
1

anti-anti-virus
defeating signatures:

avoid things compilers/linkers never do

make analysis harder
takes longer to produce signatures
takes longer to produce “repair” program
may evade attempts to automate analysis

make changing viruses
make signatures less effective

2

some terms
armored viruses

viruses designed to make analysis harder

metamorphic/polymorphic/oligomorphic viruses
viruses that change their code each time
different terms — different types of changes (later)

3

obfuscation, generally
malware often obfuscates (obscures) its code

several reasons for this
prevent their from being signatures
make analysis more difficult
prevent others from modifying+copying

note: many of these technique sometimes employed by commercial
software

intended to prevent copying/reverse-engineering

4

Tigress as example of obfuscation
Tigress — researcher developer obfuscation tool

https://tigress.wtf

includes many transformations typical of real-world obfuscation
we’ll talk about the ideas behind many of them

future assignment involving code obfuscated with Tigress

5

example Tigress transformations
we’ll look at some simple ones Tigress provides

I’m showing you the pattern,
not the actual code Tigress generates

6

Tigress: provided transform: EncodeLiterals
void Print() { printf("Hello!"); printf("World!"); }

void GetString(int x, char *buffer) {
switch (x) {
case 0:

buffer[0] = 'H'; buffer[1] = 'e'; buffer[2] = 'l'; ...;
break;

case 1:
buffer[0] = 'W'; buffer[1] = 'o'; buffer[2] = 'r'; ...;
break;

case 2:
...
}

}
void Print() { char buf[100];

GetString(0, buf); printf(buf);
GetString(1, buf); printf(buf);

}

7

Tigress: provided transform: Merge
void foo(int a) { code for foo }
void bar(int a) { code for bar }

... foo(x) + bar(y) ...

void foo_bar(int s, int a) {
if (s == 0) {

code for foo
} else {

code for bar
}

}

... foo_bar(0, x) + foo_bar(1, y) ... 8

Tigress: provided transform: Split
void foo(int a, int b) {

int x = ...;
code for foo part 1
code for foo part 2

}

void foo1(int *a, int *b, int *x) {
code for foo part 1

}
void foo2(int *a, int *b, int *x) {

code for foo part 2
}
void foo(int a, int b) {

int x;
foo1(&a,&b,&x); foo2(&a,&b,&x);

}

9

Tigress: example transform: Flatten
void foo() {

A;
if (X) {

B;
} else {

C;
}
D;

}

void foo() {
int s = 0;
while (1) {

switch(s) {
case 0: A; s = X ? 1 : 2; break;
case 1: B; s = 3; break;
case 2: C; s = 3; break;
case 3: D; return;
}

}
}

10

some other xforms
add useless conditionals, etc.

encode constants like strings

generate machine code at runtime and jump to it

turn function into custom bytecode interpreter
data array holding effective function code

add checks that machine code hasn’t changed

11

transformations so far?
all can be combined!

annoying for analysis

hard to do without unobfuscated code
can’t easily be redone/changed by self-replicating malware

probably more distinctive than original code for signatures
(just match the transformed version since it won’t change often)

next topic: transformations to avoid signatures
(Tigress supports those, but not our primary examples)

12

obfuscation versus analysis
which of these does obfuscation seem most/least likely to hamper
doing?

A. determining what remote servers some malware contacts

B. determining a password the malware requires to access extra
functionality

C. accessing extra functionality in the malware protected by a
password

D. determining whether the malware will behave differently based
on the time

13

recall: library calls in viruses
viruses making library calls

can’t use normal dynamic linker stuff

common solution: search by name:
char *names[] = GetFunctionNamesFrom("kernel32.dll");
for (int i = 0; i < numFunctions; ++i) {

if (strcmp(names[i], "GetFileAttributesA") == 0) {
return functions[i];

}
}

problem: legit application code won’t do this

easy to look for string ‘GetFileAttributesA’
14

searching for hashes
char *functionNames[] = GetFunctionsFromStandardLibrary();
/* 0xd7c9e758 = hash("GetFileAttributesA") */
unsigned hashOfString = 0xd7c9e758;
for (int i = 0; i < num_functions; ++i) {

unsigned functionHash = 0;
for (int j = 0; j < strlen(functionNames[i]); ++j) {

functionHash = (functionHash * 7 +
functionNames[i][j]);

