
Special Session: Detecting and Defending
Vulnerabilities in Heterogeneous and Monolithic

Systems: Current Strategies and Future Directions
Venkat Nitin Patnala1, Sai Manoj Pudukotai Dinakarrao1, Guru Venkataramani2,

Jie Chen2, Preet Derasari2, Milos Doroslovacki2, Fan Yao2, Hongyu Fang2, Meron Demissie3,
Todd Austin3, Lauren Biernacki4, Saket Upadhyay5, Arnabjyoti Kalita5, Ashish Venkat5

1George Mason University, Fairfax, VA, USA
2The George Washington University, Washington, DC, USA

3University of Michigan, Ann Arbor, MI, USA
4Lafayette College, Easton, PA, USA

5University of Virginia, Charlottesville, VA, USA
{vpatnala,spudukot}@gmu.edu, guruv@email.gwu.edu, {mdemissi,austin}@umich.edu,

biernacl@lafayette.edu, {saket,akalita,venkat}@virginia.edu

I. ABSTRACT

Embedded systems are evolving in complexity, leading
to the emergence of multiple threats. The co-design and
execution of software on the embedded systems further ex-
acerbate the attack surface, making them more vulnerable
to sophisticated attacks. As embedded systems are used in
critical areas, ensuring their security is crucial. In this special
session paper, primarily four major topics regarding embedded
systems’ security are discussed. Firstly, this paper initially
explores timing channel analysis at a microarchitectural level
in heterogeneous hardware to address the security challenges.
It then delves into exploring software-based fuzzing techniques
to detect vulnerabilities and enhance embedded system secu-
rity. Additionally, the paper discusses strategies for improving
security in IoT devices with a layered defense strategy known
as Snowflake IoT. Finally, it examines approaches to securing
large and complex monolithic systems. The challenges and
opportunities for securing the embedded systems according to
the scale and type of attacks.

II. INTRODUCTION

Embedded Systems are integral to modern technological
ecosystems and significantly prevail in various domains such
as automotive, medical devices, and the Internet of Things
(IoT). Advancements in interconnection technology, scaling
down of transistor sizes, fabrication methodologies, and com-
puting architectural innovations have led to systems of scale in
recent times. For instance, multi-core processors such as AMD
EPYC Zen 4 [1] are embedded with up to 128 cores, providing
unprecedented computational performance and throughput.

Further advancements in the heterogeneous integration and
seamless working with a plethora of interfaces and resource-
efficient computing paradigms have expanded the potential of
embedded systems in the Internet of Things (IoT) era. IoT
has exponential growth, with the connected devices reaching

up to 75 billion devices [2]. Integrating low-power wide-area
networks enhances connectivity for embedded devices to com-
municate over long distances with low power consumption.

Despite the advancements on multiple fronts in embedded
systems, complex system design, integration capabilities, and
large-scale have recently introduced a wide range of security
concerns. In addition, as the embedded systems run software
on top of hardware, the combined growth in complexity intro-
duces a wide range of security vulnerabilities. These attacks
vary both in complexity and adversarial impacts and have been
encountered across the globe [3]. The increasing complexity of
these attacks has made the integration of security at different
levels of the embedded systems, including the hardware layer,
firmware, application layer, and operating systems.

At the foundation level, the hardware layer plays a crucial
role in the security of embedded systems. Detecting and de-
fending against threats at the hardware and micro-architectural
level is significant. Hardware vulnerabilities, such as side
channels [4] and covert channels, can lurk behind hardware
intellectual property (IP) blocks that are built by multiple
hardware vendors. These vulnerabilities can be exploited to
leak sensitive information through subtle variations in system
behavior, making them particularly dangerous. As the cache-
based timing channels [5] are one of the largest attack surfaces,
we discuss some of the detection mechanisms in this work.

In order to effectively protect systems against information
leakage, we need objective metrics to quantify the attacks
and then tackle the damages caused by them. Covert timing
channels are information leakage channels where a Trojan pro-
cess intentionally modulates the timing of events on a shared
system resource to illegitimately reveal data secrets to a spy
process. Note that the Trojan and the spy do not communicate
explicitly through send/receive or shared memory but covertly
via modulating certain events. In contrast to side channels,
where a process unintentionally leaks information to a spy



process, covert timing channels have an insider Trojan process
(with higher privileges) that intentionally colludes with a spy
process (with lower privileges) to exfiltrate the system secrets.

A fundamental strategy used by the Trojan process to
achieve covert timing-based communication on shared pro-
cessor hardware is modulating the timing of events by in-
tentionally creating conflicts. We use conflict to collectively
denote methods that alter either the latency of a single event
or the inter-event intervals. The spy process deciphers the
secrets by observing the differences in resource access times.
On compute logic and buses/interconnects, the Trojan creates
conflicts by introducing distinguishable contention patterns.
On memory structures, the Trojan creates conflicts through
repetitive patterns of intentional memory block replacements
such that the spy can decipher the message bits based on
the memory hit/miss latencies. This basic strategy of creating
conflicts for timing modulation has been observed in numerous
covert timing channel implementations [6]–[10].

Moving up the stack, firmware vulnerabilities remain a
significant concern, as illustrated by incidents like the Intel x86
Processor Meltdown and Spectre [11] vulnerabilities, where
attackers could exploit hardware flaws remotely. As firmware
is a critical component of embedded devices, stored in ROM
or non-volatile memory, its vulnerabilities can have severe
consequences. There are several existing solutions, such as
static analysis [12], [13], dynamic analysis [14], [15], formal
verification [16], [17], and Reverse engineering [18], [19]
having many limitations such as detecting runtime issues like
memory leaks or race conditions, scalability, and increasing
the complexity of testing. Automated fuzzing testing, which
comes under dynamic analysis, involves providing randomized
inputs for each iteration to detect threats or logical errors that
can be exploited by a malicious attacker [20].

Automated fuzzing benefits due to its automated process for
generating and inserting large sets of inputs in the firmware
without manual intervention, which helps with scalability. By
generating a large number of test cases, fuzzing can cover
a wide input space, increasing the likelihood of uncovering
edge cases that might lead to vulnerabilities. Fuzzing has
emerged as a crucial tool to detect and address vulnerabilities
in embedded systems to expose threats such as overflows,
memory leaks, and other security flaws [21].

