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Abstract—Processing In Memory (PIM) integrates computa-
tional logic units directly into the memory architecture, offer-
ing significant performance improvements for memory-bound
applications such as matrix operations, vector operations, and
database applications compared to general-purpose CPUs or
GPUs. However, the lack of a standardized benchmark suite
and simulation framework poses a challenge in exploring,
evaluating, and designing different PIM architectures. This
paper addresses this gap by introducing a comprehensive
benchmark suite, PIMbench, along with a performance and en-
ergy modeling framework, PIMeval, both designed to support
a wide range of PIM architectures for DRAM. This paper also
proposes a set of PIM APIs for writing PIM programs, enabling
benchmarks to be executed across different PIM architectures,
and allowing for comparing the performance of bit-serial and
bit-parallel subarray-level PIM and bank-level PIM. PIMbench
and PIMeval have been open-sourced and can be accessed at:
https://github.com/UVA-LavaLab/PIMeval-PIMbench

Index Terms—Processing in memory, benchmarks

I. Introduction

DRAM [29] is a widely used memory technology consisting

of multiple banks, each with multiple subarrays, each with a

wide local row buffer. All of these locations can host some

processing capability; however, due to pinout and signaling

constraints, the channel’s I/O interface is quite narrow, hiding

this massive parallelism from the host CPU or GPU. Processing

in Memory (PIM) integrates computation within memory,

eliminating unnecessary data movement overhead between

memory and the host, and also enabling high degrees of

parallel processing by leveraging the inherent parallelism of

the memory architecture. The concept of PIM has existed

for decades [67], but recent developments, particularly the

slowing of Moore’s Law [46], have renewed interest in PIM.

These architectures have demonstrated significant potential in

enhancing performance and energy efficiency across various

computing domains, leading to numerous proposed PIM

architectures [9], [16], [26], [36], [37], [59], [62], [72]. However,

the absence of a PIM-specific, generalized benchmark suite

and modeling framework that are portable across different
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PIM architectures makes comparisons challenging and inhibits

innovations in this promising architectural design space. This

paper addresses these challenges by proposing a flexible

PIM modeling framework, PIMeval, accompanied by a PIM

benchmark suite, PIMbench, and a programming framework,

the PIM API.
PIMeval. Evaluating PIM architectures is difficult due to the

lack of flexible modeling tools. Prior PIM studies introduce

their own custom simulation or modeling techniques. These

include: i) coarse-grained analytical models, [64] ii) trace-

driven simulations, e.g., [14] and iii) extending full-system

simulators such as gem5 [4] to model-specific PIM architec-

tures [56]. While these methods are effective for the particular

architecture they target, they are not designed for portability.

This paper introduces PIMeval, which supports modeling

both performance and energy for a diverse range of PIM

architectures. This paper demonstrates PIMeval’s versatility by

modeling three potential placement options at different levels

of the DRAM hierarchy, as shown in Figure 2: at the bank

level, a single processing element at the side of each subarray,

as in Fulcrum [37]; and digital bit-serial processing capability

associated with each sense amplifier across the width of each

row buffer, similar to DRISA [38] and Micron’s digital In-

Memory Intelligence (IMI) [17]. Although prior work has

explored the capabilities of analog bit-serial [26], [62], digital

bit-serial techniques are less vulnerable to variations due to

manufacturing and aging. Therefore, for modeling bit-serial

PIM, we explore a digital technique that supports Boolean

operations for general computation, and also incorporates

native support for comparisons, similar to DRAM-CAM [73],

an architecture we call DRAM-AP.

PIMbench. This paper also introduces a new benchmark

suite for PIM, which we call PIMbench. It incorporates a

diverse set of applications (Figure 1), each implemented using

a high-level PIM API designed to be portable across varying

PIM architectures. While prior PIM benchmark suites, such

as PrIM [24] and InSituBench [37] exist, they are specifically

built for a single architecture and cannot be easily ported to

evaluate other PIM architectures. Our proposed PIMbench

suite, shown in Table I, adapts some benchmarks from

these previous suites but also introduces a wider variety

of applications and domains. This includes benchmarks with



TABLE I: PIMbench Suite.

Domain Application Name Memory Access Pattern Execution Type InputSequential Random

Linear Algebra

Vector Addition ✓ PIM 2,035,544,320 32-bit INT

AXPY ✓ PIM 16,777,216 32-bit INT

Matrix-Vector Mult. (GEMV) ✓ PIM 2, 352, 160 × 8, 192 32-bit INT

Matrix-Matrix Mult. (GEMM) ✓ PIM 23, 521 × 4, 096 and 4, 096 × 512 32-bit INT

Sort Radix Sort ✓ ✓ PIM + Host 67,108,864 32-bit INT

Cryptography

AES-Encryption ✓ ✓ PIM 1,035,544,320 Bytes

AES-Decryption ✓ ✓ PIM 1,035,544,320 Bytes

Graph Triangle Count ✓ ✓ PIM 227,320 nodes and 1,628,268 edges

Database Filter-By-Key ✓ PIM + Host 1,073,741,824 key-value pairs

Image Processing

Histogram ✓ PIM

1.4 × 109
24-bit .bmpBrightness ✓ PIM

Image Down Sampling ✓ PIM

Supervised Learning

K-nearest neighbors (KNN) ✓ ✓ PIM + Host 6,710,886 2D data points

Linear Regression ✓ PIM 1,500,000,000 2D points

Unsupervised Learning K-means ✓ ✓ PIM 67,108,864 2D data, k = 20

Neural Network

VGG-13 ✓ PIM + Host

64, 224X224X3 image matrix and 3X3X64 weight matrixVGG-16 ✓ PIM + Host

VGG-19 ✓ PIM + Host

Linear Regression
Histogram

Traingle Count
K-means

Brightness
Image Down Sampling

Vector Addition
GEMV
AXPY

GEMM
VGG-19
VGG-16
VGG-13

AES-Decryption
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Fig. 1: Dendogram showing similarity between benchmarks

in PIMbench. X-axis shows linkage distance in log scale.

more complex execution patterns, such as AES [51], and those

involving PIM-host communication, such as radix sort and

VGG [65]. Importantly, our benchmark suite does not focus

on highlighting a single architecture, but rather showcases

the strengths and weaknesses of each architecture explored.

In summary, this paper proposes an evaluation framework

and benchmark suite that provide a common ground for

evaluating and comparing PIM architectures, with the goal

of making it easier for the architecture research community

to explore the PIM design space.

II. Related Work

PIM Modeling and Simulation. DRAMsim3 [39] and

Ramulator [33] are cycle-accurate DRAM simulators that

focus on DRAM protocols and do not support PIM-specific

simulation, limiting their use for PIM architecture evaluations—

although both can be used to help model the timing of the

DRAM read/write operations involved in PIM [14], [27]. In

contrast, PIMSim [74] allows a program to be annotated

with PIM instructions, which invoke a PIM performance

model. The PIM performance models are based on the

processor types modeled in gem5 [4], such as CPU and GPU

cores. However, such heavyweight cores likely only make

sense at the bank interface or outside the DRAM chip in a

near-memory configuration, thus rendering them unsuitable

for modeling subarray-level PIM architectures. gem5 is a

versatile and widely used simulation infrastructure for CPU

and GPU modeling, and provides a detailed model of the

memory system for conventional reads and writes. While some

PIM research, such as MIMDRAM [56], utilizes gem5, their

approach lacks flexibility and extensibility for diverse PIM

architectures. Incorporating PIMeval into gem5 is a valuable

direction for future research.