}
if (functionHash == hashOfString) {

return functions[i];
}

}

15

encrypted(?) data
char obviousString[] =

"Please open this 100%"
" safe attachment";

char lessObviousString[] =
"oSZ^LZ\037POZQ\037KWVL\037\016\017"
"\017\032\037L^YZ\037^KK^\\WRZQK";

for (int i = 0; i < sizeof(lessObviousString) − 1; ++i) {
lessObviousString[i] =

lessObviousString[i] ^ '?';
}

16

encrypted data and signatures
get rid of some easy signatures

especially if ‘key’ changes or hashes used

but not enough:
decryption code is very distinctive

can we do better with this “encryption” idea?

17

encrypted data and signatures
get rid of some easy signatures

especially if ‘key’ changes or hashes used

but not enough:
decryption code is very distinctive

can we do better with this “encryption” idea?

17

encrypted(?) viruses
char encrypted[] = "\x12\x45...";
char key[] = "...";
virusEntryPoint() {

decrypt(encrypted, key);
goto encrypted;

}
decrypt(char *buffer, char *key) {...}

choose a new key each time!

not good encryption — key is there

sometimes mixed with compression

18

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 19

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 19

example: Cascade decrypter
lea encrypted_code, %si

decrypt:
mov $0x682, %sp // length of body
xor %si, (%si)
xor %sp, (%si)
inc %si
dec %sp
jnz decrypt

encrypted_code:
...

Szor Listing 7.1 19

exercise: some ideas for handling decrypters?
thinking of some anti-decrypter strategies for Cascade
which of the following strategies most practical? least practical?

A. matching patterns of decrypted malware code in memory while
executables are running
B. marking executables with too much random-looking data in
them
C. matching the decrypter in a normal signature scan
D. trying every possible ‘key’ for decryption on every executable
and matching decrypted malware code against it
E. detecting sequence of file operations Cascade makes instead of
its code

20

decrypter
more variations:

nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

“disinfection” — want to precisely identify malware

21

decrypter
more variations:

nested decrypters, different orders, etc.

still problem: decrypter code is signature

…but harder to distinguish different malware

“disinfection” — want to precisely identify malware

21

playing mouse
encrypted code? probably still have fast signature from decrypter

goal: make signatures not work or really slow

22

playing mouse
encrypted code? probably still have fast signature from decrypter

goal: make signatures not work or really slow

23

oligomorphic virus/worm
code ‘decrypter’

‘encrypted’ code

decrypter
generator

int KEY = RAND();
write(MOV_OPCODE, ...);
...
for (int i = RAND(); i > 0; −−i)

write(NOP_OPCODE);
...
write(XOR_OPCODE, KEY, ...);
...

24

producing changing malware
‘encrypted’ code can generate new decrypter
not just nop:

switch between synonym instructions
add $4, ..., sub $-4, ...

swap registers
random instructions that manipulate ‘unused’ registers
…
template to generate a bunch of decrypters

Szor calls such malware “oligomorphic”
25

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructionsSzor: “96 different decryptor patterns”

26

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructionsSzor: “96 different decryptor patterns”

26

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.

variable choices of loop instructions

Szor: “96 different decryptor patterns”

26

example: W95/Memorial
mov $0x405000, %ebp
mov $0x550, %ecx
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
dec %ecx
jnz decrypt
...

mov $0x550, %ecx
mov $0x13bc000, %ebp
lea 0x2e(%ebp), %esi
add 0x29(%ebp), %ecx
mov 0x2d(%ebp), %al

decrypt:
nop
nop
xor %al, (%esi)
inc %esi
nop
inc %al
loop decrypt
...
... Szor, Listsings 7.3 and 7.4

change instruction order; location of decryption key/etc.variable choices of loop instructions

Szor: “96 different decryptor patterns”

26

more advanced changes?
Szor calls W95/Memorial oligomoprhic

“encrypted” code
plus small changes to decrypter

What about doing more changes to decrypter?
many, many variations

Szor calls doing this polymorphic

polymorphic example: 1260

27

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

28

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

28

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

28

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructionsdifferent decryption “key”

28

example: 1260 (virus)
inc %si
mov $0x0e9b, %ax
clc
mov $0x12a, %di
nop
mov $0x571, %cx

decrypt:
xor %cx, (%di)
sub %dx, %bx
sub %cx, %bx
sub %ax, %bx
nop
xor %cx, %dx
xor %ax, (%di)
...