As aforementioned, the embedded systems are deployed in a
wide scale of applications and systems, which introduces new
challenges, especially in resource-constrained environments
such as IoT [22]. The predominant approach to addressing
security concerns revolves around patch-based security. Vul-
nerabilities are rectified only after their discovery, whether
through proactive research efforts or reactive responses to
active attacks. This leaves devices to be exposed to emerging
threats for extended periods.

Despite its affordability, patch-based security represents
arguably the least effective approach for ensuring the security
of IoT-class devices. Vulnerabilities in IoT devices remain
unaddressed until they are identified, potentially compromising
the safety and security of users who rely on these devices.

Moreover, the existence of an active exploit leaves every
device vulnerable, as they all share the same vulnerability.

From the application perspective, techniques such as code
inspection, red-team validation, and formal analysis may help
identify vulnerabilities before they pose a threat to IoT users;
however, none of these methods offer durable levels of protec-
tion against emergent security threats. As a result, we advocate
for a departure from patch-based security toward a more
durable yet affordable form of security: diversity defenses.

Building on the limitations of patch-based security for
IoT devices, similar challenges are magnified in large-scale
systems. This paper discusses the current strategies for detect-
ing and defending security vulnerabilities in heterogeneous
and monolithic systems, providing critical challenges and
opportunities for future direction. This paper discusses three
major approaches to securing these complex systems such
as secure, transparent, and automated compartmentalization;
field-upgradeable defenses to reduce deployment time and
cost; and scalable and secure virtualization of fine-grained
system resources while preventing unauthorized interference
and crosstalk. These strategies are crucial for building resilient
embedded systems that can withstand the evolving landscape
of cyber threats, ensuring the security and reliability of het-
erogeneous and monolithic systems.

The rest of the paper is organized as follows. Section III
discusses covert timing channels and their detection methods.
Then different fuzzing techniques for embedded systems are
presented in Section IV. Followed by multi layered defense
strategies for IoT devices are described in Section V. Sub-
sequently three approaches in securing large and complex
monolithic systems in Section VI.

III. TIMING CHANNELS IN HETEROGENEOUS HARDWARE

As system-on-chips (SoCs) become dense and heteroge-
neous in their designs, the challenges to maintaining robust
security are increasing. For example, cars are often referred to
as supercomputers in motion. In such systems, the attackers
may leverage their insider knowledge to compromise their
security. We note that information leakage-based attacks on
microcontroller units (MCUs) continue to be exposed. These
attacks could manifest as side or covert channel attacks [23].
In this study, we will primarily target cache-based timing
channels such as detection of covert timing channels [24].

A. Defining Covert Timing Channels

Trusted Computer System Evaluation Criteria (or TCSEC,
The Orange Book) [25] defines a covert timing channel as
those that would allow one process to signal information to
another process by modulating its own use of system resources
in such a way that the change in response time observed by the
second process would provide information. Note that, between
the trojan and the spy, the task of constructing a reliable covert
timing channel is not very simple. Covert timing channels
implemented on real systems take significant amounts of
synchronization, confirmation, and transmission time, even for
relatively short-length messages. As examples, (1) Okamura



et al. [7] construct a memory load-based covert channel on
a real system and show that it takes 131.5 seconds just to
covertly communicate 64 bits in a reliable manner achieving
a bandwidth rate of 0.49 bits per second; (2) Ristenpart et al.
[8] demonstrate a memory- based covert channel that achieves
a bandwidth of 0.2 bits per second. This shows that the covert
channels create non-negligible amounts of traffic on shared
resources to accomplish their intended tasks.

TCSEC points out that a covert channel bandwidth exceed-
ing a rate of one hundred (100) bits per second is classified
as a high bandwidth channel based on the observed data
transfer rates between several kinds of computer systems. In
any computer system, there are a number of relatively low-
bandwidth covert channels whose existence is deeply ingrained
in the system design. If a bandwidth-reduction strategy to
prevent covert timing channels were to be applied to all of
them, it would become an impractical task. Therefore, TCSEC
points out that channels with maximum bandwidths of less
than 0.1 bit per second are generally not considered to be
very feasible covert timing channels.
B. Detecting Covert Timing Channels

A viable strategy to detect hardware covert timing channels
is by dynamically tracking conflict patterns on shared pro-
cessor hardware. We design low-cost hardware support that
dynamically gathers data on certain key indicator events, and
software support to compute the likelihood of covert timing
channels on a specific shared hardware. The first step in
detecting covert timing channels is to identify the event that is
behind the hardware resource contention. In our example, the
event to be monitored is the memory bus lock operation. The
second step is to create an Event Train, i.e., a uni-dimensional
time series showing the occurrence of events. As the third step,
we analyze the event train using our recurrent burst pattern
detection algorithm. Our algorithm is as follows:

1. Determine the interval (∆t) for a given event train to
calculate event density. ∆t is the product of the inverse of the
average event rate and α, an empirical constant determined
using the maximum and minimum achievable covert timing
channel bandwidth rates on a given shared hardware.

2. Construct the event density histogram using ∆t. For each
interval of ∆t, the number of events is computed, and an event
density histogram is constructed to subsequently estimate the
probability distribution of event density. Low-density bins are
to the left, and as we move right, we see the bins with higher
numbers of events.

3. Detect burst patterns. From left to right in the histogram,
the threshold density is the first bin, which is smaller than
the preceding bin and equal to or smaller than the next bin.
If there is no such bin, then the bin at which the slope of
the fitted curve becomes gentle is considered as the threshold
density. If the event train has burst patterns, there will be two
distinct distributions (seen in Figure 1).

Unlike combinational structures, where timing modulation
is performed by varying the inter-event intervals (observed
as bursts and non-bursts), cache-based covert timing channels
rely on the latency of events to perform timing modulation.

Fig. 1. Event density histogram for Memory Bus Covert Timing Channel

The trojan and the spy create a sufficient number of conflict
events (cache misses) alternatively among each other lets
coefficient values for a sequence of lag values. An oscillation
pattern is inferred when the autocorrelation coefficient shows
significant periodicity with peaks sufficiently high for certain
lag values.

Figure 2 shows our conflict miss event train analysis. In
particular, Figure 2(a) shows the event train (cache conflict
misses) annotated by whether the conflicts happen due to the
trojan replacing the spy’s cache sets or vice versa (a legible
version of the cluttered event train pattern is shown as inset
figure). “T→S” denotes the Trojan (T) replacing the Spy’s(S)
blocks because the spy had previously displaced those same
blocks owned by the trojan at that time.

