
CS 494 Homework 2: Due 27 Feb 2006

In this homework, you will complete the first elaboration iteration for the project you described 
in the first homework.  In particular, you will have a fully functioning prototype version of your system 
ready by the end of this homework.

Changing projects or groups
If you feel that your project is not viable for any reason, or you would rather change projects, 

you can speak to me about doing so – I don't want to lock you in, for the whole semester, to a project 
that you will not enjoy.

The same applies for the groups – if you want to change your groups, let me know.

Document Deliverables
You need to include the following documents for this homework.

• Use cases: You should provide two more fully dressed use cases.  This is probably easiest done 
after you have done some development, as that will help you figure out what the rest of the use 
cases will be.

• Domain model: As described in the book and during lecture.
• System Sequence Diagrams: For the two use cases that you are implementing (see below), you 

will need to include a SSD for each.
• Operation Contracts: You should provide a few operation contracts for the parts of the SSDs 

that need clarification.  Two pages of operation contracts is sufficient.
• Language choice: You will need to decide what language you want to use (see below), and 

write a brief description as to why you chose this language.  This does not have to be anything 
long-winded – a paragraph or two is sufficient.

The documents themselves are going to be on the “short” side – say 3 pages for each of the 2 
use cases, and 1 page (in Visio) for each of the 3 diagrams, and 2 pages of operation contracts.  The 
language choice need only be a paragraph or two.  Thus, your documents will total about 11 pages.

As before, you will notice that a lot of the finer details have not been laid out.  These details are 
being left to you, as they will vary from project idea to project idea.  We are looking for (and will be 
grading based on) the fact that you have put a lot of thought into this system.

Implementation Language
You may pick any language to implement it in, as long as it fulfills the following requirements:

• It must be an object oriented language, of course
• It must be able to be executed in a Linux/Unix environment (this eliminates C#)
• You must not have had too much experience with the language, and thus do not know it well

The last point will require a bit of explanation.  The purpose of this last requirement is to allow 
you to learn a  language that  you do not  know already.  Having written a  single,  relatively small, 
program in a language qualifies as not knowing it well.  Having taken the language in CS 101 or any 
successive CS class will generally qualify as knowing it well.  For groups, you will need to choose a 
language  that  the  group  members  as  a  whole  do  not  know well.   There  will  be,  at  some  point, 
something to sign saying that you have followed this rule.  As with all the rules for this project, I am 



willing to bend them if there is a good reason to do so – speak to me about this if it might apply to you.
My expectation is that the language choices will be from the following: Java, C++, PHP, Perl, 

and Python.  If you want to choose a language not listed here, you will need to speak to me first.

Code Deliverables
You will  need to  implement  a  working  prototype of  this  system.  This  doesn't  have  to  be 

anything  fancy  –  just  a  run  through  the  main  scenario  in  the  two  fully  dressed  use  cases  from 
homework 1 is sufficient.  If you provided more than 2 fully dressed use cases in homework 1, then 
you don't have to do all of them.  The goal here is to implement maybe 500 or so lines of code per 
group member, as a rough estimate.  Most of the development for this project will take place during the 
following iterations.

All your code will need to be in a code/ subdirectory, as described below.  You will also need to 
provide a readme.odt file that describes what the various files of code do.  This doesn't have to be long 
– just enough so we have an idea of what each file does.  If this is clear from the SSD, you are welcome 
to just state that in the readme.odt file.  Lastly, your code needs to be commented so that we have some 
idea of what is going on.  Terse comments are fine, as long as they allow us to understand your code.  

Submission
All your deliverables will need to be zipped into a file named hw2.zip, and submitted through 

the course submission page (http://www.cs.virginia.edu/~cs494/submit.html).  The diagrams should be 
done in Visio, the text documents in OpenOffice.  The same formatting rules from homework 1 also 
apply here (normal margins, normal text size, single spaced, etc.)  You can have each of the documents 
be in separate files, if you would prefer.  All of your code should be in a code/ subdirectory in the zip 
file.  And the readme.odt file (described above) should be either in the root directory or the code/ 
subdirectory.  Again, the 5 Mb submission limit is in effect – if your file is larger than that, you will 
need to let me know.

If your system can not be executed in the normal way (i.e. by compiling and then executing in 
a Linux/Unix environment), you must provide an alternate means for me to examine and execute the 
system.  This includes any web-based system – you will need to set up the code off of your home page 
(or other webpage that you choose).  This also includes any system that requires external services, such 
as a database – the easy way to solve this is to provide a means to use a text database instead of a 
regular relational database.  Basically, I need to be able to see your program running if I cannot run it 
myself.  If there are any questions on this, feel free to ask.  I can also show you how to set up website 
execution and/or database access.

The homework is due by the end of the day (11:59:59 p.m.) on Monday, 27 February 2006.

http://www.cs.virginia.edu/~cs494/submit.html

	CS 494 Homework 2: Due 27 Feb 2006