mov $0x0a43, %ax
nop
mov $0x15a, %di
sub %dx, %bx
sub %cx, %bx
mov $0x571, %cx
clc

decrypt:
xor %cx, (%di)
xor %cx, %dx
sub %cx, %bx
nop
xor %cx, %bx
xor %ax, (%di)
...

adapted from Szor, Listing 7.5

do-nothing instructions

different decryption “key”

28

‘mutation engine’
CopyDecrypter(original_code, new_code) {

for (each instruction in original_code) {
new_code += RandomNumberOfNops();
new_code += PossiblyChooseVariant(instruction)

}
}

29

terminology: packers
programs that decode and run code at runtime called packers

packers exist to do this for non-malware reasons

example motivations:
compression
packaging libraries + executable together

30

from UPX documentation

31

handling packers
easiest way to decrypt self-decrypting code — run it!

solution: virtual machine/emulator/debugger in antivirus software

32

handling packers with
debugger/emulator/VM
run program in debugger/emulator/VM for a while

one heuristic: until it jumps to written data

example implementation: unipacker
(https://github.com/unipacker/unipacker)

then dump memory to get decrypted machine code

and/or obtain trace of instructions run

33

unneeded steps
understanding the “encryption” algorithm

more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

34

unicorn as tool

35

unicorn example (1)
$ cat test.s

mov $10000, %edi
imul $2, %rdi, %rdi

$ gcc -c test.s; objcopy -j .text test.o -O binary test.bin

code = Path('test.bin').read_bytes()
uc = Uc(UC_ARCH_X86, UC_MODE_64)
uc.mem_map(0x10000, 1024 * 1024)
uc.mem_write(0x10000, code)
uc.emu_start(0x10000, 0x10000 + len(code))
print("RDI",uc.reg_read(UC_X86_REG_RDI))

RDI 20000

36

unicorn example (2)
...
uc.hook_add(UC_HOOK_CODE, hook_code_func)
def hook_code_func(uc, addr, size, user_data):

print(f"{addr:x} ({size} byte instruction): "
f"{codecs.encode(

uc.mem_read(addr, size), 'hex'
).decode()}")

uc.emu_start(0x10000, 0x10000 + len(code))
10000 (5 byte instruction): bf10270000
10005 (4 byte instruction): 486bff02

37

unipacker psuedocode
data, size = parse_executable()
uc.mem_map(BASE_ADDR, size)
uc.mem_write(BASE_ADDR, data)
for dll in get_executable_libraries():

uc.mem_map(dll['addr'], dll['size'])
uc.mem_write(dll['addr'], dll['data'])

uc.hook_add(UC_HOOK_CODE, before_execute)
...
uc.emu_start(...)

called before each instruction
def before_execute(uc, addr, ...):

if in_modified_section(addr):
dump_memory_now()

...
38

example tool: qiling
https://qiling.io

uses Unicorn emulator but adds…

emulation for a lot of system calls
including (hopefully) limiting file accesses to specific “virtual root”
directory

loaders for common executable/bootloader formats

idea: get log of malware activity / add custom behaviors

39

PANDA.re
fork of emulator QEMU

supports whole-system record+replay

idea: run virtual machine with malware

replay run with analyses that can look at all instructions run

examples:
identify where dat from a specific file was used
search memory for string throughout execution
function call history

40

traces instead of unpacked code
instead of matching signatures on code at rest

can match signature on trace of executed instructions

41

using instruction traces (1)
instruction traces are huge…
0x10: add %rax, %rbx
0x12: mov 0x140(%rbx), %rsi
0x14: mov %rsi, 0x150(%rbx)
0x16: jle 0x10
0x10: add %rax, %rbx /* duplicate of before */
0x12: mov 0x140(%rbx), %rsi
0x14: mov %rsi, 0x150(%rbx)
0x16: jle 0x10
0x18: mov $10, %rcx
...
but can simplify: e.g. remove duplicates (loops) 42

using instruction traces (2)
elegant way to analyze ‘tricky’ techniques
self-modifying code:

0x10: add %rax, %rbx
0x12: mov 0x140, %rax
0x14: mov %rsp, 0x0C

/* modifies code we will execute */
0x16: jle 0x10
0x10: sub %rcx, %rdx
0x12: ...

multiple layers of ‘decrypters’/code generation
… 43

antivirtualization
a lot of malware tries to behave different in a VM

why?
used by antivirus software to handle packers
used to analyze malware
…

44

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

45

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

46

virtual devices
VirtualBox device drivers?