Note that every ordered pair of trojan/spy contexts has
unique identifiers. For example, “S→T” is assigned ‘0’ and
“T→S” is assigned “1”. The autocorrelation function is com-
puted on this conflict miss event train. Figure 2(b) shows the
autocorrelogram of the event train. A total of 512 cache sets
were used in G1 and G0 for transmission of “1” or “0” bit
values. We observe that at a lag value of 533 (which is very
close to the actual number of conflicting sets in the shared
cache, 512), the autocorrelation value is highest at about 0.893.
The slight offset from the actual number of conflicting sets was
observed due to random conflict misses in the surrounding
code, and the interference from conflict misses due to other
active contexts sharing the cache.

Our framework can be extremely beneficial to the users as
we transition to an era of running our applications on remote
servers that host programs from many different users. Prior
studies [8], [9] show how popular computing environments
like cloud computing are vulnerable to covert timing chan-
nels. Static techniques to eliminate timing channels like code
analyses are virtually impractical to enforce on every third-
party software and binaries. Also, adopting strict system usage
policies could adversely affect the overall system performance.
To overcome these issues, our dynamic detection is a desirable
first step before adopting damage control strategies.



(a) Event Train of conflict misses between Trojan
and spy

(b) autocorrelogram

Fig. 2. L2 cache covert channel detection

C. Robust Indicators of Timing Channels

Most prior techniques use cache misses as a source of
information for the detection of cache-based timing channels.
However, cache misses may be inflated to mislead the detec-
tors. Therefore, better timing channel indicators are necessary.

(a) Trojan and spy

(b) Benign apps (gobnk and lbm)

Fig. 3. Cache Occupancy pattern changes between applications

To explore the feasibility of using cache occupancy, we
collect the cache occupancy traces for a set of malicious
processes as well as benign applications. Figure 3(a) shows

a cache occupancy pattern for a trojan and spy. The x-axis is
the time series of the samples, and the y-axis is the changes in
occupancy for each process. We observe increase and decrease
patterns in cache occupancies for both trojan and spy. More
importantly, a gain in occupancy by the trojan is mirrored by
a loss of occupancy by the spy and visa versa, which is a very
strong correlation pattern. This directly maps to the repetitive
communicating operations for the two processes. As seen in
Figure 3(b), benign workloads, which are not supposed to have
such activity, do not have any such gain-loss patterns.

D. Dealing with Advanced forms of Timing channels

We studied a new vulnerability exposed by cache coherence
protocol states, where the adversaries could cleverly manipu-
late the timing differences between accessing cache blocks
in shared and exclusive coherence states and construct covert
timing channels to illegitimately communicate secrets to the
spy. We studied six different practical scenarios for covert
timing channel construction. In contrast to prior works, we as-
sume a broader adversary model where the trojan and spy can
either exploit explicitly shared read-only physical pages (e.g.,
shared library code), or use memory deduplication feature to
implicitly force create shared physical pages. We demonstrated
how adversaries can manipulate combinations of coherence
states and data placement in different caches to construct
timing channels. We also explore how the adversaries could
exploit multiple caches and their associated coherence states
to improve the transmission bandwidth with symbols encoding
multiple bits. Our experimental results on commercial systems
showed that the peak transmission bandwidths of these covert
timing channels can vary between 700 to 1100 Kbits/sec.

In order to close such malicious information leakage attacks
possible on heterogeneously integrated MCUs, chip designers
would need to consider addressing the timing gap in accessing
read-only coherence states, namely shared and exclusive. To
avoid performance-expensive trips to lower memory levels for
shared state blocks in contrast to exclusive state blocks that
can addressed in upper-level caches, appropriate notification
mechanisms may be added in hardware.

IV. FUZZING OF EMBEDDED SYSTEMS FOR DETECTING
FIRMWARE VULNERABILITIES

Fuzzing in embedded systems poses significant challenges
due to the diversification of hardware and software, which
includes a wide range of microcontrollers, architecture, and
operating systems, each with its unique specifications and
requirements. One of the critical challenges in fuzzing em-
bedded systems is the innate nature of embedded systems
with limited input/output (I/O) capabilities. This limitation
impedes the fuzzer engine to detect memory crashes through
sophisticated logging and debugging mechanisms [26]. More-
over, Instrumentation is also difficult in embedded systems
due to the lack of open-source code. Instrumentation has a
process of including additional code to monitor the execution
of the program. In the context of embedded systems, closed-
source code is common due to its proprietary nature. The



combination of all the factors, such as resource-constrained
and closed-source code, significantly impedes the effectiveness
of traditional fuzzing approaches such as AFL-fuzz and OSS-
fuzz in the realm of embedded systems.

As a result, novel approaches and methodologies must be
developed to overcome inherent challenges and enhance the
reliability and security of embedded devices through effective
fuzzing techniques. Several methodologies are proposed for
fuzzing embedded systems to address all these issues. This
can be broadly classified into three categories: hardware-based
fuzzing, emulation-based fuzzing, and a hybrid approach.
A. Hardware-based Fuzzing

This type of fuzzing consists of testing on the hardware.
It involves interfacing with the microcontrollers and periph-
erals of the embedded system. This approach is more accu-
rate in finding vulnerabilities than an emulated environment.
Most microcontrollers consist of a JTAG (Joint Test Action
Group)/GDB (GNU Debugger) remote interface. These inter-
faces allow the fuzzer to set hardware breakpoints, monitor
memory, and control the execution flow of the embedded
software without modifying it. These parameters are crucial
for obtaining coverage feedback and detecting crashes.

One notable example of hardware-based fuzzing is ARM-
AFL [27], a framework for coverage-guided fuzzing on ARM-
based embedded systems. It uses a lightweight heap memory
corruption detector and runs the fuzzing entirely on the
target device, allowing high throughput fuzzing similar to
desktop systems. Another approach in hardware-based fuzzing
is linker-based instrumentation, which involves modification of
the linking process to insert instrumentation code. This method
will trace function calls and monitor memory accesses in real-
time. Harzer Roller [28] is a good example that uses this kind
of instrumentation for ESP8266 microcontrollers.

