

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy (buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

adapted from Pincus and Baker, Figure 2

pointer subterfuge

void f2b(void *arg, size_t len) {
char buffer[100];
long val = ...; /* assume on stack */
long *ptr = ...; /* assume on stack */
memcpy (buff, arg, len); /* overwrite ptr? */
ptr = val; / arbitrary memory write! */

adapted from Pincus and Baker, Figure 2

arbitrary memory write
bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

skipping the canary
highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

increasing addresses

return address for scanf

lowest address (stack grows here)

skipping the canary
highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)
val (8 bytes)

buffer (100 bytes)

increasing addresses

return address for scanf

lowest address (stack grows here)

skipping the canary
highest address (stack started here)

return address for f2b ==

stack canary

ptr (8 bytes)
val (8 bytes)

machine code for tP4f 690 PYEES}un

=<

increasing addresses

return address for scanf

lowest address (stack grows here)

exercise (1)

void vulnerable() {
int *array;
char buffer[100];
if (!Allocate(&array))
abort();
gets(buffer);
array[0] = atoi(buffer);

}

If return address is at 0x12345,

where /how to place 0x12345 in input?

. beginning, as ASCII base-10 number
. beginning, as ASCII base-16 number
. 100 bytes into buffer, as bytes
. 104 bytes into buffer, as bytes

120 bytes into buffer, as bytes
. 136 bytes into buffer, as bytes
. none of these

OTMUO®m>

vulnerable:

pushq
pushq
subq
movq
movq
xorl
leaq
call
testl
je
movq
call
movq
mov 1
mov 1
movq
call
mov 1

%rbp

%rbx

$136, %rsp
%fs:40, %rax
%rax, 120(%rsp)
%eax, %eax

104 (%rsp), %rdi

Allocate
%eax, %eax
call_abort
%rsp, %rdi
gets

104 (%rsp), %rbp
$10, %edx

$0, %esi

%rsp, %rdi
strtol

%eax, 0(%rbp)

exercise (2)

void vulnerable() { vulnerable:

int *array;

char buffer[100];

if (!Allocate(&array))
abort();

gets(buffer);

array[0] = atoi(buffer);

}

If we want to overwrite ret. addr. with 0x5678,

where /how to place 0x5678 in input?

. beginning, as ASCII base-10 number
. beginning, as ASCII base-16 number
. 100 bytes into buffer, as bytes
. 104 bytes into buffer, as bytes

120 bytes into buffer, as bytes
. 136 bytes into buffer, as bytes
. none of these

OTMUO®m>

pushq
pushq
subq
movq
movq
xorl
leaq
call
testl
je
movq
call
movq
mov 1
mov 1
movq
call
mov 1

%rbp

%rbx

$136, %rsp
%fs:40, %rax
%rax, 120(%rsp)
%eax, %eax

104 (%rsp), %rdi

Allocate
%eax, %eax
call_abort
%rsp, %rdi
gets

104 (%rsp), %rbp
$10, %edx

$0, %esi

%rsp, %rdi
strtol

%eax, 0(%rbp)

laying out stack to avoid subterfuge (1)
highest address (stack started here)

return address for vulnerable

stack canary

buffer (100 bytes)

increasing addresses

array (8 bytes)

return address for gets

lowest address (stack grows here)

laying out stack to avoid subterfuge (2)

highest address (stack started here)

return address for f2b

stack canary

buffer (100 bytes)

ptr (8 bytes)

val (8 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

10

other subterfuge cases (1)

struct Command {

highest address

CommandType type;
int values[MAX_VALUES];
int *active_value;

};...

more struct fields

active_value

values

type

lowest address

increasing addresses

11

other subterfuge cases (2)

Command *current_command;

highest address

char +dinput_buffer[4096];

void run_next_command() {
if (!current_command) {

more globals

current_command =

current_command

getNext();
}

current_command->

input__buffer

more globals

lowest address

increasing addresses

12

beyond return addresses
pointer subterfuge let us overwrite anything
my example: showed return address
but return address is tricky to locate exactly

but there are usually much easier options!

13

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

14

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

increasing addresses

global offset table

GOT entry: printf

GOT entry: fopen

GOT entry: exit

15

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

buffer (100 bytes)

return address for scanf

lowest address (stack grows here)

global offset table

- GOT entry: printf
GOT entry: fopen
GOT entry: exit

increasing addresses

15

attacking the GOT

highest address (stack started here)

return address for f2b

stack canary

ptr (8 bytes)

val (8 bytes)

=<

buffer (100 bytes)

machine code for the attacker to run

global offset table

t GOT entry: printf |
GOT entry: fopen
GOT entry: exit

ncreasing addresses

return address for scanf

lowest address (stack grows here)

