
1

recall(?): virtual memory
illuision of dedicated memory

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

2

the mapping (set by OS)
program address range read? write?exec? real address
0x0000 --- 0x0FFF no no no ---
0x1000 --- 0x1FFF no no no ---
…
0x40 0000 --- 0x40 0FFF yes no yes 0x...
0x40 1000 --- 0x40 1FFF yes no yes 0x...
0x40 2000 --- 0x40 2FFF yes no yes 0x...
…
0x60 0000 --- 0x60 0FFF yes yes no 0x...
0x60 1000 --- 0x60 1FFF yes yes no 0x...
…
0x7FFF FF00 0000 — 0x7FFF FF00 0FFF yes yes no 0x...
0x7FFF FF00 1000 — 0x7FFF FF00 1FFF yes yes no 0x...
…

3

Virtual Memory
modern hardware-supported memory protection mechanism

via table: OS decides what memory program sees
whether it’s read-only or not

granularity of pages — typically 4KB

not in table — segfault (OS gets control)

4

malloc/new guard pages
in

cr
ea

sin
g

ad
dr

es
se

s
the heap

malloc(6000)
(or new char[6000])

guard page

guard page
unused space

5

guard pages
deliberate holes

accessing — segfualt

call to OS to allocate (not very fast)

likely to ‘waste’ memory
guard around object? minimum 4KB object

6

guard pages for malloc/new
can implement malloc/new by placing guard pages around
allocations

commonly done by real malloc/new’s for large allocations

problem: minimum actual allocation 4KB

problem: substantially slower

example: “Electric Fence” allocator for Linux (early 1990s)

7

guard pages and arrays/structs
struct foo {

char buffer[10000];
/* can't really put guard page here */
int *ptr;

};
C compiler expects buffer and ptr to be adjacent

can’t add guard page without changing all code that accesses
struct foo

similar problem with separating elements of arrays

8

exercise: guard page overhead
suppose heap allocations are:

100 000 objects of 100 bytes
1 000 objects of 1000 bytes
100 objects of approx. 10000 bytes

total allocation of approx 12 000 KB

assuming 4KB pages, estimate space overhead of using guard
pages:

for objects larger than 4096 bytes (1 page)
for objects larger than 200 bytes
for all objects

9

solution (greater than 4096 byte)
100 objects of approx. 10000 bytes

need to pad to 12288 (3 x 4096) bytes
228 800 wasted bytes for 1 000 000 bytes of allocations

1 000 objects of approx. 1000 bytes
need to pad to (4096) bytes
3 049 000 wasted bytes for 1 000 000 bytes of allocations

100 000 objects of approx 100 bytes
need to pad to (4096) bytes
39 490 00 wasted bytes for 10 000 000 bytes of allocations

10

guard pages elsewhere?
could potentially add guard pages between big global variables

could potentailly add guard pages after arrays on the stack

I don’t know any systems that do this

11

stack canary alternative
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

“guard page”
minimum 4KB

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF no no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

12

stack canary alternative
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

“guard page”
minimum 4KB

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF no no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

12

stack canary alternative 2
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

unused space

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF

yes no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

13

stack canary alternative 2
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
0x40fd37

unused space

buffer

0x7FFFF 2000

0x7FFFF 1000

address read write
0x7FFFF2000-
0x7FFFF2FFF

yes yes
0x7FFFF1000-
0x7FFFF1FFF

yes no
0x7FFFF0000-
0x7FFFF0FFF

yes yes

13

making things read-only
would really like to have things that shouldn’t change be read-only

simple cases:

machine code

constants

14

separate sections
char *foo = "Hello";
char bar[] = "Hello";

turns into:
.data
bar:

.string "Hello"
...
foo:

.quad .LC0
.section .rodata.str1.1,"aMS",@progbits
aMS = allocatable,mergeable,strings, @progbits = data
.LC0:

.string "Hello"

15

separate segments (1)
LOAD off 0x0018000 vaddr 0x0018000 paddr 0x0018000 align 2**12

filesz 0x0007458 memsz 0x0007458 flags r--
LOAD off 0x001ffd0 vaddr 0x0020fd0 paddr 0x0020fd0 align 2**12

filesz 0x00012a8 memsz 0x0002570 flags rw-

16

separate segments (2)
compiler needs to separate constants/code/data into different
segments

linker uses this info to make LOAD directives
can mark some LOAD directives as read-only

need to add padding to make sure segments start at beginning of
page

one reason for rounding we saw in TRICKY

usually compiler writes linker script specifying order of sections +
padding + how many LOAD directives

17

recall: function pointer targets
wanted to overwrite special pointer:

return addresses on stack

function pointers on in local variables

tables of function pointers used for inheritence

global offset table

can’t realistically make first two read-only

18

read-only problems
global offset table and vtable entries produced at runtime

addresses of functions, etc. not chosen until program loaded

…or later with “lazy” linking
recall: filling in global offset tables as functions called

if we just set these as read-only, loading code will break

19

relocation data
addresses filled in by dynamic linker big target

global offset table
function pointers in vtables
…

would like them to be read-only

…but they can’t be read-only when initially loaded

20

RELRO
RELocation Read-Only

Linux option: make dynamic linker structures read-only after
startup

partial RELRO: everything but GOT pointers to library functions
notably includes C++ virtual function tables

full RELRO: everything including GOT pointers
requires disabling “lazy binding” (filling in GOT as functions called)

appears as ELF program header entry

21

RELRO/non-lazy-binding in practice
linker/compiler options on Linux:
-z relro/-z norerlo: enable/disable relocation read-only
-z now: disable lazy binding (fill in whole GOT immediately)
in objdump (RELRO header; bit 3 of Dynamic Section FLAGS):
Program Headers:
...

RELRO off 0x0000020f30 vaddr 0x0000021f30 paddr 0x0000021f30 align 2**0
filesz 0x00000010d0 memsz 0x00000010d0 flags r--

...
Dynamic Section:
...

FLAGS 0x0000000000000008
... 22

a thought on permissions
if we can set memory non-writeable

how about non-executable?

we never want to execute things on the stack anyways, right?

23

write XOR execute
many names:

W^X (write XOR execute)
DEP (Data Execution Prevention)
NX bit (No-eXecute) (hardware support)
XD bit (eXecute Disable) (hardware support)

mark writeable memory as executable

how will users insert their machine code?
can only code in application + libraries
a problem, right?

24

hardware support for write XOR execute
everywhere today

not historically common

early x86: execute implied by read

NX support added with x86-64 and around 2000 for x86-32

25

deliberate use of writeable code
“just-in-time” (JIT) compilers

fast virtual machine/language implementations

some weird GCC features

older “signals” on Linux
OS wrote machine code on stack for program to run

couldn’t even disable executable stacks without breaking
applications

26

why doesn’t W xor X solve the problem?
W xor X is “almost free”, keeps attacker from writing code?

problem: useful machine code is in program already
just need to find writable function pointer

saw special case: arc injection
use address of system function to replace strlen
idea: find useful code already in application/library

turns out: almost always useful code
trick: chaining together multiple pieces of machine code

27

backup slides

28

	memory protection
	generally
	page-level permissions
	guard pages
	exercise: guard page overhead
	guard pages elsewhere?
	read-only pages
	relocation read-only
	non-executable pages
	unfortunate history of HW/SW support
	if you can't write machine code

	backup slides

