
1

least privilege
a typical program I run on my desktop is allowed to…
make network connections to anywhere
upload all my files to the Internet
delete all my files
record all my keystrokes
…
but it probably doesn’t need to…
ideally: if typical program was compromised/malicious,
it still wouldn’t be able to do most of these things

2

things applications need?
what things should browser be able to do?

what things should word processor be able to do?

3

things broswers need

save files

have your webmail password

…

4

multi-user OSs
cr4bd@labunix01:~$ cp myprogram.exe /bin/ls
cp: cannot create regular file ‘/bin/’ls: Permission denied

programs have limited privileges

OS tracks “user” of running every program

result: malware I installed shouldn’t be able to effect other users

idea 1: reuse this support for web browsers
webpage should run as “different user”
malware should only affect web browser?

5

permission enforcement
struct Process {

int user_id;
...

};
int handle_open_system_call(char *filename, ...) {

Process* currentProcess = GetCurrentProcess();
File* file = GetFileByFilename(filename);
if (!file->UserCanAccess(currentProcess->user_id)) {

return ERROR_PERMISSION_DENIED;
}
...

}

6

multi-user OSs
cr4bd@labunix01:~$ cp myprogram.exe /bin/ls
cp: cannot create regular file ‘/bin/’ls: Permission denied

programs have limited privileges

OS tracks “user” of running every program

result: malware I installed shouldn’t be able to effect other users

idea 1: reuse this support for web browsers
webpage should run as “different user”
malware should only affect web browser?

7

the privilege separation idea
can’t make whole browser run as “different user”

still need to save files, read password, etc.

how about just the parts that are “dangerous”?
part that runs scripts, parses HTML

8

simple privilege separation
simple example: want to show videos

video decoding library is tens of thousands of lines of code
often buggy, includes hard-to-check hand-written assembly

what does video decoding library do?
read video file as input
output images as output

9

simple privilege seperation
setup: create new user

start video decoder as new user

communicate via “pipes”
like terminal to be used by program

10

simple privilege seperation
/* dangerous video decoder to isolate */
int main() {

/* switch to right user */
SetUserTo("user-without-privileges"));
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {

doDangerousVideoDecoding(videoData, imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}
}

/* code that uses it */
FILE *fh = RunProgramAndGetFileHandle("./video-decoder");
for (;;) {

fwrite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh);
displayImage(image);

}

11

issues with privilege separation (1)
“other user” can still do too much

read unprotected files
most of them?

write temporary files?

open network connections

use all your memory

…

12

issues with privilege separation (2)
awkward to do

switching users requires special permissions

seperate user for each video decoder, audio decoder, web page
renderer?

users can debug processes from same user

slowdown — extra copying

13

program to OS interface
primary way application talks to OS: system calls

function calls that request OS do something
typically: how program can interact with rest of system

files
other programs
the network
devices
…

controlling program behavior: control what system calls
14

“sandboxing”
result of filtering operations called a “sandbox”

idea: attacker can play in sandbox as much as they want

can’t do anything “harmful”

other possible implementations:
e.g. virtual machine

15

Linux system call filtering API
privilege seperation support: system call filtering

simple API: prctl(SECCOMP_SET_MODE_STRICT, 0, 0)

“The only system calls the calling thread is permitted to make are
read, write, _exit, and sigreturn. Other system calls [kill
the program].”

read/write only work on already open files

later: what if we want to be finer-grained?
16

strace hello_world (1)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when statically linked:
execve("./hello_world", ["./hello_world"], 0x7ffeb4127f70 /* 28 vars */)

= 0
brk(NULL) = 0x22f8000
brk(0x22f91c0) = 0x22f91c0
arch_prctl(ARCH_SET_FS, 0x22f8880) = 0
uname({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)

= 57
brk(0x231a1c0) = 0x231a1c0
brk(0x231b000) = 0x231b000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or

directory)
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++

17

aside: what are those syscalls?
execve: run program
brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later

uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file
exit_group: variant of exit

18

only after starting? (1)
okay, but that’s only after starting up, right…?

surely simpler if we limit system calls after startup

yes, but…

19

only after starting? (2)
#include <stdio.h>
int main() {

FILE *fh = fopen("output.txt", "w");
fprintf(fh, "example");
fclose(fh);

}

$ strace ...
... [startup stuff, not shown] ...
openat(AT_FDCWD, "output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3
newfstatat(3, "", {st_mode=S_IFREG|0664, st_size=0, ...}, AT_EMPTY_PATH) = 0
write(3, "example", 7) = 7
close(3) = 0

20

only after starting? (2)
#include <curl/curl.h>
int main() {

CURL *handle = curl_easy_init();
curl_easy_setopt(handle, CURLOPT_URL, "https://www.cs.virginia.edu/~cr4bd/test.txt");
curl_easy_perform(handle);
...