The fuzzing framework for ESP32 microcontrollers [29]
consists of data collection through the JTAG interface, which
is sent to the fuzzer’s host. Recent work [30] depends on two
hardware interfaces known as tracing and debugging with three
different probes as feedback to coverage-guided fuzzing. The
ICS fuzz [31] uses programmable logic controller binaries
for instrumentation to enable coverage-guided fuzzing for
detecting crashes.
B. Emulation-based Fuzzing

It invokes the embedded software in an emulated envi-
ronment, which provides precise control and observability of
internal operations in manifold dimensions [32]. This method
can provide detailed feedback on the system’s behavior and fa-
cilitate the use of coverage-guided fuzzing. Tools like QEMU,
an open-source emulator, often used in a virtual environment
for the execution of a wide range of hardware architectures,
separate it from physical hardware. It enables the execution
of firmware in a controlled environment. HALucinator [33]
and P2IM [34] are examples of emulation-based fuzzing that
re-host the firmware at different levels of abstraction.

HALucinator focuses on the hardware abstraction layer.
This approach relies on emulating the HAL functions, which
are device-independent, making it reusable across other

firmware. It enables the fuzzer to focus on software logic
with hardware abstraction. This method tends to be more
proficient than the physical testing environment by improving
the effectiveness of fuzzing. Whereas P2IM focuses on entire
hardware addresses to allow the fuzzer to learn peripheral
behavior. This approach significantly reduces the manual effort
of setting up the environment and improves the efficacy
of fuzzing. This technique allows for scalable and efficient
fuzzing of complex embedded devices.

Another notable tool in emulation-based fuzzing is known
as Unicorn Engine [35], which is a lightweight, multi-
architectural CPU emulator. It supports dynamic binary trans-
lation, which provides precise control over execution flow and
is critical for fuzzing. Another notable framework known as
Firmadyne [36] automates the process of extracting and emu-
lating firmware images. This tool also helps find vulnerabilities
without a physical device. The automation makes it valuable
for large-scale testing of diverse firmware images.

C. Hybrid Approaches

This combines the robustness of both hardware-based and
emulation-based fuzzing. These approaches aim to balance the
fidelity of hardware testing with the flexibility of emulation.
For instance, tools like Avatar2 [37], PANDA [38] use periph-
eral proxying to forward I/O requests from the emulator to
the actual hardware, enabling a more accurate representation
of the system’s behavior while maintaining the benefits of an
emulated environment.

FIRM-AFL is another framework that supports a hybrid
approach; It is an extension of the American Fuzzy Lop (AFL).
It integrates the emulation techniques with hardware feedback
to guide the fuzzing process. It can refine its strategies to focus
on critical areas of firmware through parameters it collected
through feedback. This approach enhances the efficacy of the
fuzzing process, ensuring that identified vulnerabilities are
relevant to the actual hardware environment.

Another hybrid framework, concolic fuzzing [39], utilizes
concolic execution to fuzz IoT firmware. It creates a symbolic
execution in an emulated environment with hardware testing.
The combination of low-level firmware re-hosting with fuzzing
through hybrid memory-mapped I/O (MMIO) modeling in
recent work HD-Fuzz [40] is a hardware dependency-aware
firmware fuzzing system. It efficiently explores all firmware
paths by using MMIO modeling and symbolic execution.

V. SNOWFLAKE IOT: ULTRA-LOW-COST DIVERSITY
DEFENSES

The existence of an active exploit leaves every IoT device
vulnerable, as they all share the same vulnerability. Con-
sequently, widespread penetration across the population of
IoT devices is an eminent threat that compounds the risks
associated with IoT devices. These population-wide IoT risks
are not just imagined – in 2016, the Mirai IoT attack exploited
vulnerabilities in IoT cameras to create a massive botnet [41],
leading to widespread Internet denial-of-service attacks and
highlighting the urgent need for enhanced IoT security.



A. Ultra-Low Cost Diversity Defenses

Diversity defenses are design- and compile-time defenses
that introduce significant uncertainty into the underlying IoT
device hardware and software. This uncertainty extends not
only within each individual device but also across the entire
IoT population, rendering each IoT device unique – a concept
likened to each device being its own distinct ”snowflake.”
Any attempts by attackers to breach the IoT network are thus
complicated by the uncertainty inherent in the architecture,
microarchitecture, and software of each device, necessitating
costly and time-consuming reverse engineering efforts again
and again before a successful exploit can be launched.

Diversity defenses have long existed in both software and
hardware. A classic example from the software world is the
PointGuard compiler defense against buffer-overflow attacks
[42]. The PointGuard defense uses XOR-based encryption to
obfuscate return address pointers on the stack. The approach
was particularly effective against attacks, even emergent ones,
as long as the attack needed access to code pointers on
the stack. The drawback with the approach lay in its weak
encryption. For example, with knowledge of a decrypted
pointer, it was trivial to recover the encryption key (simply
XOR the ciphertext with the known pointer value).

Our Morpheus work on hardware diversity defenses, de-
veloped in the DARPA SSITH program, made two important
advances for diversity defenses [43]. First, it used strong
encryption, such that having ciphertext and knowledge of the
underlying pointer values provided no means to recover the
key. Second, Morpheus significantly increased the entropy
of encryption defenses – to 100’s of bits, which eliminated
the utility of probabilistic attacks. A Morpheus RISC-V was
deployed and commercially red-teamed without ever being
penetrated [44]. This physical design also showed that the
overall cost of architecture design diversity could effectively
be kept below 2% area, power, and performance.

While diversity defenses are powerful, we envision that
with enough resources they can be penetrated, thus we ad-
vocate for the introduction of data sequestration capabilities
[45] to protect critical information, which if exposed, could
compromise the entire IoT network. Built by Agita Labs in
post-SSITH commercialization, sequestered encryption (SE)
ensures that protected data always remains encrypted, even
during computation. Protected data is only decrypted in a
small 190k-gate hardware-only functional-unit enclave [46]
and never within the reach of software. With the deployment
of SE in the IoT design, a single-device breach will not expose
the critical data required to infiltrate the network, as this data
remains encrypted and accessible only by the SE enclave.

B. Snowflake IoT

Snowflake IoT is an ongoing project at the University of
Michigan that will further advance the strength and lower the
cost of diversity defenses for resource-constrained IoT devices.

Snowflake’s Threat Model : The Snowflake IoT threat
model ensures that each IoT device is highly secure by making
it extremely resource-intensive for an attacker to penetrate

Fig. 4. Snowflake IoT’s Layered Defense Strategy.

even a single device, requiring years of effort despite full
access to its software and hardware specifications. The attacker
can target input interfaces and monitor physical side channels
but lacks knowledge of the device’s internal state and the
binary representation of its encrypted software. The win states
for the attacker include successfully hacking a single device,
which should yield no benefits for compromising additional
devices due to unique per-device keys and sequestered encryp-
tion capabilities. The model prevents attackers from physically
tampering with the devices and ensures that even with com-
plete knowledge of existing vulnerabilities, they cannot gain
command and control over the entire population of Snowflake
IoT devices. This isolation of compromises guarantees that
widespread attacks remain infeasible, preserving the security
of the entire network.

