
Fall 2021 CS 3330 Final KEY, Page 1 of 12

variant

unshuffledComputing ID: KEY

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

On my honor as a student I have neither given nor received aid on this exam.

TPEGS FOOTER HERE rev. A

Fall 2021 CS 3330 Final KEY, Page 2 of 12

variant

unshuffledComputing ID: KEY

1. For the following question, suppose memory initially contains the following bytes:
memory address byte value
… …
0x1000 0x44
0x1001 0x54
0x1002 0x64
0x1003 0x74
0x1004 0x84
0x1005 0x00
0x1006 0x10
0x1007 0x20

memory address byte value

0x1008 0x40
0x1009 0x50
0x100a 0x66
0x100b 0x78
0x100c 0x9A
0x100d 0xBC
0x100e 0x10
0x100f 0x20

memory address byte value

0x1010 0x99
0x1011 0x98
0x1012 0x97
0x1013 0xA0
0x1014 0xB0
0x1015 0xC0
0x1016 0xD0
0x1017 0xE0
… …

(a) (4 points) When reading a 4-byte value from address 0x1008 and interpreting them as little-endian,
what value is read? Write your answer in hexadecimal; if not enough information is given write
“unknown” and explain briefly.

0x78665040

(b) Suppose %rax contains 0x1000 and %rcx contains 0x12345678, and the Y86-64 instruction
rmmovq %rcx, 0x10(%rax) is run. After this happens, write down what the values at each of the
following addresses will be.

i. (2 points) 0x100f
0x20

ii. (2 points) 0x1011
0x56

iii. (2 points) 0x1017
0x00

(c) (4 points) Suppose %rbx contains 0x800 and %rcx contains 0x12345678, After running the x86-64
instruction leaq 0x5(%rbx,%rbx), %rcx, the value of \%rcx will be? Write your answer as a
hexadecimal number. (leaq is the 64-bit version of the load effective address instruction.) If not
enough information is given, write “unknown” and explain briefly.

0x1005

rev. A

Fall 2021 CS 3330 Final KEY, Page 3 of 12

variant

unshuffledComputing ID: KEY

2. For the following questions, consider the following assembly function “foo” which takes one integer
argument and has one integer return value:

foo:
movq %rdi, %rax
shlq $4, %rdi
andq $0xF0, %rdi
andq $0xF, %rax
orq %rdi, %rax
ret

(shlq is the shift left instruction; andq is bitwise and instruction; orq is the bitwise or instruction)
(a) (4 points) When this function is called with a argument of 0x21, what will its return value be?

0x11

(b) When this function is called with an argument of 0x1, what will the value of the condition codes SF
and ZF be after its first andq instruction executes?

i. (2 points) SF
0

ii. (2 points) ZF
0

(c) (5 points) If this function is executed on an out-of-order, multiple issue processor, the shlq instruction
could execute at the same time as which of the following instructions? Select all that apply.

√
andq $0xF, %rax

© orq %rdi, %rax
√

movq %rdi, %rax
© andq $0xF, %rax
© andq $0xF0, %rdi

3. For the following questions, consider the following C code:

int array[4] = {0,1,2,3};
int *p = &array[0];
p += 2;
*p = 8;
p[1] = 9;

(a) (4 points) After the above code runs, what is the value of the first four elements of array?
{ 0 , 1 , 8 , 9 ,…}

(b) (4 points) After the above code runs, if the address of array[0] is 0x1234 and ints take up 4 bytes,
what is the final value of the pointer p?

0x123c

rev. A

Fall 2021 CS 3330 Final KEY, Page 4 of 12

variant

unshuffledComputing ID: KEY

4. (4 points) Consider the following C function:

unsigned int mystery(unsigned int argument) {
int value1 = ((argument & 0xFF) << 16);
int value2 = (argument & 0xFF00);
return value1 | value2;

}

Which of the following describes what this function returns?
© its argument with the least significant byte of its argument moved into the third least signif-

icant byte and all other bytes cleared
© its argument with the least significant and second least significant byte swapped, while keep-

ing the other bytes the same
√

its argument with the least significant byte of its argument moved into the third least signif-
icant byte and all other bytes except the second least significant byte cleared

© a number which is all zeroes except for its second least significant byte, and that byte is
constructed by bitwise or’ing the least significant byte of the argument with the second least
significant significant byte of the argument

© its argument with the least significant and second least significant byte swapped, while clear-
ing the other bytes

© none of the above:

rev. A

Fall 2021 CS 3330 Final KEY, Page 5 of 12

variant

unshuffledComputing ID: KEY

5. For these questions, consider the single-cycle Y86-64 processor we discussed in lecture (and imple-
mented in the HCL homeworks). A diagram of this processor is included in the reference material at
the end of the exam. Suppose we want to add a new instruction to this processsor immovq I, D(rA)
which would move the 8-byte constant I into memory at address D+R[rA] (where R[rA] represents
the value of the register with index rA).