}

$ strace ...
... [startup stuff, not shown] ...
futex(0x73f0bd640ba4, FUTEX_WAKE_PRIVATE, 2147483647) = 0
...
openat(AT_FDCWD, "/usr/lib/ssl/openssl.cnf", O_RDONLY) = 3
...
sysinfo({...}) = 0
...
socket(AF_INET6, SOCK_DGRAM, IPPROTO_IP) = 3
close(3) = 0
socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0
fcntl(3, F_GETFL) = 0x2 (flags O_RDWR)
fcntl(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0
...
rt_sigaction(SIGPIPE, NULL, {sa_handler=SIG_DFL, sa_mask=[], sa_flags=0}, 8) = 0
...
socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 5
setsockopt(5, SOL_TCP, TCP_NODELAY, [1], 4) = 0
...
getrandom("\xd6\x8c\xc3\x42\x07\x92"..., 48, 0) = 48
...

21

Linux system call filtering: detailed
Linux supports more fine-grained system call filtering

using BPF (Berkeley Packet Filter) programming language
compiled in the kernel to assembly to check system calls

can check system call argument values, but…
problems with pointer arguments
too many system calls

22

Linux system call: open
open("foo.txt", O_RDONLY);

parameters:
system call number: 2 (“open”)
argument 1: 0x7fffe983 (address of string “foo.txt”)
argument 2: 0 (value of “O_RDONLY”)

very problematic to filter using BPF interface

can deal with using ‘ptrace’ — Linux debugging interface
BPF can trigger something like a debugger breakpoint
breakpoint wakes up monitor program (attached like debugger)
‘monitor’ program can perform system call on program’s behalf

23

BPF filter example (1)
showing syntax for producing machine code from C macros /
non-extended BPF
// memory[offset of "nr"] --> accumulator
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, nr))),
// if (accumulator == SYS_write) PC += 1
BPF_STMT(BPF_JMP | BPF_JEQ, BPF_K, SYS_write, 1, 0),
// return "kill process"
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),
// return "allow"
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

24

BPF filter example (2)
// memory[offset of "nr"] --> accumulator
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, nr))),
// if (accumulator == SYS_write) PC += 1 else PC += 0
BPF_STMT(BPF_JMP | BPF_JEQ, BPF_K, SYS_write, 1, 0),
// return "kill process"
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),
// memory[offset of args[0]] --> accumulator
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, args[0]))),
// if (accumulator == 2) PC += 1 else PC += 0
BPF_STMT(BPF_JMP | BPF_JEQ, BPF_K, 2, 1, 0),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

25

other BPF operations
arithmetic (add, or, xor, …)

in eBPF (extended BPF): 10 additional registers
not just accumulator

26

running BPF fast/safely
idea: can verify in advance that…

there are no loops

there are no out-of-bounds accesses

convert to assembly function to run very fast

27

libseccomp
wrapper for writing BPF programs

specify list of rules re: system call identifiers/arguments

it generates BPF program with LDs, JMPs, etc.
#define CHECK(x) if (!(x)) handle_error();
...
scmp_filter_ctx filter = seccomp_init(SCMP_ACT_KILL_PROCESS);
CHECK(seccomp_rule_add(filter, SCMP_ACT_ALLOW, SCMP_SYS(read), 0) == 0);
CHECK(seccomp_rule_add(filter, SCMP_ACT_ALLOW, SCMP_SYS(write), 0) == 0);
CHECK(seccomp_load(filter) == 0);

28

Linux system call: open
open("foo.txt", O_RDONLY);

parameters:
system call number: 2 (“open”)
argument 1: 0x7fffe983 (address of string “foo.txt”)
argument 2: 0 (value of “O_RDONLY”)

very problematic to filter using BPF interface

can deal with using ‘ptrace’ — Linux debugging interface
BPF can trigger something like a debugger breakpoint
breakpoint wakes up monitor program (attached like debugger)
‘monitor’ program can perform system call on program’s behalf

29

lots of ways to open (1)
let’s say we want to allow/disallow (but not ‘normal’ files):
open("/dev/keyboard", O_RDONLY);

problem 1: some other ways of doing that?
chdir("/dev");
open("keyboard", O_RDONLY);

open("../../../../../../dev/keyboard", O_RDONLY);

symlink("/dev", "/tmp/foo");
open("/tmp/foo/keyboard", O_RDONLY);