PiMulator [47] is an FPGA-based platform for prototyping

and evaluating PIM architectures. It offers detailed memory

configuration but does not support diverse PIM functionality,

due to which mapping a new PIM architecture to PiMulator

is often a Herculean effort requiring extensive modifications

within the FPGA framework.

MultiPIM [76] is intended to be a flexible PIM simulation

framework, but assumes the same instruction set architecture

(ISA) for both PIM and host cores, which limits its ability to

explore PIM architectures with a different instruction set.

In all the existing frameworks, adding a new application

requires coding the new application at an assembly level or

similar low-level representation. In contrast, our PIM API

allows applications to be written in a high-level language,

abstracting away low-level hardware details and ensuring

portability across different PIM architectures. Targeting this

API as an intermediate representation with a compiler would

be an interesting direction for future work.

Several DRAM power models have been proposed.

PIMeval’s approach is primarily based on the Micron power

model [45] because it is based on vendor data and is

straightforward to incorporate into PIMeval and derive

energy for each PIM operation. Other open-source models

include CACTI [2], DRAMPower [31], VAMPIRE [22], and

the RAMBUS power model [68].

Benchmark Suites for PIM. PrIM [24] and InSituBench

[37] are two open-source benchmark suites for PIM ar-

chitectures. PrIM is specifically designed for UPMEM [24],

[34], and provides mostly building-block benchmarks, while



InSituBench provides some mixture in terms of benchmark

complexity, but primarily targets kernels for subarray-level

PIM [35]–[37]. Neither suite is easily modified to study

diverse PIM architectures. A previous generation of PIM

research named IRAM project, proposed a small suite of

five benchmarks [20] with diverse characteristics, but it does

not appear to have been open-sourced. A version of this

suite’s histogram benchmark was also included in the Phoenix

benchmark suite for map-reduce processing [75]. BLIMP [14]

introduces compiler analysis to map the Phoenix and SPECcpu

benchmarks to a bank-level PIM architecture a simple RISC-V

core per bank, but this approach is tied to a fully-featured

ISA such as RISC-V. Extending that compiler analysis to other

PIM architectures is a promising direction for future work.

PIMbench offers a broader range of applications, as illus-

trated in Figure 1, 8, including some adapted from PrIM,

InSituBench, and Phoenix, as well as applications used in the

evaluation of the SIMDRAM analog bit-serial [26] architecture

and the DRISA [38] hybrid analog/digital bit-serial architec-

ture. The benchmarks currently included in PIMbench, as

listed in Table I, range from simple building-block benchmarks,

like vector addition and AXPY, to benchmarks comprising

multiple building blocks that require data re-layout between

each kernel execution and PIM-host communication. Some of

PIMbench’s benchmarks were included in multiple prior suites,

such as GEMV (PrIM and InSituBench), GEMM (InSituBench,

Phoneix), filter-by-key (PrIM, InSituBench, and related to

bitweaving in SIMDRAM), histogram (PrIM, IRAM, Phoneix),

KNN (InSituBench, SIMDRAM), and VGG (SIMDRAM, DRISA).

Others only appear in one suite, such as vector addition

(PrIM), AXPY (InSituBench), radix sort (from follow-on work

to InSituBench [35]), brightness (SIMDRAM), linear regression

(Phoenix), K-means (Phoenix); and others have not been

evaluated in prior PIM work to the best of our knowledge

but we felt added significant value, namely triangle counting,

image downsampling, and AES encryption/decryption.

Overall, PIMbench provides a greater range of building

blocks used in modern applications, and is therefore better

suited to evaluate how PIM may handle more realistic

workloads, and helps illustrate pros and cons of diverse PIM

architectures on different application behaviors. Lastly, our

benchmarks are implemented using a common API, which

allows them to be portable to future PIM architectures.

We are continuing to extend PIMbench with additional

kernels, such as prefix sum (related to scan from PrIM and

InSituBench), transitive closure from the IRAM suite, Principal

Component Analysis (PCA) [42] and string match from

Phoenix, apriori from DRAM-CAM [73], additional machine-

learning algorithms, sparse algorithms such as sparse matrix-

vector multiply (not easily supported in bit-serial PIM) and

graph algorithms.

III. DRAM Background

DDR (Double Data Rate) DRAM [29] is the dominant,

commodity memory technology in modern computing. In this

paper, we focus on PIM for DDR; our modeling approach and
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Fig. 2: DDR DRAM organization showing potential locations

for PIM processing elements.

benchmarks should be easily extensible to High Bandwidth

Memory (HBM) [30], which is left for future work, although

conclusions about which PIM architecture is best might

change with HBM.

DRAM is organized hierarchically, with individual memory

bit-cells grouped into successively larger units, up to the

memory modules placed into the motherboard, called Dual In-

line Memory Modules (DIMMs), as shown in Figure 2. Memory

access occurs through multiple channels, which operate

concurrently, and each channel has its own address, data,

and command bus, allowing channels to operate completely

independently. Multiple DIMMs can be connected to a single

channel, and a DIMM consists of one or more ranks, where

each rank comprises a set of DRAM chips that each contribute

a subset of the bits needed for a single memory fetch from

the memory controller.

Within each chip, memory is organized into banks, typically

16 or more per chip. Logically, a specific bank position in

each chip in a rank will be grouped together to form a logical

bank, so when the memory controller reads or writes to a

given rank, it specifies one of these logical banks (e.g., a

cache line fetch from bank 0 will fetch some bits from the

same position in bank 0 of chip 0, bank 0 of chip 1, etc.).

DRAM operations consist of read/write commands, which

actually move data, and other operations, such as precharging

the bitlines, or activating a row. Memory commands are

sent to the appropriate bank, and operations to these logical

banks can be interleaved, so that for example one bank can

be precharging while another is providing data. Banks in

turn are divided into subarrays, which are smaller groups

of memory cells, to reduce electrical loads and noise. Each

subarray within a bank has its own row decoder and local

sense amplifiers, and the set of local sense amplifiers forms

the subarray’s local row buffer. Subarrays are typically 512-2K

rows tall, and 4K-16K columns wide.

A subarray row activation reads an entire row and latches

these bits into the row buffer. Successive accesses to the same

row can therefore fetch data from the row buffer without the

much higher latency and energy cost of closing a row (which

requires writing back its values; row activation is destructive)

and activating a new row. These successive accesses to the

same row are called row-buffer or page hits. Reads fetch

64-256 bits from the open local row buffer over the global
data lines (GDL) into the bank’s global row buffer, which

are then bursted out over the I/O pins; writes operate in the



opposite direction. For DDR, the GDL is likely 64–128 bits,

while for HBM it is wider. Note that this narrow GDL limits

the potential PIM bandwidth at the bank interface.

Subarrays in turn consist of MATs, which are roughly

square, e.g. 512x512; and each MAT contributes one or more

bits to the read. This means logically adjacent bits in a word

of data (assuming traditional horizontal, row-oriented data

layout) are not adjacent; they are scattered across MATs and

only reunited in the global row buffer at the bank interface.

Each MAT has its own subwordline driver, to boost the

wordline signal, so that the overall subararay wordline does

not need a single, large driver. MATs also allow the logic for

column selection for reads and writes to be distributed. At this

point in time, and for purposes of this paper, PIMeval only

models subarrays as monolithic arrays, without the added

detail of MATs, which is left for future work. However, as

shown in the MIMDRAM [56] project, MATs can play an

important role in PIM architecture. The Fulcrum [37] project

also noted that the non-adjacency of a word’s individual bits

in the row buffer was a motivation for its architecture.

