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address space layout randomization (ASLR)
vary the location of things in memory

including the stack

designed to make exploiting memory errors harder

will talk more about later
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address space layout randomization (ASLR)
assume: addresses don’t leak

choose random addresses each time
for everything, not just the stack

enough possibilities that attacker won’t “get lucky”

should prevent exploits — can’t write GOT/shellcode location
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recall: position independent executables
...
EXEC_P, D_PAGED
...
LOAD off 0x0000000 vaddr 0x400000 paddr 0x0400000 align 2**12

filesz 0x00006c8 memsz 0x0006c8 flags r--
LOAD off 0x0001000 vaddr 0x401000 paddr 0x0401000 align 2**12

filesz 0x01a7865 memsz 0x1a7865 flags r-x

some executables had LOADs at fixed addresses
machine code might use hard-coded addresses

can’t randomize program addresses
others did not (marked DYNAMIC)
...
HAS_SYMS, DYNAMIC, D_PAGED
...
LOAD off 0x000000 vaddr 0x000000 paddr 0x000000 align 2**12

filesz 0x0036f8 memsz 0x0036f8 flags r--
LOAD off 0x004000 vaddr 0x004000 paddr 0x004000 align 2**12
... 4



Linux stack randomization (x86-64)
1. choose random number between 0 and 0x3F FFFF

2. stack starts at 0x7FFF FFFF FFFF - random number ×
0x1000

randomization disabled? random number = 0
times 0x1000 because OS has to allocate whole pages (0x1000 bytes)

16 GB range!
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program memory (x86-64 Linux; ASLR)
0xFFFF FFFF FFFF FFFF
0xFFFF 8000 0000 0000
± 0x004 0000 0000

± 0x100 0000 0000
(filled from top with ASLR)

± 0x200 0000

0x0000 0000 0060 0000*
(constants + 2MB alignment)

0x0000 0000 0040 0000

Used by OS

Stack

mmap/non-fixed exe/libs

Heap (brk/sbrk)
fixed exe writeable (sometimes)

fixed exe code/data

why are these addresses fixed?
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program memory (x86-32 Linux; ASLR)
0xFFFF FFFF
0xC000 0000
± 0x080 0000 (default)

± 0x008 0000 (default)

± 0x200 0000

0x0804 8000

Used by OS

Stack

Dynamic/Libraries (mmap)

Heap (brk/sbrk)
fixed exe writeable (sometimes)

fixed exe code/data
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how much guessing?
gaps change by multiples of page size (4KB)

lower 12 bits are fixed

64-bit: huge ranges — need millions of guesses
about 30 randomized bits in addresses

32-bit: smaller ranges — hundreds of guesses
only about 8 randomized bits in addresses
why? only 4 GB to work with!
can be configured higher — but larger gaps
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why do we get multiple guesses?
why do we get multiple guesses?

wrong guess might not crash

wrong guess might not crash whole application
e.g. server that uses multiple processes

local programs we can repeatedly run

servers that are automatically restarted
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entropy exercise
suppose we have 32-bit Linux server vulnerable to stack smashing

…but stack address randomized with 256 possible starting locations
+/- 0x80 in increments of 0x1000

server is automatically restarted after unsuccessful attack

suppose stack layout is 8KB buffer + return address + 12KB other
stuff

what should attacker do to maximize chance of success?

about how many tries needed for successful attack?
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exercise
struct point {

int x, y, z;
};

;
struct point *p;
...

if (command == "get") {
/* 'p' could be uninitialized */
printf("%d,%d,%d\n", p−>x, p−>y, p−>z);

} ...
...

Which initial value for p (“left over” from prior use of register,
etc.) would be most useful for a later buffer overflow attack?

A. p is an invalid pointer and accessing it will crash the program
B. p points to global variable
C. p points to space on the stack that is currently unallocated, but last
contained an input buffer
D. p points to space on the stack that currently holds a return address
E. p points to space on the stack that is currently unallocated, but last
contained a pointer to the last used byte of an array on the stack 11



exes, libraries stay together

foo.exe globals

foo.exe code

foo.exe constants
(likely has VTables) this address can be randomized

must stay together
code uses offset(%rip)
to access globals, constants
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dependencies between segments (1)
$ objdump −x foo.exe
...
LOAD off 0x0000000000000000 vaddr 0x0000000000000000 paddr 0x0000000000000000 align 2**12