30

lots of ways to open (2)
let’s say we want to allow/disallow:
open("/dev/keyboard", O_RDONLY);

problem 2: filter language doesn’t allow reading pointers
string is passed via pointer

problem 3: string can be changed from another core
between when filter runs and when syscall runs

31

lots of ways to open (3)
let’s say we want to disallow:
open("/dev/keyboard", O_RDONLY);

problem 4: several other syscalls (that might be used innocently)
openat, open_by_handle_at
would need to write additional filter rules
…or break programs that aren’t trying to violate rule

32

Linux system calls
x86-64 linux: 313 system calls
opening a file:

open (number 2)
openat (number 257)
open_by_handle_at (number 304)

coordinating between threads (for using multiple cores):
rt_sigaction (number 13)
rt_sigprocmask (number 14)
rt_sigreturn (number 15)
tkill (number 200)
futex (number 202)
set_robust_list (number 273)
get_robust_list (number 274)
more?

33

shared services?
often programs do operations by talking to “server” program

example: GUI management on Linux (X11 or Wayland), OS X
(WindowServer)
example: mixing sound from multiple applications
…

whole extra set of calls to sanitize
when to allow “get keyboard input” for GUI
when to allow “get microphone input” for sound manager
making sure one isn’t manipulating wrong program’s windows?

also, server programs might have security problems
common “sandbox escape”

34

Chrome architecture

35

talking to the sandbox
browser kernel sends commands to sandbox

sandbox sends commands to browser kernel

idea: commands only allow necessary things

36

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

37

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user inputneeds filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

37

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

37

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

37

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

37

Site Isolation
Chrome since version 67 (desktop)/77 (Mobile) has process per site

site ≈ registered domain name (example.com, example.co.uk, etc.)

slightly different than same origin policy

complicated to implement:
single web page can embed content from multiple other sites

and those other sites can embed content from yet more sites
web page can call services on other websites with “permission” of other
website
clicking link may or may not requiring switching to new process

same separation now present in Firefox
38

OpenSSH privilege seperation
OpenSSH uses privilege seperation for its SSH server

what runs on the lab machines when you log into them

separate network processing code from authentication code

seperate process per connection — users don’t share

developed before system call filtering was widely available
uses separate user + chroot (we’ll talk later) to isolate

39

OpenSSH privsep protocol
sandboxed process tells “monitor” to:

perform cryptographic operations
long-term keys never in sandboxed process
commands to ask for cryptographic messages they need

ask to switch to user — if given user password, etc.
monitor process verifies login information

after authentication: new process running as logged-in user
(normally) no issues with special privileges

40

privilege seperation overall
large application changes

OpenSSH: 3k lines of code for communication/etc. added
OpenSSH: 2% of existing code (950 of 44k lines) changed
(but most changes simple)

lots of application knowledge
what is a meaningful separation of ‘privileged’ and ‘unprivileged’?

better application design anyways?

41

privilege separation for
let’s say we wanted to add sandboxing/privilege separation to an
(standalone) mail program

exercise 1: where would be concerned about security problems?

exercise 2: propose a way of dividing up the program

42

changing what programs can name
seccomp, separate users: program tries to access X, checks if
allowed

alternate idea: changing what Xs program can name

43

aside: capabilities/ambient authority (1)
user permissions — authority tied to each running program

“access control lists” for resources

sometimes called “ambient authority”

alternate model: “capabilities”

running program has list of things it can access/how

44

aside: capabilities/ambient authority (2)
capabilities = program has list of things it can access
most common thing with design: open files

used as basis of some operating system designs
not desktop OSes, but…
Unix/Linux has many things with ‘flavor’ of capabilities

in “fully” capability-based OSes also…
capabilities for accessing non-regular-file resources (processes,
directories, network ports, …)
way of transferring capabilities between programs (instead of, e.g.,
filenames/PIDs/etc.)
OS doesn’t track user IDs/etc. (though maybe system services do)

45

Unix filesystems and mounting
my Linux desktop has two disks:

/ — an SSD
/mnt/extradisk — a hard drive

hard drive appears as subdirectory of SSD

subdirectory called a mount point

46

per-process root
on Unix: each process tracks its own root directory (/)

can be changed with chroot() system call
command-line tool to access: chroot

usage: can isolate program from other files on system
example: limit what public file server can access?