The approach taken to achieve these strong defenses is to
deploy diversity defenses in the i) architecture, ii) microar-
chitecture, and iii) software. All of these defenses introduce a
non-trivial amount of entropy into the uncertainty of the design
configuration, individualized to a particular device. Diversity
between devices is also uncorrelated, taking the total degree
of uncertainty for an IoT population to unprecedented levels,
while keeping design costs low.

Architectural Diversity Defenses: In the Snowflake archi-
tecture, the Morpheus diversity defenses introduce randomness
into the RISC-V architecture’s code and code pointer repre-
sentations. This randomized approach ensures that these repre-
sentations are unique to each device, significantly impeding an
attacker’s ability to inject or manipulate code or code pointers.
The efficacy of these defenses was demonstrated during the
DARPA SSITH program, notably with the Morpheus secure
CPU successfully resisting all red-team attacks [44].

Implementation of the Morpheus diversity defenses en-
tails integrating light encryption into the RISC-V processor
pipeline. Utilizing per-device keys, generated through on-
board physically unclonable functions (PUFs), ensures that
each Snowflake IoT device has a set of keys for encrypting
both code and code pointers. By encrypting standard RISC-
V architectural features under unique keys, the architecture
achieves randomized code and code pointer implementations,



which in turn significantly increases uncertainty for potential
attackers. The Snowflake design employs a 12-round Simon
cipher, which provides a good balance between latency (1
cycle) and cipher strength (moderate-to-strong). Unlike the
original Morpheus, the Snowflake architecture foregoes key
“churn”, a mechanism employed to periodically re-key code
and code pointer encryption to deter ciphertext analysis. Given
its cost, this capability is omitted in the Snowflake IoT design.
However, the effect of churn will still be realized among
different Snowflake IoT nodes since each device will possess
its own distinct keys— churning in space rather than time.

Microarchitectural Diversity Defenses: The Snowflake
microarchitecture is exploring multiple approaches to diversify
microarchitectural characteristics [47]. A key approach is
creating clones of the processor configured with boot-time
PUF keys. Highly configurable versions of the processor will
be designed into Snowflake IoT devices, which support a wide
range of physical microarchitectural configurations (e.g., cache
geometry, branch predictor organization, replacement strate-
gies) that will be randomly configured at boot time. While
the degree of entropy that is possible in the microarchitecture
is more limited than the architecture and software, it works
to create additional uncertainty that significantly complicates
pure-microarchitectural attacks.

Software Diversity Defenses: The project’s Metamorphic
LLVM Compiler will work to inject semantically preserving
entropy into applications, runtime software, and the operating
system. In its simplest form, the metamorphic software infras-
tructure performs a set of semantically equivalent compile-
time transformations to create many different versions of
the same program – indeed, one program per installation of
software on an IoT device. In traditional IoT systems, the same
binary is run on each node of the system, making the system
vulnerable when one node is compromised with a software
vulnerability. Metamorphic software binaries will mitigate this
vulnerability, adding to the Snowflake IoT diversity defenses
provided by hardware-based defenses. If an attacker can
reverse-engineer and discover a vulnerability on one device,
they will learn very little about the software vulnerabilities of
other Snowflake IoT devices in the same network.

The compiler will extend Snowflake’s high-entropy hard-
ware work to software, creating a high-entropy software
toolchain capable of generating functionally equivalent C/C++
programs with vastly different characteristics programmed for
intentional entropy. Although each instance of a Snowflake IoT
device may use the same processor design, the functionally
identical software executed will behave so differently that
little can be learned about the other Snowflake IoT nodes
in the system. The LLVM compiler supports high-entropy,
semantics-preserving transformations. To ensure the frame-
work’s robustness, we start with a robust compiler infras-
tructure (i.e., LLVM), exploring the suite of readily available
transformations and adding new ones that target code entropy.
Compile-time transformations include those that affect the
code size, composition, control flow, and data placement
within the program’s address space. As the project matures,

Fig. 5. The Snowflake IoT Demonstration Platform.

we will work to incorporate optimizations into the compiler
that could potentially erase any performance implications.

C. Putting These Ideas to the Test

To showcase the effectiveness of diversity defenses, the
Snowflake IoT project is developing a physical prototype. A
RISC-V based IoT device is being built to demonstrate the
technique. Starting with the open-source Ibex RISC-V core
and the PULPino RISC-V device platform, we are adding
Snowflake IoT defenses to this system. The first two design
prototypes will implement Snowflake V1, which will integrate
existing Morpheus diversity defense IP. This simpler design
will be faster and more reliable to deploy. It will first be
deployed on an FPGA, and then later deployed in ASIC form.
Later, Snowflake V2 will integrate novel hardware diversity
defenses, and this platform will also be taped-out on silicon.
Our demonstration platform will incorporate audio capture
I/O and ML-based audio analysis to detect and classify envi-
ronmental disturbances, mimicking the functionality required
in fine-grained IoT ambient sensing applications. Leveraging
our security model, the ambient sensing prototype benefits
from layered defenses that deter single-device penetration.
More significantly, the computational complexity involved
in acquiring command and control of the entire network
should prove computationally infeasible, further bolstering the
security framework’s utility in battlefield scenarios. Late in the
project, we expect to engage a commercial red-team as part
of our security validation.

D. Looking Ahead
The prospect that diversity defenses could improve IoT

security, even for unpatched devices, while lowering security
costs, is a very exciting prospect. To achieve this goal, we have
to overcome the potential risks of bloating design area, power,
or performance overheads. Our confidence in our defenses
stems from earlier demonstrations of similar technologies that
we have explored (Morpheus and SE), both of which emerged
as highly secure and low-cost. These early technologies and
their successes, combined with the optimizations we are build-
ing in this work, should render great potential to establish a
new standard for ultra-low-cost IoT security.



VI. SECURING LARGE MONOLITHIC SYSTEMS:
CHALLENGES AND OPPORTUNITIES

Emerging embedded systems are highly heterogeneous and
integrate diverse architectures, ranging from simple low-power
devices to high-end accelerator-rich architectures that sport
several sophisticated microarchitectural features and optimiza-
tions. The increasingly complex nature of these deployments
has provided ample breeding ground for security vulnerabili-
ties that are exploited in the wild.