For a more in-depth overview of DRAM architecture, see

Vogelsang [68], Zhang [77], Seshadri [63] or Marazzi [44].

Jacob [29] and the DRAMsim3 memory model [39] are also

excellent resources, although they do not discuss subarrays.

For this study, we assume each rank consists of 8 chips with

an 8-bit interface (“x8”). Each chip has 16 banks, and each

bank is divided into 32 subarrays per chip, for a total of 4K

subarrays per rank. Within one chip, each subarray consists of

a matrix of memory cells organized into 1,024 rows and 8,192

columns. We also assume that DRAM used for PIM operation

is dedicated for that purpose and physically separate, so that

PIM does not interfere with regular memory read and write in

the main memory, and simplifies memory management. This

PIM module can be assigned to a specific memory controller

or accessible over CXL system interconnect, similar to the

way GPUs are attached via PCI Express. In this paper, we

assume a DDR interface with 25.6 GB/s rank bandwidth.

We chose to separate the PIM memory module(s) because

many PIM architectures require data to be laid out differently

than in conventional memory. For example, bit-serial PIM

architectures require data to be laid out vertically [20],

instead of the usual horizontal layout, where all the bits

are in the same row. Even PIM architectures that use a

more conventional horizontal data orientation require all

the bytes of each word to be together, and may need data

placed carefully to spread it across all banks and subarrays

to maximize parallelism. This may necessitate a different

layout than the typical address interleaving. Therefore, many

prior PIM architectures require some data movement to place

the data into the proper layout for PIM operations. Using

a separate memory module provides a location to place the

data in the desired layout and to work around the memory

system’s address interleaving.
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IV. PIM Variants

PIM can be categorized into Processing in Memory (PIM)

and Processing Near Memory (PNM). PIM performs computa-

tion inside the DRAM chips themselves, while PNM places

computation at the DRAM interface, such as on the DIMM

module (e.g., AX-DIMM [66]) or in the logic layer of a stacked

DRAM such as HBM. Within the category of PIM, this paper

compares three potential locations for integrating digital logic

within DRAM, as shown in Figure 2.
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Subarray-level Bit-Serial. The first option, shown as (1) in

Figure 2, places the computation at the subarray level, with a

simple bit processing element attached to each sense amplifier,

with the bits of each data element laid out vertically up the

bitlines. This allows a bit-serial computation on each bit in

the entire subarray local row buffer to happen in unison,

i.e. a bitslice computation. This architecture is shown in

more detail in Figure 3. This configuration offers subarray

parallelism as well as row-wide bit-slice parallelism, and

is sometimes also referred to as Processing Using Memory

(PUM) [49]. The resulting bit-serial computation must perform

at least n row accesses to operate on n-bit datatypes, and
most compose more complex functionality (e.g., arithmetic)

out of a few basic Boolean micro-operations, to minimize

area overhead for the bit-level processing units attached to

the sense amps, but makes up for this with the massive

parallelism of operating simultaneously on the wide bit-slices.

We model a digital subarray-level bit-serial PIM architecture

inspired by previous works [17], [38], [73]. Previous bit-

serial PIM proposals, such as Ambit and SIMDRAM [26],

[62], utilized analog computation based on charge sharing on

the bitlines, implemented with triple row activation (TRA).

TRA implements the MAJority function, but also requires dual-



contact rows for NOT operations, which are costly [44]. TRA

has the additional drawback that, to avoid large decoders for

its functionality, only a small subset of rows support TRA, and

operand rows must first be copied into these TRA rows. Due

to process variation, aging, and area overheads for DCCs [44],

DRAM vendors have expressed a preference for digital PIM

approaches. DRISA [38] introduces a hybrid analog-digital

model, extending the analog approach by adding digital gates

to the sense amplifiers. This provides a richer set of Boolean

operations, allowing arithmetic operations to be composed

more efficiently. In this paper, we model a purely digital bit-

serial PIM architecture (shown in Figure 3), modeled after

Micron’s digital IMI architecture [17], with a few additional

logic gates to implement associative (conditional match-

update) processing, inspired by prior work on associative

processing [10], [73]. This architecture, which we call DRAM-

AP, features digital bit-serial logic connected to the sense

amplifiers in each subarray, capable of performing XNOR,

AND, and SEL (2:1 mux), supporting bit-serial arithmetic as

well as associative processing. Additionally, it includes four

extra bit registers to store intermediate values and condition

bits, to achieve the conditional read and write needed for

associative processing and the carry bit for arithmetic.

For high-level operations such as integer addition, bit-

serial PIM runs a microprogram, i.e., a sequence of bit-serial

operations, to achieve the desired computation. We assume

the microprogram is executed by the memory controller,

broadcasting each operation to all banks and subarrays. The

complexity of the microprograms ranges from linear in terms

of operand bitlength, e.g., for integer addition/subtraction, to

quadratic, e.g., for integer multiplication and floating point.

Subarray-level Bit Parallel. The second option, which is

another variation of subarray-level PIM, not shown in Figure

2, was introduced in the Fulcrum [37] work, and involves

placing a more conventional bit-parallel, scalar ALU at the

edge of the row buffer This architecture is shown in Figure 4.

While Fulcrum was originally designed for 3D stacked Hybrid

Memory Cube (HMC) [28], we have adapted its design for

DDR to fit within the scope of our paper. The only change

is that the original Fulcrum assumed that some operations

could be offloaded to simple cores in the logic layer of the

HMC, our DDR version offloads computation to the CPU if

it cannot be performed locally at the subarray. The essence

of this architecture is a 32-bit, 164MHz ALU shared between

two consecutive subarrays, providing parallel processing

capabilities. Figure 4 presents the overall architecture of

Fulcrum, consisting of two primary components: (i) Walkers

and (ii) the AddressLess Processing Unit (ALPU). The Walkers

feature three rows of latches. These Walkers either capture

input operands read from the subarray or store target variables

before writing them back to the subarray. The read/write

operations are carried out sequentially, using a one-hot-

encoded value to determine the selected column for bus

placement. The ALPU, integral to the architecture, includes

four components: (i) a controller, (ii) three temporary registers,

(iii) an ALU, and (iv) an instruction buffer. Unlike bit-serial

architecture described in section IV, Fulcrum assumes that

two consecutive subarrays can communicate with each other

using the LISA technique [11], but we do not use that feature

in these benchmarks—that is left for future work. The ALPU

can be 32 or 64 bits wide; in this study, we model 32-bit

ALPUs, able to perform SIMD operations if needed, so that

the entire 32 bits can be processed in one step.

Bank-level PIM. The third option, shown as (2) in Figure

2, is to place a processing element at the bank interface,

enabling bank parallelism, inspired by the BLIMP project [14].

BLIMP integrates a simple, in-order-issue 200 MHz RISC-V

RV64GC processor without caches directly into each memory

bank. BLIMP is designed so that banks operate independently,

with each core associated with a bank only able to access

data within that bank, and can operate fully in parallel, i.e. all-

bank mode. The PIMeval bank-level model also assumes banks

operate independently and support all-bank computation, but

so far model only a simplified bank-level processing element,

similar to the Fulcrum ALPU, featuring three Walkers, and a

128-bit processing unit attached to each bank, with datatypes

smaller than 128 bits processed in SIMD fashion. We assume

a 128-bit GDL here to be generous to bank-level PIM. The

walkers are as wide as the subarray local row buffer, which

allows some pipelining for fetching data into the walkers

and computation. Since banks cannot communicate with each

other, any computation requiring inter-bank communication

is offloaded to the host CPU.

