
1

compiler generated code
pushq %rbx
sub $0x20,%rsp

/* copy value from thread-local storage */
mov $0x28,%ebx
mov %fs:(%rbx),%rax

/* onto the stack */
mov %rax,0x18(%rsp)

/* clear register holding value */
xor %eax, %eax
...
...

/* copy value back from stack */
mov 0x18(%rsp),%rax

/* xor to compare */
xor %fs:(%rbx),%rax

/* if result non-zero, do not return */
jne call_stack_chk_fail
ret

call_stack_chk_fail:
call __stack_chk_fail

return address
stack canary

function’s
arrays

and other
temporaries

trying to avoid info disclosure:
get canary value out of %rax

as soon as possible

2

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
37 fd 40 00 00 00 00 00 (0x40fd37)
canary: b1 ab bd e8 31 15 df 31

unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

3

stack canary

in
cr

ea
sin

g
ad

dr
es

se
s

highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
70 fd ff ff ff ff 00 00 (0x7fff ffff fd70)

canary: ?? ?? ?? ?? ?? ?? ??
unused space (12 bytes)

buffer (100 bytes)

return address for scanf

machine code for the attacker to run

3

stack canary hopes
overwrite return address =⇒ overwrite canary

canary is secret

4

good choices of canary
random — guessing should not be practical

not always — sometimes static or only 215 possible

GNU libc: canary contains:

leading \0 (string terminator)
printf %s won’t print it
copying a C-style string won’t write it

a newline
read line functions can’t input it

\xFF
hard to input?

5

stack canaries implementation
“StackGuard” — 1998 paper proposing strategy

GCC: command-line options
-fstack-protector
-fstack-protector-strong
-fstack-protector-all
one of these often default
three differ in how many functions are ‘protected’

Microsoft C/C++ compiler: /GS
on by default

6

stack canary overheads
less than 1% runtime if added to “risky” functions

functions with character arrays, etc.

large overhead if added to all functions
StackGuard paper: 5–20%?

similar space overheads

(for typical applications)
could be much worse: tons of ‘risky’ function calls

7

stack canaries pro/con
pro: no change to calling convention

pro: recompile only — no extra work

con: can’t protect existing executable/library files (without
recompile)

con: doesn’t protect against many ways of exploiting buffer
overflows

con: vulnerable to information leaks

8

stack canaries pro/con
pro: no change to calling convention

pro: recompile only — no extra work

con: can’t protect existing executable/library files (without
recompile)

con: doesn’t protect against many ways of exploiting buffer
overflows

con: vulnerable to information leaks

8

stack canaries pro/con
pro: no change to calling convention

pro: recompile only — no extra work

con: can’t protect existing executable/library files (without
recompile)

con: doesn’t protect against many ways of exploiting buffer
overflows

con: vulnerable to information leaks

8

stack canary summary
stack canary — simplest of many mitigations

key idea: detect corruption of return address

assumption: if return address changed, so is adjacent token

assumption: attacker can’t learn true value of token
often possible with memory bug

later: workarounds to break these assumptions

9

stack canary hopes
overwrite return address =⇒ overwrite canary

canary is secret

10

non-contiguous overwrites
void vulnerable() {

int scores[8]; bool done = false;
while (!done) {

prinf("Edit which score? (0 to 7) ");
int i;
scanf("%d\n", &i);
/* Oops!

sizeof(scores) is 4 * sizeof(int) */
if (i < 0 || i >= sizeof(scores))
continue;

printf("Set to what value? ");
scanf("%d", &scores[i]);
...

}
...

}

return address
stack canary

scores[7]
scores[6]
scores[5]
scores[4]
scores[3]
scores[2]
scores[1]
scores[0]

stack grows here for
calls to cin/cout

methods

11

exercise: non-contiguous overwrites
void vulnerable() {

int scores[8]; bool done = false;
while (!done) {

prinf("Edit which score? (0 to 7) ");
int i;
scanf("%d\n", &i);
/* Oops!

sizeof(scores) is 4 * sizeof(int) */
if (i < 0 || i >= sizeof(scores))
continue;

printf("Set to what value? ");
scanf("%d", &scores[i]);
...

}
...

}

return address
stack canary

scores[7] (4 byte)
scores[6] (4 byte)
scores[5] (4 byte)
scores[4] (4 byte)
scores[3] (4 byte)
scores[2] (4 byte)
scores[1] (4 byte)
scores[0] (4 byte)

stack grows here for
calls to cin/cout

methods

exercise: to set return address to 0x123456789,
set what scores to what values?

