang and K. Asanović, “Fine-grain cam-tag cache resizing
using miss tags,” in ISLPED, 2002.

[12] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and
their implications,” in CCS, 2015.

[13] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level
Cache Side-Channel Attacks Are Practical,” in S&P, 2015.

[14] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing
attack on openssl constant time rsa,” in International Conference
on Cryptographic Hardware and Embedded Systems, 2016.

[15] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX,” in USENIX Security, 2017.

[16] O. Aciiçmez, “Yet Another Microarchitectural Attack:: Exploiting
I-cache,” in ACM Workshop on Computer Security Architecture
(CSAW), 2007.

[17] C. Percival, “Cache missing for fun and profit,” 2005.

[18] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[19] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack.” in USENIX Security, 2014.

[20] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing
access-based cache attacks on aes to practice,” in S&P, 2011.

[21] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in CCS, 2014.

[22] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive {Last-Level} caches,” in USENIX
Security, 2015.

[23] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to model large caches,” HP laboratories, 2009.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: Maximizing on-chip parallelism,” International Sympo-
sium on Computer Architecture (ISCA), 1995.

[25] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,
and R. L. Stamm, “Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading processor,” in
International Symposium on Computer Architecture (ISCA), 1996.

[26] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based structures with
advanced leakage reduction techniques,” in ICCAD: International
Conference on Computer-Aided Design, 2011, pp. 694–701.

[27] A. González, F. Latorre, and G. Magklis, Processor Microarchitec-
ture: An Implementation Perspective, 12 2010, vol. 5.

[28] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in ISCA,
2014.

[29] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” in MICRO, 2016.

[30] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping,” in MICRO, 2018.

[31] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “Scattercache: thwarting cache attacks via cache set
randomization,” in Proceedings of the 28th USENIX Conference on
Security Symposium, ser. SEC’19. USA: USENIX Association,
2019, p. 675–692.

[32] G. Saileshwar and M. K. Qureshi, “Mirage: Mitigating conflict-
based cache attacks with a practical fully-associative design,”
in USENIX Security Symposium, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221819421

[33] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Soft-
ware Cache-Based Side Channel Attacks,” in ISCA, 2007.

[34] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: secure dynamic cache partitioning for efficient timing
channel protection,” in DAC, 2016.

[35] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Pono-
marev, “Non-Monopolizable Caches: Low-Complexity Mitigation of
Cache Side Channel Attacks,” TACO, 2012.

[36] “SecSMT: Securing SMT processors against Contention-Based
covert channels,” in USENIX Security, 2022.

[37] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas, “Mi6: Secure enclaves in a speculative out-of-
order processor,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 42–56. [Online]. Available: https://doi.org/10.1145/3352460.
3358310

[38] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” in MICRO, 2018.

[39] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-
based side channel attacks,” in 2017 ACM/IEEE 44th Annual In-
ternational Symposium on Computer Architecture (ISCA), 2017, pp.
347–360.

[40] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache en-
claves: Fine-grained and scalable isolation from cache side-channels
via flexible set-partitioning,” in 2021 International Symposium on
Secure and Private Execution Environment Design (SEED), 2021,
pp. 37–49.

[41] D. Townley, K. Arıkan, Y. D. Liu, D. Ponomarev, and O. Ergin,
“Composable cachelets: Protecting enclaves from cache Side-
Channel attacks,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
2839–2856. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/townley

[42] J. Szefer and R. B. Lee, “Architectural support for hypervisor-secure
virtualization,” 2012.

[43] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for secure
virtualization under a vulnerable hypervisor,” in MICRO, 2011.

[44] F. Lombardi and R. Di Pietro, “Secure virtualization for cloud
computing,” Journal of network and computer applications, 2011.

[45] J. Criswell, B. Monroe, and V. Adve, “A virtual instruction set inter-
face for operating system kernels,” in Workshop on the Interaction
between Operating Systems and Computer Architecture, 2006.

[46] J. Criswell, N. Geoffray, and V. S. Adve, “Memory safety for low-
level software/hardware interactions.” in USENIX Security, 2009.

[47] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting
applications from hostile operating systems,” in ACM SIGPLAN
Notices, 2014.