V. PIMeval

PIMeval is a versatile and highly extensible simulator

designed to model various PIM architectures, including those

with vertical or horizontal data layouts [21]. It includes

built-in performance and energy models for three different

PIM architectures (Section IV). Moreover, benchmarks can

be written using high-level PIM APIs that will work on all

supported PIM architectures without any code modification.

Once a simulation target (i.e. PIM device) is specified, the

PIM simulator automatically determines the data layout and

provides comprehensive performance and energy statistics for

data movement and PIM operations. This section demonstrates

the design of PIMeval as well as how the functionality,

performance, and energy is modeled.

A. Architecture

PIMeval has been developed as a C++ library to facilitate the

development of benchmarks for PIM. The library can be linked

with benchmark programs to generate executable capable of

performing PIM simulations. It offers a comprehensive set of

APIs (Section V-B), supporting the creation of PIM devices,

resource management, data transfer, and a wide array of

high- and low-level PIM operations. ThePIMeval framework

is illustrated in Figure 5.

We abstract the basic processing unit, depending on the

computational capability of each PIM architecture, as a PIM
core. This PIM core can represent either a processing unit
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attached to subarray or bank (other options, such as module-

level near-memory processing, are future work). Various high-

and low-level PIM operations are then abstracted as PIM

commands that can be executed on a PIM core. Benchmarks

can utilize the same high-level operations for performance

and energy measurement across different PIM architectures.

PIMeval currently only supports digital techniques, but sup-

port for analog bit-serial techniques would be straightforward

to add, and this is left for future work.

A PIM resource manager is implemented to handle data

object allocation, deallocation, and tracking. A PIM data object

can span multiple 2D memory regions across multiple PIM

cores, leveraging subarray-level or bank-level parallelism.

Depending on the PIM architecture, the data may be laid

out horizontally or vertically within a memory subarray. PIM

operations use object IDs as operands and can retrieve object

information from the resource manager.

B. PIM API

PIMeval presents a high-level API set that supports func-

tional behavior, performance and energy modeling across

multiple PIM architectures, ensuring that the same benchmark

implementation can be applied to different architectures. The

API set includes common SIMD logical operations, integer

arithmetic, comparisons, as well as broadcasting, popcount,

and reduction sum operations. These APIs utilize PIM data

object IDs as operands, with the assumption that a software

runtime manager handles resource allocation and address

mapping. The simulator’s API set is easily extendable to

accommodate additional PIM operations and data types. An

example program, AXPY, implemented using these APIs, is

shown in Listing 1.

1 void axpy(uint64_t vectorLength, const vector<int> &X, const vector<int> &Y, int A)
{

2 unsigned bitsPerElement = sizeof(int) * 8;
3 // Allocate device memory
4 PimObjId objX = pimAlloc(PIM_ALLOC_AUTO, vectorLength, bitsPerElement, PIM_INT32)

;
5 PimObjId objY = pimAllocAssociated(bitsPerElement, objX, PIM_INT32);
6 assert((objX != -1) && (objY != -1));
7 // Copy inputs, perform operations, copy back results
8 pimCopyHostToDevice(X.data(), objX);
9 pimCopyHostToDevice(Y.data(), objY);
10 pimScaledAdd(objX, objY, objY, A)
11 pimCopyDeviceToHost(objY, Y.data());
12 // Free allocated memory
13 pimFree(objX);
14 pimFree(objY);
15 }

Listing 1: AXPY implementation using PIMeval API set.

C. Performance Modeling
Performance modeling is divided into two components: (i)

data movement latency and (ii) kernel execution latency.

i. Data Movement Latency: This is modeled based on

the number of bytes transferred and the available memory

bandwidth. For more precise modeling, integration with

DRAMsim3 [39] has been left as future work. PIMeval cur-

rently does not differentiate between channels and ranks; this

distinction will be rectified via integration wtih DRAMsim3.

This means that all ranks are treated as independent channels,

which amplifies data transfer bandwidth. Overhead of large

data transfers will increase once modeling accounts for

multiple ranks sharing a channel.

ii. Kernel Execution: Each PIM benchmark consists of

multiple PIM APIs, with some benchmarks including kernels

executed on the host either due to random access or expensive

inter-bank communication. The performance of the host

portion is measured using C++ STL’s high-resolution clock.

PIMeval models the performance of each PIM API based on

the characteristics of the PIM device and DRAM parameters

obtained from DDR data sheet.

Performance of subarray-level bit-serial PIM is determined

by factors such as the command type (e.g., arithmetic, logical)

and data type (e.g., int32, int8). These operations often require

a bit-serial microprogram using simpler, Boolean micro-ops,

with a vertical data layout, to execute SIMD operations on bit-

slices of input vectors. To accurately model the performance

of targeted bit-serial PIM, all high-level PIM APIs are mapped

to low-level bit-serial microprograms.

The performance of subarray-level bit-parallel PIM is

modeled by including row read/write latency to the local

row buffer, as well as the latency required for subsequent

arithmetic and logical operations. Bank-level bit-parallel PIM

has been modeled by including row read/write latency to

global row buffer (through narrow GDL width) and the latency

to execute PIM command by the processing unit.

Besides SIMD PIM operations, some non-SIMD operations

require special handling when modeling performance:

(1) Reduction: This operation is essential for a few kernels

of our benchmark. Depending on PIM architectures, reduction

can be performed with subarray or bank-level accumulators,

or by the host CPU. Subarray-level bit-serial PIM can also

perform row-wide pop counts for integer reduction sums,

provided appropriate hardware support is available.

(2) Broadcasting: This involves copying the same scaler

value or a pattern to all elements of PIM objects. Bit-serial

PIM can efficiently broadcast a bit value to entire memory

row, while bit-parallel PIM can propagate the value to a

walker/register per subarray/bank.

D. Energy Modeling
Energy modeling consists of (i) data transfer energy, (ii)

application execution energy, and (iii) background energy.

PIMeval’s approach is primarily based on the Micron power

model [45] because it is based on vendor data and is

straightforward to incorporate into PIMeval.



i. Data Transfer Energy. The energy for data transfers

between the PIM and host, in both directions, is calculated

using the Micron power model. For instance, the read power

is obtained using Equation 1 which is then multiplied by the

time spent on memory read to calculate energy.

Read Power = VDD × (IDD4R – IDD3N) (1)

ii. Application Execution Energy. Application execution

energy is modeled at the granularity of PIM API calls. We

aggregate the energy consumed by all the PIM APIs used

in the application, depending on the specific PIM device

executing the application. For instance, when PIMAdd is

executed on a subarray-level PIM, it involves energy for

row activation, precharging, data movement between the

local sense amplifier, and ALU operations. However, when

executed on a bank-level PIM, the energy associated with

GDL transfers is also included. The energy for simultaneously

activating or precharging multiple subarrays within a bank is

derived using Equation 2. The GDL energy for transferring

data within a bank, is scaled based on data from LISA [11]. To

account for the ALU operation energy, we use values derived

from RTL models for bit-serial and Fulcrum architectures, with

the latter provided by the Fulcrum authors. We assume that

the bank-level processing element consumes similar power

as the Fulcrum ALU.

