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Part I: Logic

1. (5 points) What is the converse and inversgof q? Clearly label which is which!

Answer:

The converse ig| - p, and the inverse isp - =(.

2. (15 points) Using logical equivalences, prove ttapdq) — (-(q — p)) is a tautology. In

other words, show tha(-pq) - (-(q — p))=T. You must clearly label each step!
(Malik/Sen, page 39)

Answer:

T=(-pdq) - (~(q - p)) Original statement
T==(-pUq) d(~(~qOp)) Definition of implication (twice)
T=(p0-0)0(q0-p) DeMorgan’s law (twice)
T=(p0-0)0=(-q0p) DeMorgan’s law (again)
T=(pO0-0q)0-(pO-q) DeMorgan’s law (again)

T=T Complement law

Note that the last step is because anything or'gld s complement (here it wagp C —q)
or'ed with its complement) is a tautology.
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Part Il: Proofs

3. (5 points) Give an English statement that can bear trivially (i.e. by a trivial proof).

Answer:

Any implication where the consequence is always.tru

4. (5 points) Give an English statement that can bgen vacuously (i.e. by a vacuous proof).

Answer:

Any implication where the antecedent is alwaysefals

5. (10 points) Prove, via a proof by contradictiorgtth n is an integer, andn3d-2 is even, then is
even. (Rosen, section 1.5, question 22)

Answer:

Rewrite as a proposition: iin32 is even, them is even. Lep be 31+2 is even, and ben is
even. Assume that the implicatign— q is false, which only occurs whenis true andj is
false. Thus, we are assuming that3 is even and thatis odd. Ifnis odd, them=2k+1 for
some integek (definition of even numbers). Thém+2=32k +1)+2=6k +5=2(3k +2) +1.
Thus, since B+2 is 2 times some integer plus one (that integando&+2), it cannot be even,
which contradicts our original assumption (that3is even). Thus,3-2 must be even.



CS/APMA 202 Final Exam 7 May 2005

6. (15 points) Given the three propositiong, (-qLC p), =r L g, can we conclude? Show this
by using rules of inference. You must label alliysteps! (Malik/Sen, page 51, exercise 5)

Answer:
1. -p First hypothesis
2. ~qLp Second hypothesis
3. =q Disjunctive syllogism on steps 1 and 2
4. =rlq Third hypothesis
5 ar Disjunctive syllogism on steps 3 and 4

Therefore, we cannot conclude thais true (in fact, we conclude thatis false). Note that
there are other ways to conclude from the given hypothesis.
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7. (15 points) Using weak mathematical induction, shbat 1+ 2+ 2% +...+2" =2"* -1 for all
n=>0. You must label all your steps! (Malik/Sen, pdg8, exercise 2)

Answer:
Let P(n) : 1+2+22 +...4+2" = 2n+1 -1

20 = 20+l _1
Base case’
1=1

Inductive hypothesist+2+ 22 +...+ 2 =21 -1
Inductive stepl+2+2% +... + 2% + 2k = gkt 1

We can replace thé+2+2%+...+2* part of the inductive step with the right side tbé
inductive hypothesis, nameB/** -1, to yield:

2k+1 -1+ 2k+1 - 2k+1+1 -1
2(2k+1) _1: 2k+2 _1
2k —1=22 -1
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Part Ill: Counting

8. (5 points) How many functions are there from thie{$e2, ..., n}, wheren is a positive integer,
to the set {0, 1}? (Rosen, section 4.1, questi®dn 3

Answer:

For each of then elements in the domain, the function can map ieitker of the 2 values
Thus, there are"2otal possible functions.

9. (5 points) What is the coefficient a&f in (2x+1)**? Leave your answer in combinatorial form.
(variant of Rosen, section 4.4, question 6)

Answer:

13
The coefficient i{ : J27 =1716*128=219 648

10. (5 points) What must be shown in a combinatorialbf? In other words, what must you do in
order to prove a formula via a combinatorial proof?

Answer:

You must show that both sides of the equation matagount the same thing.
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11.(15 points) What is the probability of being demktraight in a 5-card poker hand? Leave your
answer in combinatorial form. Recall that a stnig a series of 5 cards in a sequence. For
example, A, 2, 3, 4, 5 is a straight, as is 1@Q,JK, A (note that the ace can be high or low).
Suit does not matter in a straight (and we areriggcstraight flushes and royal flushes).

Answer:

2
Total number of 5-card stud poker handEsgj :

To pick a straight, we first pick the lowest numbefr which there are 10 choices (A through
10\ 4\ 4\ 4\4)4
10). We then pick the suit for each of the 5 car@sis yields( 1]{ j{ j( ]( j{ j

TN 101
Eloj(‘lj(ﬂ(ﬂ(ﬂ(ﬂ
Thus, the total probability L,l IALAIAL __10240 =0.00394.
[52] 2598960
5
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12.(10 points) LetX ={x,,%,,..., X} be a set of 100 distinct positive integers. Hsia positive

integers are divided by 75, then show that at least of the remainders must be the same.
(Malik/Sen, p. 435 exercise 2)

Answer:

Proof via pigeonhole principle. The number of pige N, is the number of integers @0
The number of pigeonholel, is the number of possible remainders, or 75. nékd to fit 100
numbers into 75 possible remainders (or 100 pig&uns/5 pigeonholes). By the pigeonhole

principle, there must be at least one pigeonh@mdéinder) that ha%w :[%ﬂ =2 pigeons

(numbers) in it.