12

0x123456789
0x0000 0001 2345 6789
89 67 45 23 01 00 00 00
[89 67 45 23] [01 00 00 00]
0x2345678 0x1

13

stack canary hopes
overwrite return address =⇒ overwrite canary

canary is secret

14

information disclosure (1a)
void vulnerable() {

int value;
for (;;) {

command = ReadInput();
if (command == "set") {

value = ReadIntInput();
} else if (command == "get") {

printf("%d\n", value);
} else if ...

}
}

“get” command: can read uninitialized value

example: when I compiled this, value was stored on the stack

15

information disclosure (1b)
void vulnerable() {

int value;
...

} else if (command == "get") {
printf("%d\n", value);

}
...

}
void leak() {

int secrets[] = {
12345678, 23456789, 34567890,
45678901, 56789012, 67890123,

};
do_something_with(secrets);

}
int main() {leak(); vulnerable();}

running this program
(input in bold):
get
67890123

16

information disclosure (2)
void process() {

char buffer[8] = "\0\0\0\0\0\0\0\0";
char c = ' ';
for (int i = 0; c != '\n' && i < 8; ++i) {

c = getchar();
buffer[i] = c;

}
printf("You input %s\n", buffer);

}

input aaaaaaaa

output You input aaaaaaaa(whatever was on stack)

17

information disclosure (3)
struct foo {

char buffer[8];
long *numbers;

};

void process(struct foo* thing) {
...
scanf("%s", thing−>buffer);
...
printf("first number: %ld\n", thing−>numbers[0]);

}

input: aaaaaaaa(address of canary)
address on stack or where canary is read from in thread-local storage

18

repeated reads
sometimes find “read gadgets”

example buffer overflow into pointer

often reusable (e.g. input in loop in server)

can find value with multiple steps
read global pointer that points in middle of array on stack, then
then read that pointer + 8, pointer + 16, etc. until finding stack canary

can leak 8+ bytes with repeated 1-byte leak

19

exercise (1)
struct point {

int x, y, z;
};

;
struct point p;
...

if (command == "get") {
/* 'p' could be uninitialized */
printf("%d,%d,%d\n", p.x, p.y, p.z);

} ...
...

Suppose p (“left over” from prior use of register, etc.) is stored at
the same address of an ‘leftover’ copy of the 8-byte stack canary. If
999999,44444,333333 is output, how do we compute the stack
canary value?

20

some early stack canary benchmarks
from Chiueh and Hsu, “RAD: A Compile-Time Solution to Buffer Overflow
Attacks” (2001)

21

compiler generated code
pushq %rbx
sub $0x20,%rsp

/* copy value from thread-local storage */
mov $0x28,%ebx
mov %fs:(%rbx),%rax

/* onto the stack */
mov %rax,0x18(%rsp)

/* clear register holding value */
xor %eax, %eax
...
...

/* copy value back from stack */
mov 0x18(%rsp),%rax

/* xor to compare */
xor %fs:(%rbx),%rax

/* if result non-zero, do not return */
jne call_stack_chk_fail
ret

call_stack_chk_fail:
call __stack_chk_fail

return address
stack canary

function’s
arrays

and other
temporaries

trying to avoid info disclosure:
get canary value out of %rax

as soon as possible

22

intuition: shadow stacks
problem with stack: easy to leak address/values because used for
lots of data

goal: keep sensitive data in separate region
easier to kepe address secret?

can use this for (stronger?) alternative to stack canaries

23

shadow stacks
main stack @

0x7 0000 0000

local variables for foo

arguments for bar

local variables for bar

arguments for baz stack pointer

‘shadow’ stack @
0x8 0000 0000

return address for foo
return address for bar
return address for baz shadow

stack pointer

24

implementing shadow stacks
bigger changes to compiler than canaries

more overhead to call/return from function

most commonly: store return address twice

25

shadow stacks on x86-64 (1)
idea 1: dedicate %r15 as shadow stack pointer,
copy RA to shadow stack pointer in function prologue
function:

movq (%rsp), %rax // RAX <- return address
addq $−8, %r15 // R15 <- R15 - 8
movq %rax, (%r15) // M[R15] <- RAX
...
movq (%rsp), %rdx // RDX <- return address
cmpq %rdx, (%r15)
jne CRASH_THE_PROGRAM // if RDX != M[R15] goto CRASH_THE_PROGRAM
add $8, %r15 // R15 <- R15 - 8
ret