[48] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security
threats, and solutions,” ACM Computing Surveys (CSUR), 2013.

[49] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al.,
“sel4: Formal verification of an os kernel,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles,
2009.

[50] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
os architecture for scalable multicore systems,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles,
2009.

[51] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for
fast capability-based addressing,” in ASPLOS, 1994.

[52] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and A. De-
Hon, “Low-fat pointers: compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security,” in CCS, 2013.

[53] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al.,
“Cheri: A hybrid capability-system architecture for scalable software
compartmentalization,” in Security and Privacy (SP), 2015 IEEE
Symposium on, 2015.

[54] D. Chisnall, B. Davis, K. Gudka, D. Brazdil, A. Joannou,
J. Woodruff, A. T. Markettos, J. E. Maste, R. Norton, S. Son et al.,
“Cheri jni: Sinking the java security model into the c,” in ASPLOS,
2017.

[55] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury,
H. Xia, R. N. Watson, D. Chisnall, M. Roe, B. Davis et al., “Efficient
tagged memory,” in ICCD, 2017.

[56] B. Davis, R. N. Watson, A. Richardson, P. G. Neumann, S. W.
Moore, J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka
et al., “Cheriabi: Enforcing valid pointer provenance and minimizing
pointer privilege in the posix c run-time environment,” in ASPLOS,
2019.

[57] R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in ISCA, 2020.

[58] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and
Countermeasures: The Case of AES, 2006. [Online]. Available:
https://doi.org/10.1007/11605805 1

[59] D. J. Bernstein, “Cache-timing attacks on aes,” 2005. [Online].
Available: https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[60] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat, “I see dead µops: Leaking secrets via intel/amd micro-op
caches,” in ISCA, 2021.

[61] M. Taram, A. Venkat, and D. Tullsen, “Packet Chasing: Spying on
Network Packets over a Cache Side-Channel,” in ISCA, 2020.

[62] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush:
A Fast and Stealthy Cache Attack,” Apr. 2016, arXiv:1511.04594
[cs]. [Online]. Available: http://arxiv.org/abs/1511.04594

[63] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” in 2018 IEEE
International Symposium on High Performance Computer Architec-
ture (HPCA), 2018, pp. 168–179.

[64] F. Yao, M. Doroslovaki, and G. Venkataramani, “Covert timing
channels exploiting cache coherence hardware: Characterization and
defense,” International Journal of Parallel Programming, vol. 47,
pp. 595–620, 2018. [Online]. Available: https://api.semanticscholar.
org/CorpusID:53873984

[65] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware
design language for timing-sensitive information-flow security,” in
ASPLOS, 2015.

[66] F. Yao, H. Fang, M. Doroslovački, and G. Venkataramani, “Cot-
sknight: Practical defense against cache timing channel attacks using
cache monitoring and partitioning technologies,” in 2019 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2019, pp. 121–130.

[67] M. K. Qureshi, “New Attacks and Defense for Encrypted-Address
Cache,” in ISCA, 2019.

[68] F. Liu, H. Wu, and R. B. Lee, “Can randomized mapping secure
instruction caches from side-channel attacks?” in HASP, 2015.

[69] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfuscating
cache conflicts with localized randomization.” in NDSS, 2020.

[70] S. Deng, W. Xiong, and J. Szefer, “Analysis of secure caches
using a three-step model for timing-based attacks,” Cryptology
ePrint Archive, Paper 2019/167, 2019. [Online]. Available:
https://eprint.iacr.org/2019/167

[71] N. Hardy, “The confused deputy: (or why capabilities might have
been invented),” ACM SIGOPS Operating Systems Review, 1988.

[72] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcı́a, and
N. Tuveri, “Port Contention for Fun and Profit,” in S&P, 2019.

[73] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“SMoTherSpectre: Exploiting Speculative Execution through
Port Contention,” in CCS, 2019.

[74] Z. Wang and R. B. Lee, “Covert and Side Channels Due to Processor
Architecture,” in Annual Computer Security Applications Conference
(ACSAC), 2006.

[75] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor,” in ASPLOS, 2018.

[76] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking Branch Predictors to Bypass ASLR,” in MICRO,
2016.

[77] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers’ Track at the RSA Conference,
2007.

[78] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB
Attacks,” in USENIX Security, 2018.