(a) (5 points) Which of the following changes would we need to make to our single-cycle processor to
support this insturction? Select all that apply.

© increasing the width of one or more of the ALU inputs
√

increasing the size of the output of the instruction memory
© increasing the size of the output of the data memory
© increasing the size of the input to the data memory
© adding a new operation to the ALU

(b) (4 points) When this instruction is executing, the data input to the data memory will be equal to
© one of the outputs of the register file
© the output of the program counter (PC) register plus a fixed constant
© the output of the ALU
© part of the output of the instruction memory
© the output of the program counter (PC) register
© none of the above, explain briefly:

(c) (4 points) Which encoding for this new instruction would likely minimize the amount of additional
logic or circuitry (outside of any changes to the register file, memories, or register file) required to
implement it? (rB represents the register index for rB, D and I represent the 8-byte constants D and I,
respectively (in little-endian). When two values are listed for a byte they represent the most significant
4 bits of that byte, followed by the least significant 4 bits of that byte.)

© byte 0: 0xC, rB; byte 1–8: D; byte 9–16: I
© byte 0: 0xC0; byte 1: 0xF, rB; byte 10–17: I ; byte 2–9: D
√

byte 0: 0xC0; byte 1: 0xF, rB; byte 2–9: D; byte 10–17: I
© byte 0: 0xC0; byte 1: rB, 0xF; byte 10–17: I ; byte 2–9: D
© byte 0: 0xC0; byte 1: rB, 0xF; byte 10–17: D; byte 2–9: I
© byte 0: 0xC0; byte 1–8: D; byte 9–16: I ; byte 17: 0xF, rB

rev. A

Fall 2021 CS 3330 Final KEY, Page 6 of 12

variant

unshuffledComputing ID: KEY

6. For following questions, consider a seven-stage pipelined processor with the following pipeline stages:
• fetch
• decode
• execute 1
• execute 2
• memory 1
• memory 2
• writeback

In the case of stages divided into two compared to the five-stage pipelined processor discussed in lecture,
the result of the stage (the ALU result for execute, the value read from the data memory for memory)
is not available until near the end of the second stage.
This processor uses branch prediction which assumes all branches (e.g. conditional jumps) are taken.
The result of a conditional jump is determined near the end of the execute 2 stage of the conditional
jump instruction, so the correct instruction can be fetched during the conditional jump’s memory 1
stage.

(a) The following questions ask about how the processor would execute the assembly function example,
shown below, assuming the conditional jump is not taken. Each instruction is marked with a number
that is used in the questions below:

example:
addq %r8, %r9 // 1
jle label // 2
subq %r10, %r11 // 3
andq %r12, %r13 // 4
rmmovq %r9, 0(%r11) // 5
rmmovq %r13, 0(%r15) // 6
ret // 7

label:
xorq %r10, %r11 // 8
pushq %r12 // 9
mrmovq 0(%r14), %r8 // 10
mrmovq 8(%r14), %r9 // 11
mrmovq 16(%r14), %r10 // 12
ret

i. (4 points) As a result of branch misprediction, the processor will fetch some instructions which
should not be executed. Identify these instructions by their numbers above.

8-10

ii. (4 points) When executing instructions 3–7, how many cycles of stalling will be required? (Count
each time a new instruction cannot be fetched as a cycle of stalling.)

0

iii. (8 points) When executing instructions 3–7, the values of some registers must be retrieved by
forwarding (instead of using a value from the register file). Identify which register values in which
instructions below. (More blanks are provided than is required.)
For instruction 3:
For instruction 4:

rev. A

Fall 2021 CS 3330 Final KEY, Page 7 of 12

variant

unshuffledComputing ID: KEY

For instruction 5:
For instruction 6:
For instruction 7:

rev. A

Fall 2021 CS 3330 Final KEY, Page 8 of 12

variant

unshuffledComputing ID: KEY

7. Suppose we build a processor using the following components, which require the following amounts of
time to perform their operations (reading values, writing values, performing computations, etc.):

• registers for program counter and/or pipeline registers: 10 ps register delay per register
• instruction cache: 200 ps
• predicted program counter value computation (given opcode and current program counter): 50

ps
• register file read: 150 ps
• register file write: 150 ps
• ALU operation: 225 ps
• data cache read/write: 175 ps

Assume other components require negligible time.
(a) (4 points) If we build a single-cycle (non-pipelined) processor using this design, what would we expect

the cycle time to be?
200 ps (fetch; predicted PC happens in parallel) + 150 ps (reg read) + 225 ps (ALU) + 175 ps (data cache access) + 150 ps (reg write) = 825 ps; also give credit for 835 ps (PC register delay)

(b) (4 points) If we build a five-stage pipelined processor using these components, what would we expect
its cycle time to be?