AP = VDD × (IDD0 × (tRAS + tRP) – (IDD3N × tRAS + IDD2N × tRP)) (2)

Energy for applications that has host execution, is modeled by

multiplying the host execution runtime with the TDP listed in

table II. Using TDP is pessimistic; incorporating actual CPU

energy for the host portion is left for future work.

iii. Background Energy. The Micron power model does not

account for the background energy of DDR when multiple

subarrays or banks are active simultaneously. To address this,

we model the background power of a single subarray by

subtracting the standby power when the device is precharged

from the standby power when the device is active. We then

multiply this power by the total number of subarrays to

determine the overall background power, which is further

multiplied by the kernel execution time to calculate the

background energy. For CPU idle energy, while it is waiting

for a PIM operation to complete, we assume the cores are

idle. Idle energy varies widely according to CPU model, but

we use 10 W as a representative number. We performed a

sensitivity analysis on this value, abserved minimal impact

on most applications. For example, in vector addition, the

PIM energy consumption for bit-serial architecture is 13.26

mJ, while the CPU idle energy is only 0.14 mJ, accounting

for just 1% of the total energy. However, in applications with

longer PIM execution times, such as VGG-19, the CPU idle

energy increases correspondingly. For the same input size,

VGG-19 consumes 45k mJ of PIM execution energy and 22k

mJ of CPU idle energy, leading to a 48% increase in total

energy consumption.

TABLE II: Configuration of the Evaluated Architectures.

Architecture Parameters

CPU AMD EPYC 9124 16-core @ 3.71GHz, 200W TDP, 768GB DDR5, 12

memory channels, peak memory BW 460.8GB/s.

GPU NVIDIA A100, 80GB HBM, 300W TDP, peak memory BW 1,935GB/s,

peak compute rate for 32-bit FP is 19.5 TFLOPs.

Bit-serial 32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,

8192-bit local row buffers. A bit-serial processing unit is attached

to each sense amplifier in local row buffer, with 4-bit registers and

move/set/and/xnor/mux operations.

Fulcrum 32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,

8192-bit local row buffers. 32-bit 167 MHz integer ALU and three

8192-bit walkers are shared between every two subarrays.

Bank-level

PIM

32GB DDR4, 32 ranks, 128 banks per rank, 32 subarrays per bank,

8192-bit local row buffers. 128-bit GDL, global row buffers, a 64-bit

Fulcrum-style ALPU, and three 8192-bit walkers for each bank.

E. Verification
i. Functional Verification. The output of each PIM application

was compared against the original CPU execution to ensure

functional correctness.

ii. Performance Modeling Validation. We validated the

performance model of PIMeval by comparing its results

for Fulcrum with those produced by the original Fulcrum

simulator across four benchmarks: Vector Add, AXPY, GEMV,

and GEMM. The simulator achieved identical performance for

Vector Add and AXPY compared to the Fulcrum simulator.

However, for GEMV and GEMM, PIMeval’s results were

approximately 10% slower than those of the original Fulcrum

simulator, which we attribute to the overhead associated

with the data allocation mechanism within PIMeval. We

further performed a performance verification for Vector Add

and GEMV using UPMEM [24], and observed a 23% and

35% slowdown in our toy UPMEM model compared to the

UPMEM hardware. We attribute this slowdown, in part, to

PIMeval’s inability to accurately model the tasklets utilized

by UPMEM. Moreover, PIMeval exhibits limitations in its data

allocation strategy, particularly for horizontal data layouts,

as it assumes that the entire DRAM row is filled with valid

data and computes the latency accordingly, even if the data

are not large enough to fill the row. These limitations will be

addressed in future versions of PIMeval.

VI. Methodology

Each PIM variant employs a DRAM configuration consisting

of one or more ranks of DIMM, with each rank comprising

8 chips. Each chip contains 16 banks, and each bank is

subdivided into 32 subarrays. These subarrays are organized

as 1024x8192 matrices of memory cells. For our CPU and

GPU baselines, we use the AMD EPYC 9124 16-Core Processor

[1] and the NVIDIA A100 GPU [55], respectively. Table II

summarizes the configurations for each architecture.

The benchmarks listed in Table I are implemented for PIM

using our high-level PIM APIs, as detailed in Section V-B. For

GPU implementations, we primarily rely on libraries such as

cuBLAS [53], Thrust [54], and CUB [52]. Triangle counting on

the GPU uses Gunrock [70]. For the CPU, implementations
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Fig. 6: Sensitivity Analysis of PIM devices based on different

#columns and #banks for 256M 32-bit INTs.

are based on OpenMP [12] and pthreads [50], along with

optimized libraries like OpenBLAS [71] where applicable. For

triangle counting on the CPU, we use GAPBS [3]. For the

GPU and CPU implementations of VGGs, we use PyTorch

[58]. Also, we implemented the AES CPU baseline using the

OpenSSL library [57], which utilizes Intel’s AES-NI instruction

set extensions [23] for optimized cryptographic performance.

We assume that the PIM and GPU are both attached via

PCI Express or CXL (which is based on PCIe), so data transfer

bandwidth would be the same for both. We therefore factor

this out in the PIM vs. GPU comparisons. Similarly, we factor

out CPU idle energy in PIM vs. GPU comparisons.

VII. Sensitivity Analysis Of PIM Variants

We perform a sensitivity analysis (eg. varying #columns,

#banks) of bit-serial, Fulcrum, and bank-level PIM architec-

tures using four primitive PIM operations: addition, multipli-

cation, reduction, and popcount. These operations represent

common logical and arithmetic tasks, focusing on 32-bit

integers. The evaluation loads n-size vectors and performs a

single operation, excluding data movement latency between

the host and PIM. Figure 6 shows latency scaling of the

operations for varying #columns and #banks. Bit-serial is most

sensitive to these parameters. Fulcrum and bank-level, both

being bit-parallel, show sensitivity to bank-level parallelism.

Addition. As data is laid out vertically in bit-serial PIM

(section IV), it opens 3n DRAM rows to perform any two-

input/one output n-bit simple operations, working one bit at

a time. However, each DRAM row is processed in parallel,

allowing the same operation to be performed on the entire bit-

slice in one cycle. In contrast, Fulcrum only exploits subarray-

level parallelism but not row-wide parallelism, and bank-level

only exploits bank parallelism. Hence, bit-serial PIM achieves

highest performance for operations akin to addition, with low

complexity per bit.

Multiplication. Multiplication in bit-serial PIM is costly

due to its quadratic relationship with element bit-width [32].

In contrast, Fulcrum and bank-level, being bit-parallel, can

perform one full scalar multiplication per ALU cycle. Figure

6 shows that bit-serial still outperforms bank-level due to

narrow GDL width and limited parallelism across banks.

Fulcrum demonstrates the best performance for multiplication.

Reduction. Bit-serial PIM uses a popcount-based integer

reduction sum [73]. Both Fulcrum and bank-level PIM perform

reduction similar to addition. As bit-serial PIM has the

advantage of higher parallelism over both Fulcrum and bank-

level PIM, it shows the best performance (Figure 6).

Popcount. Fulcrum implements popcount using SWAR

[13], requiring 12 ALU cycle per popcount. On the other

hand, bit-serial popcount is log-linear with respect to element

bit-width. The bank-level PIM can perform popcount in one

CPU cycle [18], [19]. As a result, both bank-level and bit-serial

PIM outperform Fulcrum. (Figure 6).

VIII. PIMbench: Analysis & Findings

This section describes the PIMbench suite, along with

details on the adaptations made for PIM, and presents an

analysis of the performance and energy consumption of each

benchmark compared to baseline CPU and GPU architectures.