filesz 0x0000000000000620 memsz 0x0000000000000620 flags r−−
LOAD off 0x0000000000001000 vaddr 0x0000000000001000 paddr 0x0000000000001000 align 2**12

filesz 0x0000000000000205 memsz 0x0000000000000205 flags r−x
LOAD off 0x0000000000002000 vaddr 0x0000000000002000 paddr 0x0000000000002000 align 2**12

filesz 0x0000000000000150 memsz 0x0000000000000150 flags r−−
LOAD off 0x0000000000002db8 vaddr 0x0000000000003db8 paddr 0x0000000000003db8 align 2**12

filesz 0x000000000000025c memsz 0x0000000000000260 flags rw−

4 seperately loaded segments: can we choose random addresses for
each?
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dependencies between segments (2)
0000000000001050 <__printf_chk@plt>:

1050: f3 0f 1e fa endbr64
1054: f2 ff 25 75 2f 00 00 bnd jmpq *0x2f75(%rip) # 3fd0 <__printf_chk@GLIBC_2.3.4>
105b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

dependency from 2nd LOAD (0x1000-0x1205) to 4th LOAD
(0x3db8-0x4018)

uses relative addressing rather than linker filling in address
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dependencies between segments (3)
0000000000001060 <main>:

1060: f3 0f 1e fa endbr64
1064: 50 push %rax
1065: 8b 15 a5 2f 00 00 mov 0x2fa5(%rip),%edx

# 4010 <global>
106b: 48 8d 35 92 0f 00 00 lea 0xf92(%rip),%rsi

# 2004 <_IO_stdin_used+0x4>
1072: 31 c0 xor %eax,%eax
1074: bf 01 00 00 00 mov $0x1,%edi
1079: e8 d2 ff ff ff callq 1050 <__printf_chk@plt>

dependency from 2nd LOAD (0x1000-0x1205) to 3rd LOAD
(0x2000-0x2150)

uses relative addressing rather than linker filling in address
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why is this done?
Linux made a choice:
no editing code when loading programs, libraries

allows same code to be loaded in multiple processes
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danger of leaking pointers
any stack pointer? know everything on the stack!

any pointer within executable? know everything in the executable!

any pointer to a particular library? know everything in library!
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exericse: using a leak (1)
class Foo {

virtual const char *bar() { ... }
};
...
Foo *f = new Foo;
printf("%s\n", f);

Part 1: What address is most likely leaked by the above?
A. the location of the Foo object allocated on the heap
B. the location of the first entry in Foo’s VTable
C. the location of the first instruction of Foo::Foo() (Foo’s
compiler-generated constructor)
D. the location of the stack pointer
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using a leak (1) answer
printing out beginning of C++ object = VTable pointer
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exercise: using a leak (2)
class Foo { virtual const char *bar() { ... } };
...
Foo *f = new Foo;
char *p = new char[1024];
printf("%s\n", f);

if leaked value was 0x822003 and in a debugger (with different
randomization):

stack pointer was 0x7ffff000
Foo::bar’s address was 0x400000
f’s address was 0x900000
f’s Vtable’s address was 0x403000
a “gadget” address from the main executable was 0x401034
a “gadget” address from the C library was 0x2aaaa40034
p’s address was 0x901000

which of the above can I compute based on the leak? 20



using a leak (2) answer
VTable pointer part of same object/library containing class Foo
definition

so can use its location to find code/data from same executable
gadget in main executable
Foo::bar definition
global variables (not listed)

can’t use it to find things on heap, stack, in C library
those are separately randomized
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ex: using information leak (2)
printf("buffer = %p", buffer)

—
buffer = 0x646d06d15040
—
$ objdump -tR a.out
...
0000000000004040 g O .bss 0000000000000400 buffer
...
0000000000003fb0 R_X86_64_JUMP_SLOT strlen@GLIBC_2.2.5
$ objdump -d a.out
...
0000000000001090 <strlen@plt>:

1090: f3 0f 1e fa endbr64
1094: ff 25 16 2f 00 00 jmp *0x2f16(%rip) # 3fb0 <strlen@GLIBC_2.2.5>
109a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

...

exercise: address to overwrite to make strlen(X) run other code?
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ex: using information leak (2) soln
buffer address = 0x646d06d15040 - offset = 0x4040

printed out actual value

offset = 0x646d06d11000

GOT entry address = 0x3fb0 + offset = 0x646d06d14fb0
0x3fb0 = jump slot location
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why not always ASLR?
ASLR seems like no-brainer

have to choose address anyway
why not choose at random?