VMware-brand ethernet device?

…

47

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

48

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation

solution: virtual clock

use operations not supported by VM

solution: support everything

48

slower operations
not-“native” VM:

everything is really slow

otherwise — trigger “callbacks” to VM implementation:
system calls?
allocating and accessing memory?

…and hope it’s reliably slow enough

49

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

50

antivirtualization techniques
query virtual devices

solution: mirror devices of some real machine

time operations that are slower in VM/emulation
solution: virtual clock

use operations not supported by VM

solution: support everything

50

operations not supported
missing instructions kinds?

FPU instructions
MMX/SSE instructions
undocumented (!) CPU instructions

not handling OS features?
setting up special handlers for segfault
multithreading
system calls that make callbacks
…

antivirus not running system VM to do decryption
needs to emulate lots of the OS itself

51

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

52

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

53

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

54

probability

if (randomNumber() == 4) {
unpackAndRunEvilCode();

}

antivirus emulator:
randomNumber() == 3
looks clean!

real execution #1:
randomNumber() == 2
no infection!

real execution #N :
randomNumber() == 4
infect!

55

attacking emulation patience
looking for unpacked virus in VM

…or other malicious activity

when are you done looking?

malware solution: take too long
not hard if emulator uses “slow” implementation

malware solution: don’t infect consistently

malware solution: use more memory, etc.

56

stopping packers
it’s unusual to jump to code you wrote

modern OSs/compilers: memory not writeable and executable

LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12
filesz 0x00003458 memsz 0x00003458 flags r--

LOAD off 0x00004000 vaddr 0x00004000 paddr 0x00004000 align 2**12
filesz 0x00013091 memsz 0x00013091 flags r-x

LOAD off 0x00018000 vaddr 0x00018000 paddr 0x00018000 align 2**12
filesz 0x00007458 memsz 0x00007458 flags r--

LOAD off 0x0001ffd0 vaddr 0x00020fd0 paddr 0x00020fd0 align 2**12
filesz 0x000012a8 memsz 0x00002570 flags rw-

57

stopping packers
it’s unusual to jump to code you wrote

modern OSs/compilers: memory not writeable and executable

LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12
filesz 0x00003458 memsz 0x00003458 flags r--

LOAD off 0x00004000 vaddr 0x00004000 paddr 0x00004000 align 2**12
filesz 0x00013091 memsz 0x00013091 flags r-x

LOAD off 0x00018000 vaddr 0x00018000 paddr 0x00018000 align 2**12
filesz 0x00007458 memsz 0x00007458 flags r--

LOAD off 0x0001ffd0 vaddr 0x00020fd0 paddr 0x00020fd0 align 2**12
filesz 0x000012a8 memsz 0x00002570 flags rw-

57

diversion: DEP/W^X
memory executable or writeable — but not both

exists for exploits (later in course), not packers

requires hardware support to be fast (early 2000s+)
various names for this feature:

Data Execution Prevention (DEP) (Windows)
W^X (“write XOR execute”)
NX/XD/XN bit (underlying hardware support)

(No Execute/eXecute Disable/eXecute Never)

usually special system call to switch modes
Linux: mprotect

58

unusual, but…
binary translation

convert machine code to new machine code at runtime

Java virtual machine, JavaScript implementations
“just-in-time” compilers

dynamic linkers
load new code from a file — same as writing code?

those packed commercial programs

programs need to explicitly ask for write+exec

59

OBFUSCATE assignment
modifying ‘password-protected’ tic-tac-toe game not to be

three versions:
just stripped
some Tigress transformations
‘encrypted’ code

60

exercise: generic detection limits?
consider strategy of running executable in virtual machine,
waiting until it jumps to code it wrote out
then matching patterns against code it’s about to run
which of these would cause problems with this technique?
which are easiest/hardest to workaround?