Despite advances in zero-day threat analysis and mitigation,
patching vulnerabilities continues to be an onerous task that
involves a coordinated effort among the different vendors
and stakeholders, invariably prolonging the risk of exposure.
According to Google’s Project Zero, a new exploit in the wild
is discovered every 17 days on average, although it takes an
average of 15 days across all vendors to patch a vulnerability
that is being used in active attacks [48]. Moreover, legacy
software modules that remain largely unmaintained or even
unpatchable continue to linger in many critical codebases, as
evidenced in the case of the notorious WannaCry ransomware
attack [49], resulting in a non-trivial expenditure of resources
and capital towards re-engineering and re-deployment.

A. Secure Compartmentalization

Most modern software and hardware systems in deployment
are known to be monolithic in nature due in part to the contin-
ual demand for layering complex features amidst accelerated
development life cycles. An immediate consequence of this
monolithicity is that a single unchecked vulnerability within
a module, when exploited, could permeate through the entire
system, causing widespread damage.

Compartmentalization has often been suggested as a key
strategy to break monolithicity, where each subject in the
system (defined as a function or a collection thereof within
a designated module/subsystem) is granted access to the
bare minimum set of system resources required to carry out
its pertinent task within the current execution context. The
underlying enforcement mechanism ensures that the privilege
set is appropriately switched out when the subject, its role, or
the context changes over the course of execution. By enforcing
the principle of least privilege [50], compartmentalization
solutions have the ability to effectively limit damage due to an
initial penetration to the specific part of the system containing
the vulnerability. However, implementing fine-grained com-
partmentalization schemes for modern-day large monolithic
systems in an automatic and transparent manner while also
maintaining high performance is a critical challenge.

The key components of an effective compartmentalization
scheme include – (a) refactoring of large monolithic sys-
tems into appropriate subject domains, (b) derivation of fine-
grained access control policies for a given subject domain-
object domain pair, and (C) mechanisms responsible for
enforcing the derived access control policies. Most existing
compartmentalization schemes [51], [52] target large mono-
lithic software systems such as the Linux kernel and typically
require manual/semi-automatic refactoring and access control

policy derivation through a combination of static analysis,
dynamic tracing, and domain expertise. The mechanisms
used to enforce policies range from operating system mech-
anisms (e.g., processes), to software-based inline reference
monitors, and hardware-assisted solutions [51], [53], [54].
Those leveraging hardware support typically tend to have
lower performance overhead while imposing modest storage
costs, although their protection granularity (i.e., page/sub-
page/word/byte-level) could vary depending on the underlying
hardware mechanism used for enforcement.

Despite having made these strides, several challenges still
linger. First, novel compiler strategies for automatic code
refactoring need to be investigated to reduce the manual effort
entailed in compartmentalizing large codebases. These strate-
gies should also incorporate compartmentalization expense
modeling to make effective tradeoffs between performance
and security. Second, the soundness and precision of static
analysis schemes and coverage of dynamic analysis schemes
need to be improved to avoid false positive and false negative
access control policies. The scalability of these techniques
also needs to be enhanced to support large codebases and
complex privilege lattices. Third, it is critical to invest in
hardware-software co-optimization strategies that will allow
the software-based policy derivation schemes to better tune
their approaches to the underlying hardware-based enforce-
ment mechanism and routinely provide performance hints
(e.g., prefetch hints, subject/context-switching gate call pre-
diction hints, etc.), so as to foster the performant execution
of a compartmentalized workload. Fourth, novel interchange
formats need to be developed to allow for size- and time-
efficient communication of metadata information to the hard-
ware for secure and effective policy enforcement. Finally,
novel strategies need to be developed to compartmentalize
large monolithic hardware architectures that stack layers of
intricate microarchitectural functionalities. This would allow
for the quarantining of a particular hardware module infected
upon initial penetration, thereby preventing the infection from
seeping into the rest of the hardware.

B. Field-Upgradable Defenses

The incidence rates of new in-the-wild exploits have been
steadily rising and the exploitation schemes have been con-
sistently evolving – with every cycle of software patching,
new variants of exploits emerge targeting new and/or more
advanced features that were previously unexploited [48], [55].
For example, despite the significant progress made in curtail-
ing stack corruption vulnerabilities, heap corruption and type
confusion vulnerabilities that arise due to the lack of language-
level enforcement of memory/type safety have been increas-
ingly targeted by attackers in-the-wild [48], [55]. Similarly,
logical domain-specific bugs (e.g., CVE-2021-1870 and CVE-
2021-1906 that exploit design flaws due to improper error
handling) have been frequent targets of remote exploits – de-
tecting and patching logical errors is extremely difficult. As we
have witnessed the industry grapple with a seemingly endless
stream of zero-day vulnerabilities, it has become increasingly



clear that perhaps the two biggest challenges are time to
exploit mitigation and the cost of deployment. If defenses are
not deployed promptly, the window of exploitation becomes
too large to control the damage. On the other hand, rising
costs in verification and deployment efforts could hinder the
success and longer-term sustenance of the business.

Multiple prior works have shown that low-level code in-
strumentation [56], [57] is an effective means to enforce
security policies on-demand. Microcode-based solutions have
shown further promise in enabling field-upgradeable defenses
by surgically injecting security checks into running code on-
demand and in the field. Notably, context-sensitive fencing
(CSF) [58] is a microcode-level defense against multiple
variants of Spectre. CSF provides a configurable framework
that detects potential unauthorized accesses at the decoder
and further triggers the surgical instrumentation of running
code with speculation fences that are enforced at different
stages of the pipeline, offering varying tradeoffs with respect
to security and performance. In similar vein, CHEx86 [59],
a microcode-enabled capability machine is able to secure un-
modified code against temporal and spatial memory safety ex-
ploits by tracking allocation and de-allocation events, pointer
arithmetic, pointer movement, and spilled pointer aliases on-
the-fly, and further instrumenting an application in execution
with microcoded capability operations.