26

shadow stacks on x86-64 (2)
idea 2: dedicate %r15 as shadow stack pointer,
avoid normal call/return instruction

addq $−8, %r15
leaq after_call(%rip), %rax
movq %rax, (%r15)
jmp function

after_call:

function:
...
addq $8, %r15 // R15 <- R15 + 8
jmp *−8(%r15) // jmp M[R15-8]

27

Android/AArch64 shadow stacks (1)
via https://clang.llvm.org/docs/ShadowCallStack.html (see also

https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux_30.html)

dedicate register x18 to shadow stack pointer
x30 = return address (after ARM’s call instruction (bl))

ARM call instruction saves return address in register…

str x30, [x18], #8
stp x29, x30, [sp, #−16]!
mov x29, sp
bl bar
add w0, w0, #1
ldp x29, x30, [sp], #16
ldr x30, [x18, #−8]!
ret

with shadow stack
stp x29, x30, [sp, #−16]!
mov x29, sp
bl bar
add w0, w0, #1
ldp x29, x30, [sp], #16
ret

without

28

https://clang.llvm.org/docs/ShadowCallStack.html
https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux_30.html

Android/AArch64 shadow stacks (2)
-fsanitize=shadowcallstack

supported on 64-bit ARM and RISC V only

“An x86_64 implementation was evaluated using Chromium and
was found to have critical performance and security deficiencies”

29

Intel CET shadow stacks
recent Intel processor extension adds shadow stacks

“Control-flow Enforcement Technology”

new shadow stack pointer

CALL/RET: push/pop from BOTH stacks

shadow stack also protected from writes by hardware + OS
cannot be written through normal instructions
modification to page table structures

30

automatic shadow stacks?
if we change how CALL/RET works…

…maybe we can add shadow stack support to existing programs?
either with hardware support, or
in software with emulation techniques?

well, there’s a problem…

31

the problem in C++
void Foo() {

try {
... Bar() ...

} except (std::runtime_error &error) {
...

}
}

void Bar() {
... Quux() ...

}
void Quux() {

...
throw std::runtime_error("...");
...

}

32

the problem in C
jmp_buf env;
const char *error;
void Foo() {

if (0 == setjmp(env)) {
Bar();

} else {
...

}
}

void Bar() {
... Quux() ...

}
void Quux() {

...
error = "...";
longjmp(env, 1);
...

}
33

shadow stacks and non-lcoal returns
need to modify these functions to support shadow stacks, it seems?

violates idea of hardware extension that modifies CALL/RET
operation

34

one way: dealing with non-local returns
exceptions and setjmp/longjmp deliberately skip return calls

one solution: “direct” shadow stack

fixed (possibly secret) offset from normal stack

shadow stack only stores return addreses
space in between return addresses left as nulls shadow stack

normal stack

shadow RA

return addr

35

CET and shadow-stack manipulation
Intel CET has instructions to manipulate shadow stack pointer

RDSSP (read shadow stck pointer)
used by glibc setjmp

INCSSP (increment shadow stack pointer)
apparently used by glibc longjmp in common case

also some functionality for switching shadow stacks

36

backup slides

37

preventing shadow stack writes?
ARM64 scheme: prevent writes if

shadow stack pointer is never leaked (dedicated register)
shadow stack random location can’t be guessed (or queried otherwise)

Intel CET: prevent writes unless
OS (priviliged/kernel mode) instructions to setup shadow stack used

can we prevent writes without relying on avoiding info leaks…
and without special hardware support?

well, yes, but …

38

what do shadow stacks stop?
combined with a information leak that can dump arbitrary bytes of
memory,
which of these exploits would shadow stacks stop…

A. using format string exploit to point stack return address to the
‘system’ function
B. using format string exploit to point VTable to the ‘system’ function
C. using an unchecked string copy that goes over the end of a stack
buffer into the return address and pointing the return address to the
‘system’ function
D. using a buffer overflow that overwrites a saved stack pointer value to
cause return to use a different address
E. using pointer subterfuge to overwrite the GOT entry for ‘printf’ to
point to the ‘system’ function

39

	stack canaries
	in code
	general operation
	requirements and how they can fail to be met
	how glibc generates canaries
	GCC and canaries
	canary costs
	overall pros/cons
	stack canary summary
	noncontiguous overwrites
	information disclosure
	examples
	exercise

	canary efficiency
	avoiding?

	shadow stacks
	Intel's hardware support?
	exceptions, setjmp, etc.
	exceptions and CET

	backup slides
	can we prevent writes now?
	exercise: shadow stacks stop