235 ps (partial credit for 225 ps)

rev. A

Fall 2021 CS 3330 Final KEY, Page 9 of 12

variant

unshuffledComputing ID: KEY

8. For the following questions, consider a two-way, write-back, wire-allocate set associative cache with a
least recently used (LRU) replacement policy with the following contents:

way 0 way 1
index valid tag data bytes dirty valid tag data bytes dirty LRU way
0 1 0x12 33 44 66 99 0 1 0x23 55 66 77 99 0
1 1 0x12 44 55 66 00 0 1 0x03 AA BB CC DD 1
2 1 0x12 00 01 02 03 0 1 0x04 00 01 02 03 1
3 1 0x12 08 09 0A 0B 0 1 0x06 04 05 06 07 0

The data bytes shown are a sequence of hexadecimal numbers, starting from the data byte at the lowest
address.
Each question is independent and starts from the cache in the state shown above.

(a) (4 points) Based on how the above cache splits up addresses, write the address with tag 0x01, index
0x1, and offset 0x3. (The value at this address is not currently stored in the cache.)

0b10111 = 0x17

(b) For each of the following accesses evaluated independently, identify wheter it would be a hit and whether
it would require updating the LRU way or dirty bit information. Assume the cache starts in the state
shown above before each access.

i. (6 points) reading a byte from an address with tag 0x12, index 0x0, offset 0x1 Select all that
apply.√

hit, returning 0x66 © updates a dirty bit
√

updates LRU way © causes a
value to be written to the next level of cache

ii. (5 points) writing a byte from an address with tag 0x12, index 0x2, offset 0x1 Select all that
apply.√

hit
√

updates a dirty bit © updates LRU way © causes a value to be written to the
next level of cache

iii. (6 points) reading a byte from an address with tag 0x06, index 0x3, offset 0x0 Select all that
apply.√

hit, returning 0x04
√

updates a dirty bit © updates LRU way © causes a
value to be written to the next level of cache

9. For the following questions, consider a system with the following caches:
• an L1 unified (data and instruction) cache:

– write-back, write-allocate policy
– 16KB total size
– 4-way set associative
– 64B block size
– LRU replacement policy
– 3 cycle hit time

• an L2 unified (data and instruction) cache:
– write-back, write-allocate policy
– a 512KB cache size
– 8-way set associative
– 64B block size
– LRU replacement policy
– 10 cycle hit time

Assuming that when there is a miss in the L1 cache, it takes 3 cycles (the hit time) to detect this, and
then an L2 access starts, and that the access time for main memory is 200 cycles.

rev. A

Fall 2021 CS 3330 Final KEY, Page 10 of 12

variant

unshuffledComputing ID: KEY

(a) (6 points) Divide the address 0xF1234 into tag, index, and offset for the L1 cache above. (Write your
answers in either hexadecimal or binary.)
Tag: 0xF1 = 0b11110001 ; Index: 0b001000 = 0x8 ; Offset: 0b111000 = 0x34

(b) (4 points) If a program has a 90% hit rate in the L1 cache and a 50% hit rate in the L2 cache, would
be the average memory access time for an access to the L1 cache (in cycles)? You may write your
answer as an unsimplified arithmetic expression.

3 + 0.1 · (10 + 0.5 · 100) = 9

(c) (6 points) When a value is written to the L1 cache, which of the following could happen? Select all
that apply.

© another value which shares the same tag bits (but has different index bits) will be written to
the L2 cache

√
another value which shares the same index bits (but has different tag bits) will be written to
main memory

© that value is also written to the L2 cache
√

another value which shares the same index bits (but has different tag bits) will be written to
the L2 cache

© that value is also written to main memory
© another value which shares the same tag bits (but has different index bits) will be written to

main memory

10. (10 points) Consider the following C code:

char array[24];
void foo() {

for (int i = 0; i < 5; ++i) {
for (int j = 0; i < 24; j += 6) {

array[j] += 1;
}

}
}

Assuing that:
• foo() only accesses the data cache to access array
• the data cache is initially empty (all invalid) when foo() starts
• the address of array[0] is a multiple of 220

• the code is run using a 16-byte direct-mapped cache with 4-byte blocks
How many data cache misses will occur when foo() is run?