However, to enable more holistic defenses that target a
wider range of attack vectors, it is more critical to bolster
the hardware-software contract through a security-centric stack
that is decoupled from the Instruction Set Architecture (ISA),
to empower software to dynamically push expressive secu-
rity policies to hardware, where they can be transparently
and efficiently enforced on-demand and in-the-field through
novel microarchitectural mechanisms and runtime monitoring
techniques, without the need for recompilation, redeployment,
and frequent hardware upgrades. There are substantial benefits
to such an approach. First, it promotes versatility by allowing
software modules to specify their own set of security properties
that are inherent to their particular problem domain (e.g.,
protecting privacy-sensitive data and code from side-channel
inference) and/or the language in which they are written (e.g.,
enforcing type integrity). Second, by decoupling the security
specifications from the ISA and the binary, it allows policies
to be dynamically reconfigured to address new exploits in
a timely fashion, without recompiling applications. Third, it
allows hardware vendors to transparently adapt the underlying
enforcement mechanisms with every new generation.
C. Secure Resource Virtualization

Resource virtualization is one of the key ideas underpinning
modern hardware and software systems. By virtualizing phys-
ical resources into virtual pools, it promotes fair and flexible
user distribution and improved overall resource utilization.
Industry platforms such as VMWare’s vSphere, Microsoft’s
Hyper-V, and OpenStack facilitate virtualization of storage,
network bandwidth, and compute capacity, to name a few,
and the academic literature abounds with secure system-level
virtualization solutions [56], [57]. However, a key concern

with sharing of physical resources is that it is vulnerable
to potential side-channel inference and crosstalk where co-
located attackers that compete for shared physical resources
may covertly infer or influence a victim’s behavior.

To facilitate the consolidation of fine-grained system-level
and microarchitectural resources such as caches into virtu-
alized pools in a secure, transparent, and scalable manner,
while minimizing side-channel interference, it is important to
enforce several key security properties. First, similar to com-
partmentalization, all accesses need to abide by the principle
of least privilege, i.e., each entity in the system (e.g., a user or
a group of users in the same trust domain) should be granted
access to only those resources that have been specifically
allocated to it with the minimal set of privileges required to
perform their underlying task. Second, no entity in the system
should be allowed to perform an operation without explicitly
exercising their access rights and getting them verified prior
to performing the operation. Third, sharing and revocation
of resources need to be explicit and voluntary, and must to
restricted to occur within a trust domain. Fourth, to ensure
fairness and to prevent monopoly, it must be enforced that
any given entity will not be deprived of allocating resources
up to a preset minimum guarantee, while also being disallowed
from exceeding its maximum allocation threshold.

However, enforcing these properties could entail high per-
formance and/or storage overheads. First, virtualizing fine-
grained system-level resources necessarily implies an addi-
tional layer of indirection which typically entails the lookup of
additional software or hardware structures, thereby imposing
an appropriate lookup penalty that needs to be paid upon every
access, calling for novel and optimized lookup procedures
where the performance cost of the lookup is minimized.
Second, a substantial amount of metadata encoding access
rights needs to be tracked for every user and for every
virtualized resource in the system that is either temporally or
spatially shared, calling for novel data structures or hardware
organizations that minimize the storage overheads and scalable
across a sufficiently large number of trust domains.

VII. CONCLUSION
In this paper, we have presented various strategies for

detecting and defending vulnerabilities in heterogeneous and
monolithic systems, including covert timing channel detec-
tion that leaks sensitive information behind hardware IP and
various fuzzing techniques for detecting firmware vulnerabil-
ities. This is followed by multilayered defense strategies for
miniature-based IoT devices known as snowflake IoT, which
provides diversified defenses in terms of architectural, microar-
chitectural, and software models. Finally, for enhancing the
security of large monolithic systems, three key strategies can
be implemented: secure compartmentalization, which isolates
compromised hardware components from the rest of the sys-
tem to prevent the spread of threats; the use of field-upgradable
devices, which reduces costs and decreases the deployment
period; and secure virtualization, which eliminates the risks
of crosstalk and unauthorized interference by creating isolated
virtual environments within the system.



REFERENCES

[1] K. Troester and R. Bhargava, “AMD next generation “zen 4” core
and 4th Gen AMD EPYC™ 9004 server CPU,” in IEEE Hot Chips
Symposium (HCS), 2023.

[2] M. Eceiza et al., “Fuzzing the internet of things: A review on the tech-
niques and challenges for efficient vulnerability discovery in embedded
systems,” IEEE IoT Journal, vol. 8, pp. 10 390–10 411, 2021.

[3] S. Sonko et al., “A comprehensive review of embedded systems in
autonomous vehicles: Trends, challenges, and future directions,” World
J. Advanced Research and Reviews, vol. 21, pp. 2009–2020, 2024.

[4] A. Dhavlle et al., “Imitating functional operations for mitigating side-
channel leakage,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, pp. 868–881, 2022.

[5] H. Fang et al., “Reuse-trap: Re-purposing cache reuse distance to
defend against side channel leakage,” in ACM/IEEE Design Automation
Conference (DAC), 2020.

[6] W.-M. Hu, “Reducing timing channels with fuzzy time,” J. Comput.
Secur., vol. 1, p. 233–254, 1992.

[7] K. Okamura and Y. Oyama, “Load-based covert channels between xen
virtual machines,” in ACM Symposium on Applied Computing, 2010.

[8] T. Ristenpart et al., “Hey, you, get off of my cloud: exploring infor-
mation leakage in third-party compute clouds,” in ACM Conference on
Computer and Communications Security, 2009.

[9] Z. Wu et al., “Whispers in the hyper-space: High-speed covert channel
attacks in the cloud,” in USENIX Security Symposium, 2012.

[10] G. Venkataramani et al., “Detecting hardware covert timing channels,”
IEEE Micro, vol. 36, pp. 17–27, 2016.

[11] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in USENIX Security Symposium, 2018.

[12] S. L. Thomas et al., “HumIDIFy: A tool for hidden functionality
detection in firmware,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, 2017.

[13] Y. David et al., “Firmup: Precise static detection of common vulnera-
bilities in firmware,” ACM SIGPLAN, vol. 53, pp. 392–404, 2018.

[14] A. Mera et al., “DICE: Automatic emulation of dma input channels for
dynamic firmware analysis,” in IEEE Symposium on S&P, 2021.

[15] E. Gustafson et al., “Toward the analysis of embedded firmware through
automated re-hosting,” in International Symposium on Research in
Attacks, Intrusions and Defenses, 2019.

[16] S. Ray et al., “Invited: Formal verification of security critical hardware-
firmware interactions in commercial socs,” in IEEE Design Automation
Conference, 2019.

[17] R. Saravanan and S. M. P. Dinakarrao, “The emergence of hardware
fuzzing: A critical review of its significance,” 2024. [Online]. Available:
arxiv

[18] O. Shwartz et al., “Reverse engineering iot devices: Effective techniques
and methods,” IEEE IoT Journal, vol. 5, pp. 4965–4976, 2018.