A. code decrypter and malicious code run at program exit, not startup
B. code decrypter and malicious code run when user clicks button in
program, not at startup
C. code decrypter allocates random address to write decrypted code to
D. code decrypter exits (without running malicious code) if processor
seems too slow
E. code decrypter decrypts another code decrypter 61

changing bodies
“decrypting” a malware body gives body for “signature”

“just” need to run decrypter

how about avoiding static signatures entirely
despite being self-replicating

called metamorphic
versus polymorphic — only change “decrypter”

62

example: changing bodies
pop %edx
mov $0x4h, %edi
mov %ebp, %esi
mov $0xC, %eax
add $0x88, %edx
mov (%edx), %ebx
mov %ebx, 0x1118(%esi,%eax,4)

pop %eax
mov $0x4h, %ebx
mov %ebp, %esi
mov $0xC, %edi
add $0x88, %eax
mov (%eax), %esi
mov %esi, 0x1118(%esi,%eax,4)

code above: after decryption

every instruction changes
still has good signatures

with alternatives for each possible register selection

but harder to write/slower to match
63

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

64

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

65

Evol instruction lengths
sounds really complicated?

virus only handles instructions it has:
about 61 opcodes, 32 of them identified by first four bits

e.g. opcode 0x7x – conditional jump

no prefixes, no floating point

only %reg or $constant or offset(%reg)

66

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

67

Evol transformations
some stuff left alone

static or random one of N transformations

example:

mov %eax, 8(%ebp)

push %ecx
mov %ebp, %ecx
add $0x12, %ecx
mov %eax, −0xa(%ecx)
pop %ecx

uses more stack space — save temporary
code gets bigger each time

Lakhotia et al., “Are metamorphic viruses really invincible?”, Virus Bulletin, Jan 2005 68

case study: Evol
via Lakhatia et al, “Are metamorphic viruses really invincible?”,
Virus Bulletin, Jan 2005.

“mutation engine”
run as part of propagating the virus

disassemble
instr.

lengths transform relocate

code

code

69

mutation with relocation
problem: mutations mess up jumps/calls

change were targets of jumps/calls are

table mapping old to new locations
list of number of bytes generated by each transformation

list of locations references in original
record relative offset in jump
record absolute offset in original

70

relocation example
mov ...
mov ...

decrypt:
xor %rax, (%rbx)
inc %rbx
dec %rcx
jne decrypt

orig. len new len instr
5 10 mov1
2 3 mov2
2 7 xor1
1 1 inc1
1 5 dec1
3 3 jne1

address loc orig. target new target

10+3+7+1+5+1
(jne1+1) xor1 (5 + 2) xor1 (10 + 3)

71

mutation engines
tools for writing polymorphic viruses

best: no constant bytes, no “no-op” instructions

tedious work to build state-machine-based detector
((almost) a regular expression to match it)
apparently done manually
automatable?

(but probably can…)

pattern: used until reliably detected

72

fancier mutation
Mutate(original_machine_code, new_machine_code) {

for (instruction in original_code) {
new_machine_code += ChooseNewCodeFor(instruction)

}
FixupJumpsIn(new_machine_code);

}

can do mutation on generic machine code

“just” need full disassembler

identify both instruction lengths and addresses

hope machine code not written to rely on machine code sizes, etc.

hope to identify tables of function pointers, etc.
73

mutation as infection technique
original

application

virus code

mutation engine infected
application

infected
application

74

fancier mutation
no “cavity” needed — create one

insert virus code by adjusting surrounding cod

obviously tricky to implement
need to fix all executable headers
what if you misparse assembly?
what if you miss a function pointer?

example: Simile virus

75

on goats
analysis and maybe detection uses goat files

“sacrificial goat” to get changed by malware

heuristics can avoid simple goat files, e.g.:
don’t infect small programs
don’t infect huge programs
don’t infect programs with huge amounts of nops
…

76

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

77

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

78

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?

79

implementing breakpoints
idea: change
movq %rax, %rdx
addq %rbx, %rdx // BREAKPOINT HERE
subq 0(%rsp), %r8
...

into
movq %rax, %rdx
jmp debugger_code
subq 0(%rsp), %r8
...

problem: jmp might be bigger than addq?
79

int 3
x86 breakpoint instruction: int 3

one byte instruction encoding: CC

debugger modifies code to insert breakpoint
has copy of original somewhere

invokes handler setup by OS
debugger can ask OS to be run by handler
or changes pointer to handler directly on old OSes