Table I presents the list of the benchmarks, chosen to

encompass a diverse range of applications, along with their

input sizes, memory access patterns, and execution types. An

execution type with the value PIM + Host denotes benchmarks

that include constituent kernels running on the host due to

either random access pattern or the need to support inter-

bank communication. Figure 1 presents a dendrogram to

quantify the diversity, based on the instruction mix, memory

access pattern, execution type, and arithmetic intensity of

each application. These parameters are then refined using

a combination of PCA and hierarchical clustering [48] to

produce the dendrogram.

A detailed breakdown of the PIM operation mix of PIM-

bench is shown in Figure 8. Figure 7 shows the execution time

breakdown for each benchmark, showing the percentage of

time spent on data movement, host execution, and PIM kernel

execution. The energy breakdown exhibits similar behavior

and is not shown.

Figure 9 shows the speedup achieved by each PIM variant,

using 32 ranks, for different benchmarks compared to the

CPU, while Figure 10a shows the speedup over the GPU. Note

that some benchmarks are not able to benefit from so many

ranks, due to data movement overhead, host interaction, or

simply because the problem sizes we chose are not large

enough. Rank scaling will be discussed in Section IX. Figure

9 shows speedup considering both data movement and kernel

execution time together, as well as speedup based solely on

kernel execution time. For Figure 10a we neither include

cudaMemCopy cost for GPU, nor PimCopyHostToDevice for

PIM, to ensure fair comparison, as both can use PCIe/CXL.

Figures 11 and 10b demonstrate the energy reductions relative

to the CPU and GPU, respectively. The GPU comparison

factors out CPU idle energy during GPU/PIM execution.

Vector Addition. Vector addition [5] is an element-wise

operation on two vectors and serves as an ideal candidate

for PIM, particularly for bit-serial PIM, because addition is

efficient even wtih bit-serial, as discussed in Section VII.

Consequently, bit-serial PIM demonstrates the highest speedup
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Fig. 8: PIM operation frequency distribution, in terms of

percentage of total operations in that benchmark.

compared to both CPU and GPU. Fulcrum achieves the second-

best performance, followed by bank-level PIM. A similar trend

is observed in terms of energy reduction.

AXPY. AXPY, collected from InSituBench [37], is a linear

algebra kernel [5] that scales a vector and adds it to a

second vector. This involves both multiplication and addition

(Figure 8). Fetching the second (addition) vector operand can

be pipelined with the scaling. Fulcrum offers an efficient

approach for executing multiplication, outperforming both

bit-serial, which suffers from quadratic multiplication latency,

and bank-level, which is constrained by the narrow GDL

width. Consequently, Fulcrum achieves the highest speedup

and energy reduction for AXPY compared to CPU and GPU.

Matrix-vector Multiplication (GEMV). GEMV [5] is

a fundamental operation in linear algebra. Fulcrum, with

its efficient execution of multiplication—–a key operation

in GEMV—–outperforms both bit-serial and bank-level PIM,

as shown in Figures 9 and 10a. As with AXPY, bit-serial

PIM experiences a slowdown compared to the GPU due to

its quadratic multiplication latency, while bank-level PIM,

constrained by the narrow GDL width, shows a slight

slowdown relative to the GPU.

Matrix-matrix Multiplication (GEMM).We implemented

GEMM using batched GEMV. Unlike GEMV, GEMM is

compute-intensive, making it challenging for any PIM variant

to efficiently execute GEMM, resulting in poor performance.

However, Fulcrum demonstrates a speedup over the CPU if

data movement latency is excluded. None of the PIM variants

show energy savings compared to the CPU and GPU.

Radix Sort. Radix sort iteratively groups elements into

buckets based on the value of a specific digit position

(radix). This digit-by-digit sorting approach allows radix sort

to achieve favorable linear time complexity. For digit-by-

digit sorting, we use counting sort, which involves both a

counting and a sorting phase. The sorting phase requires data

reshuffling, which is not supported in these PIM architectures,

leading us to perform only the counting phase on PIM and

the sorting phase on the host CPU. This approach introduces

significant host latency, causing the PIM variants to show

only slight speedup over the CPU and significant slowdown

and energy consumption compared to the GPU.

AES—Advanced Encryption Standard. We implemented

AES-256 in ECB mode [15], which processes input in 16-

byte state buffers over 14 rounds of logical and look-up

operations.In our PIM implementation, the look-up table is

realized using logic gates [25], making it well-suited for bit-

serial processing. Similarly, since the Fulcrum and Bank-level

architectures lack the capability to store the look-up table in

a buffer, they also implement it using logic gates. Bit-serial

has higher performance compared to Fulcrum and Bank-level

as it performs well in logical operations and also has higher

parallelism. Also, Fulcrum has takes advantage of sub-array

level parallelism compared to bank-level which makes it faster.

Bit-serial implementation gains a speedup over CPU, however

the GPU outperforms all of the PIM architectures, because

AES has higher computation intensity per byte.

Triangle Count. Triangle counting is a graph algorithm

[8] that determines the number of triangles (three mutually

connected vertices) in a graph. To map the triangle counting

algorithm onto PIM, a series of AND, popcount, and reduction

sum is employed [69]. Among the three PIM variants, bit-serial

demonstrates the best execution latency for these operations

(Section VII), because AND is natively supported. However,

the popcount and reduction steps are slower, with the net

result showing only a slight speedup over the CPU and GPU

for kernel-only. In contrast, both the Fulcrum and bank-level

PIM variants fall short compared to the CPU and GPU.

Filter-By-Key. One of the most common operations in

data analytics is scanning a database table to select records

that match a specific predicate. In our implementation, we

only scan and fetch selected records from one column, and
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Fig. 9: Speedup of three different PIM variants with 32 ranks over baseline CPU.
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(a) Speedup over baseline GPU.
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(b) Energy efficiency of PIM architectures vs. GPU.

Fig. 10: Comparison of performance and energy of three different PIM architectures with 32 ranks over GPU.
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Fig. 11: Energy efficiency of PIM architectures vs. CPU.

1% of the records match the predicate. PIM performs the

filtering on the DRAM side and generates a bitmap of the

matched items, and this step obtains high speedup on all

three architectures, but then the host CPU must fetch the

bitmap, and only then can it iterate through the bitmap to

gather the selected items in the column. This gathering phase

is the bottleneck, constituting 31% of the runtime in the CPU

baseline and 99% for PIM (Figure 7).Consequently, none of

the PIM variants achieve a speedup over the GPU, though

they show a small speedup over the CPU, with the energy

results following a similar trend. Higher speedup would be

expected if the selected items consisted of more than a single

field, since the filtering would lead to eliminating more data

fetching.

Histogram. Histogram computes the distribution of RGB

values in a 24-bit bitmap file [6], which is modeled after

Phoenix [61]. To mitigate the challenges of random access

to maximize PIM execution, we extract the pixels for each

color channel and sequentially traverse the key-value pairs

(0-255), using the equality operation to group together all

instances for an individual channel and perform a reduction.

Reduction is in PIM and becomes the limiting factor, especially

for bit-serial. While all PIM variants demonstrate speedup

and energy-reduction over the CPU, all variants experience

slowdown and energy-inefficiency compared to the GPU.

Brightness. Brightness, modeled after the SIMDRAM

benchmark [26], increments each of the RGB values for every

pixel of a 24-bit bitmap file by a set parameter [6]. Given

an input coefficient, each pixel of image data is processed

with a saturating addition, ensuring the result stays within

valid pixel value bounds through min and max operations.