15

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

16

C++ inheritence

class InputStream {
public:
virtual int get() = 0;
// Java: abstract int get();

s
class SeekableInputStream : public InputStream {
public:

virtual void seek(int offset) = 0;

virtual int tell() = 0;
}s
class FileInputStream : public SeekableInputStream {
public:

virtual int get();

virtual void seek(int offset);

virtual int tell();

17

C++ inheritence: approx memory layout

InputStream

SeekablelnputStream

FilelnputStream

lvtable pointer

lvtable pointer

vtable pointer

file pointer

[slot for get

slot for get

FileInputStream::get
slot for seek FileinputStream: :seek
slot for tell FileInputStream::tell

18

C++ implementation (pseudo-code)

struct InputStream_vtable {
int (*get) (InputStream* this);
}s;

struct InputStream {

InputStream_vtable *vtable;
15

InputStream *s = ...;
int ¢ = (s- >vtab1e >get)(s),

19

C++ implementation (pseudo-code)

struct SeekableInputStream_vtable {
struct InputStream_vtable as_InputStream;
void (*seek) (SeekableInputStream* this, int offset);
int (*tell) (SeekableInputStream* this);

b3

struct FileInputStream {
SeekableInputStream_vtable *vtable;
FILE *file_pointer;

b3

FileInputStream file_in = { the_FilelnputStream_vtable,
InputStream *s = (InputStream*) &file_1in;

s

20

C++ implementation (pseudo-code)

SeekableInputStream_vtable the_FileInputStream_vtable = {
&FileInputStream_get,
&FileInputStream_seek,
&FileInputStream_tell,

+s

FileInputStream file_in = { the_FileInputStream_vtable, ... };
InputStream *s = (InputStream*) &file_1in;

21

calling virtual method

SeekableInputStream *in = ...; // 8(%rsp)
in->get();
in->seek(10);

in->get();

mov(q 8(%rsp), %rdi // rdi <- din
mov(q (%rdi), %rax // rax <- vtable
call * (%rax) // call vtable[0]
in->seek(10);

mov(q 8(%rsp), %rdi // rdi <- 1in
mov'l $10, %esi // esi <- 10
mov(q (%rdi), %rax // rax <- vtable

call *8 (%rax) // call vtable[1]

FileInputStream assembly (1)

_ZN15F+ileInputStreamC2Ev: // constructor
rdi == this
movq $_ZTV15FileInputStream+16, (%rdi)
ret
VTable for FileInputStream
_ZTV15FileInputStream:
offset (for multiple inheritence)
.quad 0
info for typeid() operator
.quad _ZTI15FileInputStream
VTable pointer points here
FileInputStream::get
.quad _ZN15FileInputStream3getEv
FileInputStream::seek
.quad _ZN15FileInputStream4seekE
FileInputStream::tell
.quad _ZN15FileInputStream4tellEv

23

attacking function pointer tables

option 1: overwrite table entry directly

required/easy for Global Offset Table — fixed location
usually not possible for VTables — read-only memory

option 2: create table in buffer (big list of pointers to shellcode),
point to buffer

useful when table pointer next to buffer
(e.g. C++ object on stack next to buffer)

option 3: find suitable pointer elsewhere
e.g. point to wrong part of vtable to run different function

24

exercise

vtable pointer

buffer

vtable pointer

b
]
s

l

slot for foo

slot for bar

class VulnerableClass {
public:
char buffer[100];
virtual void foo();
virtual void bar();
+s
VulnerableClass objs[10];

Assume gets(objs[0] .buffer) is run and eventually
ptr->foo () will be run where ptr == &objs[1].

input start:
input+50 bytes:
input+100 bytes:

A. shellcode B. address of objs[0].buffer[0]
C. address of objs[0].buffer[50]

D. address of original vtable

E. address of objs[0]'s vtable

F.

address of objs[1]'s vtable pointer ,
5

arbitrary memory write

bunch of scenarios that lead to single arbitrary memory write
typical result: arbitrary code execution

how?

overwrite existing machine code (insert jump?)
problem: usually not writable

overwrite return address directly
observation: don't care about stack canaries — skip them

overwrite other function pointer?

overwrite another data pointer — copy more?