big problem: performance/code size impacts

(smaller problem: inconsistent behavior when bugs)
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position-independent code
position-independent code = code that can be loaded anywhere

no hard-coded addresses

necessary prerequisite for most of ASLR

Unix did this for libraries for non-security reasons
share memory between multiple programs loading same library
allow programs to load libraries at any location

but not other programs, probably because of overheads
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relocating: Windows
Windows will edit code to relocate

not everything uses a GOT-like lookup table

typically one fixed location per program/library per boot
same address used across all instances of program/library
still allows sharing memory

fixup once per program/library per boot
before ASLR: code could be pre-relocated (lower runtime cost)

Windows + Visual Studio had ‘full’ ASLR by default since 2010
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Windows ASLR limitation
same address in all programs — not very useful against local
exploits
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exercise: avoiding absolute addresses
foo:

movl $3, %eax
cmpq $5, %rdi
ja defaultCase
jmp *lookupTable(,%rdi,8)

returnOne:
movl $1, %eax
ret

returnTwo:
movl $2, %eax

defaultCase:
ret

lookupTable:
.quad returnOne
.quad returnTwo
.quad returnOne
.quad returnTwo
.quad returnOne
.quad returnOne

exercise: rewrite this without absolute addresses

but fast
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PIE jump-table
foo:
movl $3, %eax
cmpq $5, %rdi
ja retDefault
leaq jumpTable(%rip),%rax
movslq (%rax,%rdi,4),%rdx
addq %rdx, %rax
jmp *%rax

returnTwo:
movl $2, %eax
ret

returnOne:
movl $1, %eax

defaultCase:
ret

.section .rodata
jumpTable:

.long returnOne−jumpTable

.long returnTwo−jumpTable

.long returnOne−jumpTable

.long returnTwo−jumpTable

.long returnOne−jumpTable

.long returnOne−jumpTable
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PIE jump-table
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cmpq $5, %rdi
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.long returnOne−jumpTable
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PIE jump-table
00000000000007ab <foo>:
b8 03 00 00 00 mov $0x3,%eax
48 83 ff 05 cmp $0x5,%rdi
77 1b ja 7d0 <foo+0x25>
48 8d 05 ab 00 00 00 lea 0xab(%rip),%rax # 868
48 63 14 b8 movslq (%rax,%rdi,4),%rdx
48 01 d0 add %rdx,%rax
ff e0 jmpq *%rax
b8 02 00 00 00 mov $0x2,%eax
c3 retq
b8 01 00 00 00 mov $0x1,%eax
c3 retq
...
@ 868: −156 /* offset */
@ 870: −162
...
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added cost
replace jmp *jumpTable(,%rdi,8)

with:

lea (get table address — with relative offset)

movslq (do table lookup of offset)

add (add to base)

jmp (to computed base)
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32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08048310 <__printf_chk@plt>:
8048310: ff 25 10 a0 04 08 jmp *0x804a010

/* 0x804a010 == global offset table entry */

// AFTER: (position-independent)
00000490 <__printf_chk@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

32



32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08048310 <__printf_chk@plt>:
8048310: ff 25 10 a0 04 08 jmp *0x804a010

/* 0x804a010 == global offset table entry */

// AFTER: (position-independent)
00000490 <__printf_chk@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

32



32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08048310 <__printf_chk@plt>:
8048310: ff 25 10 a0 04 08 jmp *0x804a010

/* 0x804a010 == global offset table entry */

// AFTER: (position-independent)
00000490 <__printf_chk@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

32



32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08049040 <puts@plt>:
8049040: ff 25 04 c0 04 08 jmp *0x804c004

// AFTER: (position-independent)
00000490 <puts@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

33



32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08049040 <puts@plt>:
8049040: ff 25 04 c0 04 08 jmp *0x804c004

// AFTER: (position-independent)
00000490 <puts@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

33



32-bit x86 is worse (1)
no relative addressing for mov, lea, …

even changes “stubs” for printf:
// BEFORE: (fixed addresses)
08049040 <puts@plt>:
8049040: ff 25 04 c0 04 08 jmp *0x804c004

// AFTER: (position-independent)
00000490 <puts@plt>:
490: ff a3 10 00 00 00 jmp *0x10(%ebx)

/* %ebx --- address of global offset table */
/* needs to be set by caller */

33



32-bit x86 is worse (2)
changes to call
// BEFORE: (fixed addresses)
8049061: 68 08 a0 04 08 push $0x804a008
8049066: e8 d5 ff ff ff call 8049040 <puts@plt>

// AFTER: (position-independent)
000010d0 <__x86.get_pc_thunk.bx>:

10d0: 8b 1c 24 mov (%esp),%ebx
10d3: c3 ret

...