80

int 3 handler
kind of exception handler

exception handler = way for CPU to run OS code
(despite no actual normal jmp/etc. to OS code)

x86 CPU saves registers, PC for debugger

x86 CPU has easy to way to resume debugged code from handler

81

detecting int 3 directly (1)
checksum running code
mycode:

...
/* RBX = current sum; RAX = pointer to code */

movq $0, %rbx // Intel: mov RBX, 0
movq $mycode, %rax // Intel: mov RAX, OFFSET MYCODE

loop:
addq (%rax), %rbx // Intel: add RBX, [RAX]
addq $8, %rax // Intel: add 8, RAX

/* current sum += *code_ptr; code_ptr += ... */
cmpq $endcode, %rax
jl loop
cmpq %rbx, $EXPECTED_VALUE
jne debugger_found // if sum wrong, panic
...

endcode:
82

detecting int 3 directly (2)
query the “handler” for int 3

old OSs only; today: cannot set directly

modern OSs: ask if there’s a debugger attached

…or try to attach as debugger yourself
doesn’t work — debugger present, probably
does work — broke any debugger?

// Windows API function!
if (IsDebuggerPresent()) { ... }

83

modern debuggers
int 3 is the oldest x86 debugging mechanism

modern x86: 4 “breakpoint” registers (DR0–DR3)
contain address of program instructions
need more than 4? probably fallback to int 3

processor triggers exception when address reached
4 extra registers + comparators in CPU?

flag to invoke debugger if debugging registers used
enables nested debugging

84

diversion: debuggers
we’ll care about two pieces of functionality:

breakpoints
debugger gets control when certain code is reached

single-step
debugger gets control after a single instruction runs

85

anti-single-step
x86: single-stepping implemented with processor flag

causes OS to run after every instruction

can read flag normally with common debugger configurations
more modern systems may support hiding better

could also check timing

could also try to replace OS’s single-step handler

86

emulation based obfuscation
so far: always producing machine code and running it

analyzing machine code with virtual machine, debugger, etc.

alternate idea: invent a new instruction set

convert program to that instruction set

include interpreter for that instruction set

87

example: Tigress Virtualize transform (1)
input:
int example(int x) {

if (x > 10) {
printf("Yes!\n");

}
}

Tigress generates instruction set for stack-based machine
uses little stack instad of registers for most instructions
same design used by, e.g., Java VM

instructions can pop+push from stack for temporaries

88

example: Tigress Virtualize transform (2)
instruction set for example

call OPERAND=funcId with arguments LOCALS[1]
pop t1, pop t2, push t1>t2
push OPERAND
push table[OPERAND]

different variants for int, string, …
pop t1, LOCALS[OPERAND] = t1
pop t1, if (t1) goto OPERAND
return

customized for this function

each instruction has opcode, variable length (if operands)
89

example: Tigress Virtualize transform (3)
int example(int x) {

if (x > 10) {
printf("Yes!\n");

}
}

each line below one “instruction”
(actually encoded as part of array of bytes)
push OPERAND=10
push table[OPERAND=…] (argument x)
pop t1 pop t2 push t1>t2
pop t1, if (t1) goto OPERAND=OUT
push table[OPERAND=…] (string "Yes!")
pop t1, LOCALS[OPERAND=1] = t1
call OPERAND=…(printf) with arguments LOCAL1
OUT: …

90

example: Tigress emulator
_1_example_$sp[0] = _1_example_$stack[0];
_1_example_$pc[0] = _1_example_$array[0];
while (1) {
switch (*(_1_example_$pc[0])) {
...
}

}

pc variable representing emulated stack
switch statement based on opcode

sp variable representing emulated stack
91

effectiveness of this transformation?
huge performance impact

can do analysis on new instruction set
how much more difficult than working with original machine code?

instruction traces still helpful
about as easy to get record of everything done

92

attacking antivirus (1)
one common virus idea: interfere directly with antivirus

just modify antivirus software databases, etc.

preserve file checksums
so some AV software thinks file is unchanged
(doesn’t work with cryptographic hashes, but…)

register own handlers to filter antivirus/sysadmin calls

93

attacking antivirus (1)
one common virus idea: interfere directly with antivirus

just modify antivirus software databases, etc.

preserve file checksums
so some AV software thinks file is unchanged
(doesn’t work with cryptographic hashes, but…)

register own handlers to filter antivirus/sysadmin calls

93

stealth
/* in virus: */
int OpenFile(const char *filename, ...) {

if (strcmp(filename, "infected.exe") == 0) {
return RealOpenFile("clean.exe", ...);