Solution: 13; first iteration (5 misses): miss 0 (0-3; set 0); miss 6 (4-7; set 1); miss 12 (12-15; set
3); miss 18 (16-19; set 0); subsequence iterations: miss 0 and 18 (8 total)

rev. A

Fall 2021 CS 3330 Final KEY, Page 11 of 12

variant

unshuffledComputing ID: KEY

11. For the following questions, consider the following function:

void example(int N, int *A, int *B, int *C) {
for (int i = 0; i < N; i += 1) { // loop 1

for (int j = 0; j < i; j += 1) { // loop 2
C[i * N + j] += A[i * N + j] * B[j * N + i];

}
for (int j = i; j < N; j += 1) { // loop 3

C[i * N + j] += B[i * N + j] * A[j * N + i];
}

}
}

(a) (5 points) Which of the following transformations can be performed without adding some check for
A, B, and C pointing to overlapping arrays? Select all that apply.

© using vector instructions to perform the additions to ‘C’
√

unrolling the loop labelled ‘loop 2’
√

unrolling the loop labelled ‘loop 3’
© performing cache blocking
© transforming the above code so the inner loop(s) iterates through ‘i’ instead of ‘j’

(b) (4 points) Which of the following transformations are likely to improve the cache locality of the the
above code? Select all that apply.

© transforming the above code so the inner loop(s) iterates through ‘i’ instead of ‘j’
© unrolling the loop labelled ‘loop 2’
√

performing cache blocking
© unrolling the loop labelled ‘loop 3’

(c) (4 points) Which of the following changes to (the non-vectorized code in) example() would result in
a function that is simpler to vectorize? (Each of these changes makes a new function that calculates
something different.) Select all that apply.

√
accessing B[i * N + j] in loop 2 (instead of B[j * N + i])

© changing loop 3 to increment j by 8 instead of 1
© accessing C[i] in loop 3 (instead of C[i * N + j])
√

accessing A[j + i] in loop 3 (instead of A[j * N + i])

12. For these quetions, consider a system which has:
• 33-bit virtual addresses
• 8192 byte pages (213 byte pages)
• 8 byte page table entries
• 2-level page tables, with 1024 entries in tables at each level
• a 16-entry, 8-way TLB with a random replacement policy
• a 32 KB direct-mapped L1 cache (shared between data and instructions)

For the questions below, the first-level page table is the one pointed to by the page table base register.
(a) (3 points) If the page table base register contains 0x100000, then what would the physical address

of the first-level page table entry for virtual page 4 be?
0x100000

rev. A

Fall 2021 CS 3330 Final KEY, Page 12 of 12

variant

unshuffledComputing ID: KEY

(b) (3 points) If the second-level page table for virtual page 4 starts at physical address 0x200000, then
what is the physical address of the second-level page table entry for virtual page 4?

0x200020

(c) (4 points) The page table lookup for the virtual address would use the same first-level page table
entry as the lookup for . Select all that apply.

√
0x012345001

© 0x022345678
√

0x012346678
© 0x112345678

(d) (4 points) The TLB lookup for the virtual address would access the same TLB set as the lookup for
. Select all that apply.

√
0x012345001

√
0x022345678

© 0x012346678
√

0x112345678
(e) (4 points) If a memory access to virtual address 0x012345678 has a TLB hit during its virtual to

physical adress translation, then . Select all that apply.
© the memory access would also be an L1 cache hit
© an access to 0x012345679 would also cause a TLB hit
© there was a prior access to this virtual address
© the access would not result in an exception could if read-only/kernel-mode-only/etc.

(f) (4 points) How much storage (in bits) does the TLB have for tags? (You may leave your answer as an
unsimplified arithmetic expression.)

16 × (33 − 14) = 16 × 19 = 304 bits

13. Suppose a single-core system x86-64 has three active processes A, B, and C, and
• process A is waiting for keyboard input before it can run again
• process B and C are running infinite loops performing some computation

(a) (4 points) Based on the scenario described above, the value of the processor register %rax could be
. Select all that apply.

© process A’s value for %rax
√

process B’s value for %rax
√

process C’s value for %rax
√

a value for %rax used by the OS
(b) (5 points) Order these events that might occur after keyboard input occurs:

event
2 an operating system function starts running

1 the program counter for process B or C is saved

3 the registers for process A are restored from a saved copy

4 a return from exception instrution is executed

5 code for process A starts running

rev. A