[19] J. Zaddach and A. Costin, “Embedded devices security and firmware
reverse engineering,” Black-Hat USA, 2013.

[20] R. Saravanan and S. M. Pudukotai Dinakarrao, “The Fuzz Odyssey:
A Survey on Hardware Fuzzing Frameworks for Hardware Design
Verification,” in Great Lakes Symposium on VLSI, 2024.

[21] J. Yun et al., “Fuzzing of Embedded systems: A Survey,” ACM Comput.
Surv., vol. 55, 2022.

[22] S. Kasarapu et al., “Enhancing IoT malware detection through adaptive
model parallelism and resource optimization,” 2024. [Online]. Available:
arxiv

[23] A. Dhavlle et al., “Work-in-progress: Sequence-crafter: Side-channel
entropy minimization to thwart timing-based side-channel attacks,” in
International Conference on (CASES), 2019.

[24] A. Dhavlle et al., “Entropy-shield:side-channel entropy maximization
for timing-based side-channel attacks,” in International Symposium on
Quality Electronic Design (ISQED), 2020.

[25] U. S. D. of Defense, Department of Defense Trusted Computer System
Evaluation Criteria. Department of Defense, 1987, vol. 83.

[26] M. Muench et al., “What you corrupt is not what you crash: Challenges
in fuzzing embedded devices.” in NDSS, 2018.

[27] R. Fan et al., “ARM-AFL: Coverage-guided fuzzing framework for arm-
based iot devices,” in ACNS Workshops, 2020.

[28] K. Bogad and M. Huber, “Harzer roller: Linker-based instrumentation
for enhanced embedded security testing,” in Reversing and Offensive-
oriented Trends Symposium, 2019, pp. 1–9.

[29] M. Börsig et al., “Fuzzing Framework for ESP32 Microcontrollers,” in
International Workshop on Information Forensics and Security, 2020.

[30] Z. Feng and J. Ma, “TWFuzz: Fuzzing embedded systems with three
wires,” in ACM Int. Conf. on Languages, Compilers, and Tools for
Embedded Systems. Association for Computing Machinery, 2024.

[31] D. Tychalas et al., “ICSFuzz: Manipulating I/Os and repurposing binary
code to enable instrumented fuzzing in ICS control applications,” in
USENIX Security Symposium, 2021.

[32] M. Eisele et al., “Embedded fuzzing: a review of challenges, tools, and
solutions,” Cybersecurity, vol. 5, 2022.

[33] A. A. Clements et al., “HALucinator: Firmware re-hosting through
abstraction layer emulation,” in USENIX Security Symposium, 2020.

[34] B. Feng et al., “P2IM: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling,” in USENIX Security
Symposium, 2020.

[35] N. A. Quynh and D. H. Vu, “Unicorn: Next generation cpu emulator
framework,” BlackHat USA, vol. 476, 2015.

[36] D. D. Chen et al., “Towards automated dynamic analysis for linux-based
embedded firmware.” in NDSS, vol. 1, 2016.

[37] M. Muench et al., “Avatar 2: A multi-target orchestration platform,” in
Proc. Workshop Binary Anal. Res.(Colocated NDSS Symp.), 2018.

[38] B. Dolan-Gavitt et al., “Repeatable reverse engineering with panda,” in
Protection and Reverse Engineering Workshop, 2015.

[39] J. Yu et al., “Poster: Combining fuzzing with concolic execution for
iot firmware testing,” in ACM SIGSAC Conference on Computer and
Communications Security, 2023.

[40] J. Kim et al., “Hd-fuzz: Hardware dependency-aware firmware fuzzing
via hybrid mmio modeling,” Journal of Network and Computer Appli-
cations, vol. 224, 2024.

[41] Mirai (malware). [Online]. Available:
”https://en.wikipedia.org/wiki/Mirai”

[42] C. Cowan et al., “Pointguard TM: Protecting Pointers from Buffer
Overflow Vulnerabilities,” in USENIX Security Symposium, 2003.

[43] M. Gallagher et al., “Morpheus: A Vulnerability-Tolerant Secure Archi-
tecture Based on Ensembles of Moving Target Defenses with Churn,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019.

[44] A. Harris et al., “Morpheus II: A RISC-V security extension for
protecting vulnerable software and hardware,” in IEEE International
Symposium on Hardware Oriented Security and Trust, 2021.

[45] L. Biernacki et al., “Sequestered encryption: A hardware technique
for comprehensive data privacy,” in IEEE International Symposium on
Secure and Private Execution Environment Design (SEED), 2022.

[46] V. B. Todd Austin and A. Kisil, “TrustForge: A Cryptographically Secure
Enclave for Azure and AWS,” in HotChips 2023, 2023.

[47] H. Fang et al., “SC-K9: A self-synchronizing framework to counter
micro-architectural side channels,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2022, pp. 11–18.

[48] B. Hawkes, “0day ”in the wild”,” 2019.
[49] S. Mohurle and M. Patil, “A brief study of wannacry threat: Ransomware

attack,” International J. Advanced Research in Computer Science, 2017.
[50] J. H. Saltzer and M. D. Schroeder, “The protection of information in

computer systems,” Proceedings of the IEEE, 1975.
[51] D. McKee et al., “Preventing kernel hacks with hakc,” in Network and

Distributed System Security Symposium, vol. 22, 2022, pp. 1–17.
[52] N. Roessler et al., “µscope: A methodology for analyzing least-privilege

compartmentalization in large software artifacts,” in International Sym.
on Research in Attacks, Intrusions and Defenses, 2021, pp. 296–311.

[53] A. Vahldiek-Oberwagner et al., “ERIM: Secure, efficient in-process
isolation with protection keys (MPK),” in USENIX Security Sym., 2019.

[54] S. Amar et al., “Cheriot: Rethinking security for low-cost embedded
systems,” Microsoft, Tech. Rep., 2023.

[55] M. Miller, “Trends and challenges in the vulnerability mitigation land-
scape,” WOOT, 2019.

[56] J. Criswell et al., “A virtual instruction set interface for operating system
kernels,” in Workshop on the Interaction between Operating Systems and
Computer Architecture, 2006.

[57] J. Criswell et al., “Memory safety for low-level software/hardware
interactions.” in USENIX Security, 2009.

[58] M. Taram et al., “Context-sensitive fencing: Securing speculative exe-
cution via microcode customization,” in ASPLOS, 2019.

[59] R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in ISCA, 2020.