PIM, exploiting the available subarray parallelism, achieves

speedup both with and without data movement over CPU and

over GPU. For a similar reason, PIM is much more energy

efficient compared to both CPU and GPU.

Image Downsampling. PIMbench adapts box filtering for

uncompressed bitmap images [40] as an image downsampling

candidate. Box filtering sets each pixel in the output image to

the average of a box of input pixels [6]. In our implementation,

the image is scaled to half its size by applying addition and bit



shifting operations (Figure 8). Since PIM can execute both of

these operations optimally, all three PIM variants outperform

the CPU and GPU in runtime, while also demonstrating

significant energy reductions.

KNN. K-nearest neighbors (KNN) is a supervised learning

algorithm which uses the Manhattan distance proximity metric

to classify individual points. Our PIM implementation adapts

an end-to-end KNN batched inference where the sorting and

classifying steps are executed on the host CPU, since PIM

lacks support for shuffle. Distance computation, on the other

hand, is executed in PIM. As shown in Figure 7 the sorting

and classification phase contributes a significant percentage of

the PIM execution latency. Despite this, we observed modest

speedups and improved energy efficiency over CPU and GPU

implementations.

Linear Regression. PIMbench implements a 2D variant of

the linear regression statistical technique [60]. The method

involves a single independent variable and is represented

by the equation y = β0 + β1x + ϵ, where y is the dependent

variable, x is the independent variable, β0 is the intercept, β1
is the slope, and ϵ is the error term. The slope and intercept

are calculated using the least squares method. While bit-serial

PIM is the most efficient for integer reduction, Fulcrum excels

at multiplication. Considering that the ratio of reduction

to multiplication is higher (as shown in Figure 8), Fulcrum

and bit-serial exhibit similar performance, and all three PIM

variants achieve speedup over both the CPU and GPU.

K-means. K-means [41], [43] is a widely used clustering

algorithm that partitions a dataset into k distinct, non-

overlapping clusters. Each data point is assigned to the nearest

distance cluster, known as the cluster centroid. The algorithm

iteratively refines the placement of centroids to minimize

the within-cluster variance. The process involves assigning

each data point to the nearest centroid and recalculating the

centroids as the mean of all points with minimum distance

to them. This iterative assignment phase entails a random

access pattern, which is not well-suited for PIM. To address

this, a bitmask is used to group data points belonging to

each centroid. The mean of these grouped data points is

calculated, updating the respective centroid. Given that our

implementation uses simple PIM operations (e.g., subtract,

add, equal), all three PIM variants show significant speedup

and energy efficieny gains over both CPU and GPU.

VGG. VGG [65] is a convolutional neural network variant

[7], consisting of an input layer, several hidden layers

(including convolution, ReLU, max-pooling, and dense layers),

and a softmax output layer. We present three different VGG

variants: VGG-13, VGG-16, and VGG-19. The difference among

these variants lies in the depth of the network, specifically the

number of convolution layers. Running an end-to-end VGG

network in PIM is challenging because each layer requires

some data preprocessing, such as padding. To address this,

we decompose the VGG networks into smaller kernels that

correspond to each hidden layer. To maximize parallelism,

the input images are processed in batches in the PIM.

PIM can support ReLU, max-pooling, and dense layers,

the softmax layer is executed on the host CPU because

it requires floating-point operations, which PIMeval does

not support yet. Additionally, parts of the convolution layer,

such as aggregating the final results, are also executed on

the host, as these involve strided access patterns, which

are costly in PIM due to the need for inter-bank or inter-

subarray communication. As a result, PIM execution is

bottlenecked by host execution, leading to moderate speedups

and energy efficiency improvements over the CPU for all

three VGG variants and across architectures. However, the

GPU outperforms PIM significantly in terms of performance

and also energy for all PIM architectures.

IX. Discussion & Future Work

We use the same benchmark implementation to evaluate

all three PIM architectures modeled here. This approach was

chosen to demonstrate the portability of a single implemen-

tation across different PIM variants. However, this comes

with a limitation: the implementation may not fully exploit

architecture-specific optimizations. This limitation could be

partially addressed with further optimization of the operation

sequence, data layout, or algorithm for each architecture,

and architecture-specific PIM API calls may help. Ultimately,

a compiler capable of generating device-specific operations

using our high-level APIs, or directly generating low-level

opcodes for the target architecture will be most helpful.

Exploring this direction has been left as a future work.

Another observation is that, even though memory capacity

is same (Figure 13), increasing rank count has huge impact

on the performance of bit-parallel PIM architectures (Fulcrum,

bank-level) because parallel processing unit increases (in-

creased #subarrays and #banks). Bit-serial on the other hand

does not benefit as much if the input size is not large enough

to fill all the columns of the DRAM rows, because either

way it needs to open multiple rows. Fulcrum and bank-level,

being bit-parallel, greatly benefits from increased parallelism.

However, some benchmarks are unable to realize the benefits

of more ranks. In some cases, such as with Radix Sort, the

bottleneck is the host interaction. In other cases, such as with

GEMV on bit-serial and Fulcrum, the problem size we chose

is too small to realize the benefits of more ranks - the vectors

are not long enough to utilize all the available subarrays.

For the input size used in the experiments in the preceding

section, Fulcrum utilizes only 56% of the active subarrays

with 8 ranks. As a result, in Figure 12, as we keep increasing

the number of ranks, Fulcrum’s GEMV performance does

not scale beyond 8. Furthermore, bit-serial uses only 15% of

the available subarrays, even with only 1 rank, because the

vertical layout requires data to be laid out in batches of rows

corresponding to the data type’s bitwidth. Hence, bit-serial

does not exhibit any rank scaling for GEMV. (Figure 12, 13).

This is a shortcoming that we unfortunately did not realize

in time to correct it for this paper, but the results for AXPY

give an approximate sense of the scalability that could be

obtained for larger problem sizes. For GEMM, increasing the

rank count from 32 to 64, which increases the bank-level
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Fig. 12: Rank sensitivity analysis across benchmarks, excluding data movement latency, with capacity scaling by ranks.
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Fig. 13: Rank (1 vs. 32) sensitivity analysis across different benchmarks excluding data movement latency, with same capacity.

parallelism, improves the performance of bank-level PIM,

making it more competitive with the GPU. Notably, all three

PIM variants achieve energy reductions compared to both

CPU and GPU. A comprehensive exploration of problem size is

an essential direction for future work. A further consideration

is that many use cases call for smaller problem sizes, requiring

batching to utilize the full PIM computation bandwidth.

It is also worth mentioning that the benchmark diversity

analysis (Figure 1) indicates that some benchmarks are quite

similar, and could likely be excluded. Examples include vector-

add/image-downsampling, three VGG benchmarks, and AES

encryption/decryption. This repetition also skews Gmean

results toward those benchmarks’ behaviors.

PIMeval is already being extended to support various forms

of analog bit-serial PIM. Interesting areas for future work

include modeling 3D memories such as HBM and modeling

wider SIMD operation in the Fulcrum-style and bank-level

approaches, both of which will likely change the tradeoffs

observed here; exploration of problem sizes and batching;

gem5 integration; a flexible area modeling approach that

supports diverse PIM architectures, and further extension

and analysis of the benchmark suite. We are continuing to

extend PIMbench with additional kernels, such as prefix sum,

transitive closure, PCA and string match, additional machine-

learning and graph algorithms, and sparse algorithms (which

are not easily supported in bit-serial PIM).