[79] K. C. Yeager, “The mips r10000 superscalar microprocessor,” IEEE
micro, 1996.

[80] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in
USENIX Security, 2018.

[81] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” in USENIX Security, 2018.

[82] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat,
D. Tullsen, and R. Gupta, “Reliability-aware data placement for
heterogeneous memory architecture,” in HPCA, 2018.

[83] Intel Corporation, Improving Real-Time Performance by Utilizing
Cache Allocation Technology, 2015.

[84] M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the micro-
ops: Exploiting context sensitive decoding for security and energy
efficiency,” in ISCA, 2018.

[85] Taram, Mohammadkazem and Venkat, Ashish and Tullsen, Dean M,
“Context-sensitive decoding: On-demand microcode customization
for security and energy management,” IEEE Micro, 2019.

[86] Taram, Mohammadkazem and Venkat, Ashish and Tullsen, Dean
M., “Context-sensitive fencing: Securing speculative execution via
microcode customization,” in ASPLOS, 2019.

[87] M. Taram, A. Venkat, and D. Tullsen, “Mitigating speculative exe-
cution attacks via context-sensitive fencing,” IEEE Design & Test,
2022.

[88] M. Taram, D. Tullsen, A. Venkat, H. Sayadi, H. Wang, and
H. Homayoun, “Fast and efficient deployment of security defenses
via context sensitive decoding,” in GOMACTech, 2019.

[89] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger,
“A closer look at intel resource director technology (rdt),” in
Proceedings of the 30th International Conference on Real-Time
Networks and Systems, ser. RTNS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 127–139. [Online].
Available: https://doi.org/10.1145/3534879.3534882

[90] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice
of finding eviction sets,” 2019 IEEE Symposium on Security
and Privacy (SP), pp. 39–54, 2018. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:52916873

[91] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“{RELOAD+ REFRESH}: Abusing cache replacement policies to
perform stealthy cache attacks,” in USENIX Security 20, 2020.

[92] W. Xiong and J. Szefer, “Leaking information through cache lru
states,” in HPCA, 2020.

[93] Y. Cui, C. Yang, and X. Cheng, “Abusing cache line dirty states to
leak information in commercial processors,” in HPCA, 2022.

[94] M. C. W. K. Gruss, Daniel and S. Mangard, Flush+Flush:
A Fast and Stealthy Cache Attack, 2016. [Online]. Available:
https://doi.org/10.1007/978-3-319-40667-1 14

[95] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1–7, aug 2011. [Online]. Available:
https://doi.org/10.1145/2024716.2024718

[96] I. Corporation, “Intel icelake - products formerly ice lake.”
[Online]. Available: https://ark.intel.com/content/www/us/en/ark/
products/codename/74979/products-formerly-ice-lake.html

[97] L. Moody, W. Qi, A. Sharifi, L. Berry, J. Rudek, J. Gaur, J. Parkhurst,
S. Subramoney, K. Skadron, and A. Venkat, “Speculative code
compaction: Eliminating dead code via speculative microcode trans-
formations,” in MICRO, 2022.

[98] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, 2006.

[99] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automat-
ically characterizing large scale program behavior,” in ASPLOS,
2002.

[100] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pinplay:
A framework for deterministic replay and reproducible analysis of
parallel programs,” in CGO, 2010.

[101] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade:
Did spec cpu 2017 broaden the performance horizon?” in HPCA.
IEEE, 2018.

[102] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of
a heterogeneous-isa chip multiprocessor,” in ISCA, 2014.

[103] A. Venkat, H. Basavaraj, and D. M. Tullsen, “Composite-isa cores:
enabling multi-isa heterogeneity using a single isa,” in HPCA, 2019.

[104] Synopsys, “Design compiler.” [Online]. Available:
https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes a novel cache organization that
thwarts a wide-range of attacks.

A.2. Scientific Contributions

• Provides a valuable step forward in an established
field.

• Addresses a long-known issue.

A.3. Reasons for Acceptance

1) The proposal of Ceviche is quite novel and different
from existing partition and randomization schemes.

2) Protect against a type of confused deputy attacks.
3) The performance overhead is reasonable compared

to non-secure baseline.
4) The writing is clear and easy to read.