26

write to write

struct A {
char name[100];
long 1irrelevant;

struct B* other_thing;

T
struct B {
char name[100];

gets(a_object->name);
gets(a_object->other_thing->name);

27

so far overwrites

once we found a way to overwrite function pointer
easiest solution seems to be: direct to our code

..but alterante places to direct it to

28

return-to-somewhere
highest address (stack started here)

return address for vulnerable:
address of do_useful_stuff .

unused junk

>

incrBasing addresses

return address for scanf

lowest address (stack grows here)

do_useful stuff
(already in program)

29

return-to-somewhere
highest address (stack started here)

return address for vulnerable:
address of do_useful _stuff _ A

code is already in program???
how often does this happen?7?
..turns out “wusually” — more later in semester

increasin

return address for scanf

lowest address (stack grows here)

29

example: system()

NAME
system - execute a shell command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

part of C standard library
in any program that dynamically links to libc

challenge: need to hope argument register (rdi) set usefully
30

locating system() Linux

$ 1dd /bin/1s
linux-vdso.so.1l (Ox00002aaaaaadedOO)
libselinux.so.1 => /1ib/x86_64-1linux-gnu/libselinux.so.1l (0x00002aaaaab3ab00)
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00002aaaaab65000)
libpcre2-8.s0.0 => /usr/1lib/x86_64-1linux-gnu/libpcre2-8.s0.0 (0x00002aaaaad57000)
libdl.so0.2 => /1lib/x86_64-1linux-gnu/libdl.so.2 (0x00002aaaaade7000)
/1ib64/1d-1inux-x86-64.s0.2 (Ox00002aaaaaaab0obO)
libpthread.so.0 => /1lib/x86_64-1linux-gnu/libpthread.so.0 (0x00002aaaaaded000)
$ objdump --dynamic-syms /1lib/x86_64-linux-gnu/libc.so.6 | grep system
0000000000156a80 g DF .text 0000000000000067 GLIBC_2.2.5 svcerr_systemerr
0000000000055410 g DF .text 000000000000002d GLIBC_PRIVATE __libc_system
0000000000055410 w DF .text 000000000000002d GLIBC_2.2.5 system

if address randomization disabled:
address should be 0x00002aaaaab650 + 0x55410

1dd — “what libraries does this load and where?”
similar tools for other OSes

31

case study (simplified)
bug in NTPd (Network Time Protocol Daemon)

via Stephen Rottger, “Finding and exploiting ntpd vulnerabilities”

https://googleprojectzero.blogspot.com/2015/01/
finding-and-exploiting-ntpd.html

static void
ctl_putdata(
const char *dp,
unsigned int dlen,
int bin /* set to 1 when data is binary */

) o

memmove ((char *)datapt, dp, (unsigned)dlen);
datapt += dlen;
datalinelen += dlen;

32

https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html
https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

buffer (global array)

33

more context

memmove ((char *)datapt, dp, (unsigned)dlen);

strlen(some_user_supplied_string)
/* calls strlen@plt
looks up global offset table entry! */

34

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

| strlen GOT entry |

buffer (global array)

35

overall exploit
overwrite datapt to point to strlen GOT entry

overwrite value of strlen GOT entry

example target: system function
executes command-line command specified by argument

supply string to provide argument to “strlen”

36

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

:->| strlen GOT entry |

buffer (global array)

37

the target

memmove ((char *)datapt, dp, (unsigned)dlen);

datapt (global variable)

(other global variables)

buffer (global array)

:->| strlen GOT entry |

v
| system() stub |

37

overall exploit: reality
real exploit was more complicated
needed to defeat more mitigations

needed to deal with not being able to write \ 0

actually tricky to send things that trigger buffer write
(meant to be local-only)

38

subterfuge exercise

struct Student {
char email[128];
struct Assignment *assignments[16];

+s

struct Assignment {
char submission_file[128];
char regrade_request[1024];

}s

void SetEmail(Student *s, char *new_email) { strcpy(s->email, new_email); }

void AddRegradeRequest(Student *s, int index, char *request) {
strcpy(s->assignments[index]->regrade_request, request);

}

void vulnerable(char *STRING1l, char *STRING2) {
SetEmail(s, STRING1l); AddRegradeRequest(s, 0, STRING2);

}

exercise: to set 0x1020304050 to OXxAABBCCDD, what should
STRING1, STRING2 be?

(assume 64-bit pointers, no padding in structs, little-endian)

39

subterfuge exercise solution

struct Student { char email[128]; struct Assignment *assignments[16]; ... };
struct Assignment { char submission_file[128]; char regrade_request[1024]; ... 1};

STRING1 (email) controls what address to overwrite (want
0x1020304050)

&s->assignments[0] == &email[128]

make bytes 128-128+-8 be pointer to fake assignment

want fake assignment—->regrade_request address to be

0x1020304050
fake assignment address needs to be at 0x1020304050 - 128

STRING2 (regrade_regest) controls what value to set (want
OxAABBCCDD)

40

backup slides

41

	pointer subterfuge
	arbitrary writes
	example: return address overwrite
	exercise
	careful stack layout?
	structs containing pointers

	beyond stack smashing
	write targets, continued
	example: GOT overwrite
	C++ inheritence
	in real assembly

	options for attacking function pointer tables
	vtable overwrite exercise

	one write into another
	arc injection
	case study: NTP exploit
	subterfuge exercise

	backup slides