} else {
return RealOpenFile(filename, ...);

}
}

94

other stealth ideas
override “get file modification time” (infected files)

override “get files in directory” (infected files)

override “read file” (infected files)
but not “execute file”

override “get running processes”

95

rootkits
rootkit — priviliged malware that hides itself

same ideas as these anti-anti-virus techniques

96

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

97

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

97

Windows driver signing

98

Window driver key stealing

99

aside: driver or not driver?
why does random device driver have permission to do all these
‘hiding’ operations?

(if you’ve taken CSO2) kernel mode → full hardware access

there are OS designs where drivers don’t run with full access
but real performance/complexity costs

100

chkrootkit
chkrootkit — Unix program that looks for rootkit signs

tell-tale strings in system programs
e.g. file, process, network connection listing programs changed

disagreement between process list, other ways of detecting
processes
disagreement between file lists, other ways of counting files
overwritten entries in system login records
known suspicious filenames

hidden exes in temporary, data directories, etc.
101

backup slides

102

handling packers
easiest way to decrypt self-decrypting code — run it!

solution: virtual machine/emulator/debugger in antivirus software

103

handling packers with
debugger/emulator/VM
run program in debugger/emulator/VM for a while

one heuristic: until it jumps to written data

example implementation: unipacker
(https://github.com/unipacker/unipacker)

then dump memory to get decrypted machine code

and/or obtain trace of instructions run

104

unneeded steps
understanding the “encryption” algorithm

more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

105

rootkits
rootkit — priviliged malware that hides itself

same ideas as these anti-anti-virus techniques

106

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

107

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

107

Windows driver signing

108

Window driver key stealing

109

aside: driver or not driver?
why does random device driver have permission to do all these
‘hiding’ operations?

(if you’ve taken CSO2) kernel mode → full hardware access

there are OS designs where drivers don’t run with full access
but real performance/complexity costs

110

chkrootkit
chkrootkit — Unix program that looks for rootkit signs

tell-tale strings in system programs
e.g. file, process, network connection listing programs changed

disagreement between process list, other ways of detecting
processes
disagreement between file lists, other ways of counting files
overwritten entries in system login records
known suspicious filenames

hidden exes in temporary, data directories, etc.
111

after scanning — disinfection
antivirus software wants to repair

requires specialized scanning
no room for errors
need to identify all
need to find relocated bits of code

112

encrypted viruses: no signature?
decrypt is a pretty good signature

still need to a way to disguise that code

how about analysis? how does one analyze this?

113

encrypted virus: getting the code?
“encrypted” body
just running objdump not enough…
instead — run debugger, set breakpoint after “decryption”
dump decrypted memory afterwords

observation: can even automate this:
run program in emulator
have emulator look for jump to previously written code
(or jump after certain point, etc.)
example implementation: unipacker
(https://github.com/unipacker/unipacker)

114

	anti-anti-virus
	other obfuscation
	why obfuscation, generally

	Tigress and its transformations
	obfuscation utility?
	packers
	hashed data
	encrypted data
	encrypted data and signatures
	encrypted code
	case study: Cascade

	exercise: handling decrypter
	decrypter variations

	metamorphic, etc. idea
	oligomorphic viruses
	case study: W95/Memorial

	polymorphic viruses
	case study: 1260
	more generic mutation

	terminology: packers
	anti-packer strategies
	generic anti-packers

	emulators
	example: unicorn
	unipacker pseudcode
	example: Qiling
	example: PANDA-RE
	aside: instruction traces

	anti-virtualization strategies
	basic issues
	automated analysis: lack of patience?

	packer issues
	packers and W xor X/DEP

	aside: future assignment
	exercise: limitations of generic anti-packer

	metamorphic viruses
	example: changing bodies
	case study: Evol
	handling relocation with mutation
	fancy mutation engines

	goats and anti-goat
	anti-debugging
	breaking breakpoints
	aside: modern breakpoints

	breaking single-stepping (short)

	emulation-based obfuscation
	retroviruses / direct antiantivirus
	hiding
	chkrootkit

	backup slides
	heuristics to find packers
	rootkits and chkrootkit
	aside: disinfection
	signatures and extracting encryptd code?