13.(10 points) From the set of integers in the set?{1..., 30}, what is the least number of integers
that must be chosen so that at least one of thedivisible by either 3 or 5? Explain your
answer. (Malik/Sen, p. 435 exercise 3)

Answer:

There are 14 numbers in the range that are dieisipl3 or 5: {3, 5, 6, 9, 10, 12, 15, 18, 20, 21,
24, 25, 27, 30}. Thus, there are 16 numbers tfenhat divisible by 3 or 5: {1, 2, 4, 7, 8, 11,
13, 14, 16, 17, 19, 22, 23, 26, 28, 29}. The leashber that must be chosen is 1 more than 16

(worst case is that you pick all 16 first, then ¢im&t is divisible by 3 or 5). Thus, the answer is
17.
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Part IV: Structures

14. (5 points) What is the cardinality of a power sea et on elements? (déja vu...)

Answer:

2n

15. (5 points) Describe, in English, what 1-to-1 antbamean for functions.

Answer:

1-to-1 means that for every element in the co-daptaiere will be one (and only one) element
in the domain that maps to it. Onto means thatyegkement in the co-domain has something
mapped to it.

16. (5 points) What is the difference between a seqei¢imat has an arithmetic progression, and one
that has a geometric progression?

Answer:

An arithmetic progression means each term is atanhamount greater (or less than) the last

term. A geometric progression means that each i®m@nconstant factor greater (or less than)
the last term.

17.(5 points) Describe, in English, what transitivestire means.

Answer:

Transitive closure means that when there is a Ipattveen any two nodesandb, then there is
an edge frona to b.
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18. (5 points) What is the difference between asymmatiy antisymmetry?

Answer:

Irreflexivity. An asymmetric relation (such as must be irreflexive, as any element cannot be

related to itself. An antisymmetric relation (sw$x) is allowed to have elements related to
themselves, so it does not have to be irreflexive.

19. (5 points) Which properties are required for anieajence relation and which are required for a
partial ordering?

Answer:

Both must be reflexive and transitive. An equivake relation must be symmetric, and a partial
ordering must be antisymmetric.

20.(10 points) Given a relatioR, what is the difference betwe&, R*, and R? Clearly describe
what each means.

Answer:

R* is the transitive closure dR (if there is a path betweem andb, then there is an edge
betweena andb). R! is the inverse relation, where all the edges amersed (formally,

R!={(b,a)|(ab)IR). R is the complementary relation, which containstiad edges that
are not in R (formallyR™ ={(a,b)|(a,b) IR }.

10
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21.(15 points) Given seté& and B, prove that(A-B)U(B-A)=(AUB)-(BMNA). You can

either use set builder notation or set equivalenbes you cannot use membership tables.
(variant of Malik/Sen, page 22, exercise 7)

Answer:

(A-B)U(B-A)=(AUB)-(BNA) Original statement
=(AUB)N(BNA) Definition of difference
=(AUB)N(BU A) DeMorgan’s law
=((auBnB)u(auB)NA) Distributive law
=((AanBUENB))U(ANAUEBNA) Distributive law (again)
= ((Aﬂ B)U D)U (D U (Bﬂz\)) Complement law

= (Aﬂ E)U (Bﬂz\) Identity law
=(A-B)U(B-A) Definition of difference

11
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Part V: Applications

22.(10 points) State a real world application of eaxfhthe following discrete mathematical
concepts.

* Boolean logic

Answer:
CPUs (arithmetic applications are done via Boolegit)

« Mathematical induction

Answer:
Verifying program correctness.

* Relations

Answer:
Relational databases or MapQuest.

* Prime numbers

Answer:
The RSA algorithm, or encryption.

» Algorithms

Answer:
Computer programs!

* Fibonacci sequence

Answer:
Reproducing rabbits, conch shell radii, etc.

12
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CS/APMA 202 Rules of inference (Rosen, p. 58)
_ Rule of | Tautology Name
Final Exam Reference Sheet Inference
p p-(pCQq) Addition
O pOq
Set and logical identities pLq | (pLa)-p ?;rt?grlwm-
Sets (Rosen, p. 89) Name Boolean logic (Roserd)p. 2 [ U P
AUDO =A Identity laws | pCT = p p ((p)O(9)) - (pOq) Conjunction
ANU = A pOF=p q
AUU =U g(\?vrgination PpCT=T 0 p0Oq
ANDO =0 pOF=F p [pO(p - o)) - g Modus
AUA=A ldempotent | PLP=p ponens
laws = P-4
ANA=A pUp=p g
A= Complemen-| =(-p) = p
(K) A tation law -q [~a0(p - o)) - -p Modus
AUB=BUA Commutativd PLG=qL p p-q tollens
ANB=BNA laws pOg=q0p O-p
AU(BUC)=(AUB)UC Associative | (pCq)Cr=pLC(qLlr) P-qllpP-9O@-n]-((-r Hypothetical
AN(BNC) =(ANB)NC laws (pOg) Or = pO(qOr) - syllogism
ANBUC)=(ANB)U(ANC) | Distributive | pC(qCr)=(pCq)C(pLCr) Opor
_ laws = _
_AU(BH_C) :(AUB)H(AUC) , pD(quz—(qu)D(pDr) pUq [(qu)D—'p]aq Disjunctive
AUB=ANB IDeMorgans -(pCg)=-pL-q p syllogism
o aws =
ANB=AUB =(pUg)=-pU-q 04
AU(ANB)=A Absorption C(pCQq)= .
U(ANE) laws P PL(pLa)=p plUq [(qu)D(—'pDr)] - (qOr) Resolution
AN(AUB) = A pd(pOag)=p
— — —pUr
AUA=U Complement| pC-p=T
— laws - dqlr
ANA=0 pU-p=F q

13
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