106e: e8 5d 00 00 00 call 10d0 <__x86.get_pc_thunk.bx>
1073: 81 c3 65 2f 00 00 add $0x2f65,%ebx

...
107d: 8d 83 30 e0 ff ff lea −0x1fd0(%ebx),%eax
1083: 50 push %eax
1084: e8 b7 ff ff ff call 1040 <puts@plt> 34



extra relocations
struct Foo {

virtual const char *bar() { return "Foo::bar"; }
};

int main() {
Foo *f = new Foo;
f−>bar();

}

needed: VTable for Foo

contains function pointers — but function addresses change

how is that setup? extra work on program loading
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position-independent versus not
$ objdump -R example2

example2: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000003da8 R_X86_64_RELATIVE *ABS*+0x0000000000001160
0000000000003db0 R_X86_64_RELATIVE *ABS*+0x0000000000001120
0000000000004008 R_X86_64_RELATIVE *ABS*+0x0000000000004008
0000000000003fd8 R_X86_64_GLOB_DAT __cxa_finalize@GLIBC_2.2.5
0000000000003fe0 R_X86_64_GLOB_DAT _ITM_deregisterTMCloneTable
0000000000003fe8 R_X86_64_GLOB_DAT __libc_start_main@GLIBC_2.2.5
0000000000003ff0 R_X86_64_GLOB_DAT __gmon_start__
0000000000003ff8 R_X86_64_GLOB_DAT _ITM_registerTMCloneTable
0000000000003fd0 R_X86_64_JUMP_SLOT _Znwm@GLIBCXX_3.4
$ objdump -R example2-nopie

example2-nopie: file format elf64-x86-64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000403ff0 R_X86_64_GLOB_DAT __libc_start_main@GLIBC_2.2.5
0000000000403ff8 R_X86_64_GLOB_DAT __gmon_start__
0000000000404018 R_X86_64_JUMP_SLOT _Znwm@GLIBCXX_3.4 36



GCC/Clang options
-fPIC: generate position-independent code for library

-fpic — possibly less flexible/faster version on some platforms

-fPIE, -fpie: generate position-independent code for executable

-pie: link position-independent executable
-no-pie: don’t (where -pie is default)

-shared: link shared library
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-fPIC/-fPIE differences
extern int foo;
int example() {return foo;}

with -fPIC:
0000000000000000 <example>:

0: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # 7 <example+0x7>
3: R_X86_64_REX_GOTPCRELX foo-0x4

7: 8b 00 mov (%rax),%eax
9: c3 ret

with -fPIE:
0000000000000000 <example>:

0: 8b 05 00 00 00 00 mov 0x0(%rip),%eax # 6 <example+0x6>
2: R_X86_64_PC32 foo-0x4

6: c3 ret
38



GOTPCREL
saw two different relocations for global int foo:

R_X86_64_PC32 relocation = 32-bit offset to variable
okay in executable: we’ll figure out where foo is
will redirect libraries to use exectuable version

R_X86_64_REX_GOTPCRELX relocation = 32-bit offset to
global offset table entry containing address

foo’s location decided at runtime by linker
runtime linker writes pointer to library’s global offset table
(‘REX’ part says where instruction starts relative to constant, for fancy
linkers)
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global offset tableS?
executable and library loaded at different addresses

each has own global offset table loaded next to it
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position independence cost (32-bit)

Payer, “Too much PIE is bad for performance”, ETH Zurich Tech Report 41



position independence cost: Linux
geometric mean of SPECcpu2006 benchmarks on x86 Linux

with particular version of GCC, etc., etc.

64-bit: 2-3% (???)
“preliminary result”; couldn’t find reliable published data

32-bit: 9-10%

depends on compiler, …
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position independence: deployment
common for a very long time in dynamic libraries
default for all executables in…

Microsoft Visual Studio 2010 and later
DYNAMICBASE linker option

OS since 10.7 (2011)
Fedora 23 (2015) and Red Hat Enterprise Linux 8 (2019) and later

default for “sensitive” programs earlier

Ubuntu 16.10 (2016) and later (for 64-bit), 17.10 (2017) and later
(for 32-bit)

default for “sensitive” programs earlier 43
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