X. Conclusions

This paper introduces PIMbench- a new benchmark suite,

PIMeval- a flexible simulation and energy modeling framework,

and a new PIM API. The paper uses PIMbench and PIMeval to

compare the performance of three different PIM architecture:

DRAM-AP, a subarray-level bit-serial PIM leveraging row-

wide bit-slice operation and supporting associative processing;

Fulcrum, a scalar subarray-level PIM; and a bank-level version

based on Fulcrum. Our results show that subarray-level

Fulcrum provides the best balance of parallelism (via subarray-

level parallelism) and flexibility (excelling in multiplication

and other more complex operations), and achieves the highest

geometric mean performance among the three architectures,

outperforming the CPU by about 5.2X (including data transfer

overheads). In contrast, for many benchmarks, none of the

PIM architectures consistently outperform an A100 GPU, due

to various overheads, such as data movement to change

data layout for PIM processing. In terms of energy, most

benchmarks do show energy reduction compared to the CPU,

with a Gmean of 5-10X energy reduction, but results are

more mixed for the GPU, with a Gmean of about 2X energy

reduction for both subarray-level techniques, but the bank-

level approach unable to beat the GPU.
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Appendix A

Artifact Appendix

This paper presents a PIM benchmark suite along with a

PIM modeling framework, both implemented in C++. The

artifact requires an AMD or Intel x86 CPU with at least

256GB of memory, running Ubuntu version 22.04 or later, and

a minimum of 2GB disk space. The software requirements

are Python3 and g++ 11.4 or newer. There are no external

data dependencies. Each benchmark can be executed with

default parameters, producing output similar to Listing 3,

which demonstrates the metrics used in the paper. The default

parameters are selected to ensure each benchmark runs with

a manageable data size and completes within a reasonable

time. The data size used for each benchmark can be found in

the Table I.

A. Artifact check-list (meta-information)
• Binary: Binaries are not included; they need to be built using

the approach mentioned.

• Hardware: AMD or Intel X86 CPU having at least 256GB

memory with Ubuntu versions greater than or equal 22.04.

• Metrics: Estimated runtimes for: i) kernel execution, ii) host

execution, and iii) data copy overhead between host and device.



• How much disk space required (approximately)?: At least

2GB.

• How much time is needed to complete experiments
(approximately)?: 168 Hrs

• Publicly available?: Yes (https://github.com/UVA-LavaLab/

PIMeval-PIMbench)

• Code licenses: MIT License

• Archived (provide DOI)?: 10.5281/zenodo.13243685

B. Description
1) How to access: The repository can be cloned from: https:

//github.com/UVA-LavaLab/PIMeval-PIMbench.

2) Hardware dependencies: AMD or Intel x86 CPU with a

minimum of 256GB memory running Ubuntu version 22.04

or later.

3) Software dependencies: python3, g++ 11.4 or newer.

C. Installation
User should clone the repository from Github. The directory

structure is as follows:

• PIMBench: Contains benchmark implementations of the

PIMBench suite.

• bit-serial: Contains bit-serial microcode implementation.

• libpimeval: Contains the PIMeval simulator implementation.

• tests: Contains test files for testing PIMeval functionality.

• third_party: Stores third-party code. Currently, the simulator

does not use any third-party libraries.

• .gitignore: Prevents including executables and similar files in

the git repository.

• LICENSE: Contains the license information.

• Makefile: A common makefile that builds both the simulator

and benchmarks.

• README.md: Provides detailed instructions to build and run

the simulator and benchmarks.

• build_run.sh: A shell script that sequentially builds the

simulator for three different PIM variants mentioned in the

paper, navigates to each benchmark directory, and executes

each benchmark.

Listing 2 provides instructions for running and testing

individual benchmarks for the three different PIM devices

discussed in this paper. For users who wish to execute all

benchmarks across the three PIM devices, the build_run.sh
script can be used. It is important to note that this process

may take several days to complete.

1 git clone https://github.com/UVA-LavaLab/PIMeval-PIMbench
2 cd PIMeval-PIMbench/
3 #make and test for bit-serial
4 make -j PIM_SIM_TARGET=PIM_DEVICE_BITSIMD_V_AP
5 cd PIMbench/<app_directory>/PIM
6 ./<executable_name>.out
7 #make and test for fulcrum
8 make clean
9 make -j PIM_SIM_TARGET=PIM_DEVICE_FULCRUM
10 cd PIMbench/<app_directory>/PIM
11 ./<executable_name>.out
12 #make and test for bank-level
13 make clean
14 make -j PIM_SIM_TARGET=PIM_DEVICE_BANK_LEVEL
15 cd PIMbench/<app_directory>/PIM
16 ./<executable_name>.out

Listing 2: Getting Started

D. Evaluation and expected results
Upon executing each benchmark for each PIM device, the

output displays PIM statistics, including the runtime for the

PIM kernel and the runtime for data movement. Listing

3 provides an example output for the vector addition. For

benchmarks involving host execution, the output also includes

the host elapsed time. When comparing each benchmark with

the CPU baseline, we sum these three runtimes to obtain the

total benchmark runtime, which is then used to calculate the

speedup. For comparisons with the GPU baseline, we add the

PIM kernel runtime and the host elapsed time, and use this

combined time to calculate the speedup against the GPU.

1 ./vec-add.out
2 Running Vector Add on PIM for vector length: 2048
3

4 PIM-Info: Current Device = PIM_FUNCTIONAL, Simulation Target = PIM_DEVICE_FULCRUM
5 PIM-Info: Config: #ranks = 4, #bankPerRank = 128, #subarrayPerBank = 32, #

rowsPerSubarray = 1024, #colsPerRow = 8192
6 PIM-Info: Aggregate every two subarrays as a single core
7 PIM-Info: Created PIM device with 8192 cores of 2048 rows and 8192 columns.
8 PIM-Info: Created thread pool with 11 threads.
9 ----------------------------------------
10 PIM Params:
11 PIM Device Type Enum : PIM_FUNCTIONAL
12 PIM Simulation Target : PIM_DEVICE_FULCRUM
13 Rank, Bank, Subarray, Row, Col : 4, 128, 32, 1024, 8192
14 Number of PIM Cores : 8192
15 Number of Rows per Core : 2048
16 Number of Cols per Core : 8192
17 Typical Rank BW : 25.600000 GB/s
18 Row Read (ns) : 28.500000
19 Row Write (ns) : 43.500000
20 tCCD (ns) : 3.000000
21 Data Copy Stats:
22 Host to Device : 16384 bytes
23 Device to Host : 8192 bytes
24 Device to Device : 0 bytes
25 TOTAL --------- : 24576 bytes 0.000224ms Runtime 0.001602mj Energy
26

27 PIM Command Stats:
28 PIM-CMD : CNT EstimatedRuntime(ms) EstimatedEnergyConsumption(mJ)
29 add.int32.h : 1 0.001660 0.004197
30 TOTAL ----- : 1 0.001660 0.004197
31 ----------------------------------------

Listing 3: Example Output for Vector Add Benchmark

E. Notes
Running all the benchmarks for the three different PIM

architectures may take several days. To expedite the process,

users can opt to run only the benchmarks mentioned in the

paper with very small data sizes. In this case, users will need

to manually navigate to each benchmark directory and refer

to the help text to provide the different input parameters for

each benchmark.

This project is in under active development. Please check

our github for the most recent updates.