47

chroot ls
mkdir /tmp/example
cp /bin/ls /tmp/example/ls
chroot /tmp/example /ls
chroot: failed to run command ‘/’ls: No such file or directory
cp −r /lib64 /tmp/example/lib64
mkdir −p /tmp/example/lib
cp −r /lib/x86_64−linux−gnu /tmp/example/lib/x86_64−linux−gnu
chroot /tmp/example /ls
/ls: error while loading shared libraries: libpcre2−8.so.0: cannot open shared object file: No such file or directory
cp /usr/lib/x86_64−linux−gnu/libpcre2−8* /tmp/example/lib/x86_64−linux−gnu
chroot /tmp/example /ls /
lib lib64 ls
chroot /tmp/example /ls /..
lib lib64 ls
#

48

duplicating OS?
seems like we need second copy of system files

modern Linux has better solution (more detail later):

“bind mounts”
make alias to part of normal filesystem in temporary directory

49

accessing outside the root (1)
can still have open files outside the root

example: chroot /tmp/example /ls >tmp.txt
‘ls’ running from chroot writes to ‘tmp.txt’

50

accessing outside the root (2)
can still have open directories outside the root
int dir_fd = open("/tmp/other", O_PATH);
// change root to /tmp/example, cd to /
if (0 != chroot("/tmp/example")) handle_error();
if (0 != chdir("/")) handle_error();
// access /tmp/other/other.txt through old open directory
int other_txt_fd = openat(dir_fd, "other.txt", O_RDONLY);
read(other_txt_fd, ...);
// access /tmp/outside.txt through old open directory
int outside_fd = openat(dir_fd, "../outside.txt", O_RDONLY);
read(other_fd, ...);

oops.

51

chroot escapes
chroot prevents accessing files outside the new /

but root (system adminstrator) user in chroot can access disks, etc.

typical usage: combine chroot with extra user

52

chroot impracticality
some things make chroot impractical in general:

seems like one needs extra copies of most of the system

hard to communicate between separate roots

requires administrator permissions to configure
dangerous to let normal users configure b/c they could confuse priviliged
(set-user-ID) programs like sudo

53

exercise
what scenarios does chroot make most/least sense for?

A. the rendering part of web browser
B. a web server
C. a media player
D. a network time server (for other machines to set their clocks)

54

Linux namespaces (1)
Linux: alternate sandboxing features

“namespaces” for other resources

chroot: each process has own idea of root directory
change to OS: look up root directory in process, not global variable

can apply this to other resources:
what filesystems (disks) are available
what network devices are available
what user identifier numbers are
…

55

Linux namespaces (2)
user namespace:

can run programs with new view of users:

inside namespace: running as root
outside namespace: root translated to innocent user ID
allows running programs that expect different users

…without changes, but without giving special permissions

mechanism: reassign user ID numbers in kernel
figuring out what user ID means — always apply current process
mapping 56

aside: Linux clone(), unshare() syscalls
Linux clone system call: start new process (or thread)

flags to specify environment of new process

these flags can include “make a new namespace of a type”
int id = clone(start_function, ..., CLONE_NEWUSER | other−flags);

above option: new user namespace for new process

alternative: for changing current process’s namespace:
unshare(CLONE_NEWUSER);

57

user namespaces API
Linux: users identified by numerical user IDs (UIDs)

with user namespaces:

control file /proc/PROCESS-ID/UID_MAP contains lines like:
0 1000 2 — UID 0–1 maps to UID 1000–1001
1000 2000 100 — UID 1000-1100 maps to UID 2000–2100

can write to that file to reconfigure (if enough permissions)

58

Linux namesapces (3)
mount namespaces:

Unix: mounting disk = making the contents of the disk available as
directories+files

different idea of what filesystems are available

can be setup with bind mounts to “real FS”
but otherwise: no access to directories outside mount namespace
normally requires root — but special case with user namespaces

59

mount namespaces API
from command line:

runs shell (/bin/sh) in new mount namesapce
shell1$ unshare −−mount /bin/sh

setup directories in /tmp/workdir and make them aliases of things on normal FS
these aliases will only exist for processes in mount namespace

shell2$ mkdir −p /tmp/workdir/bin
shell2$ mkdir −p /tmp/workdir/lib
shell2$ mkdir −p /tmp/workdir/usr
shell2$ mkdir −p /tmp/workdir/current
shell2$ mount −o bind,ro /bin /tmp/workdir/bin
shell2$ mount −o bind,ro /lib /tmp/workdir/lib
shell2$ mount −o bind,ro /usr /tmp/workdir/usr
shell2$ mount −o bind /home/someuser /tmp/workdir/current

start new shell with the root directory being /tmp/workdir
shell2$ chroot /tmp/workdir /bin/sh
shell3$ cd /
shell3$ /bin/ls
bin current lib usr

60

Linux namespaces (3)
user namespace and mount namespace together:

run program in new user namespace
map regular root (in namespace) to regular user

“opts out” of programs like sudo

move to new mount namespace
setup bind mounts + chroot

special case: allowed because root in user namespce
can’t get “real” root (administrator) privileges ever

run program with subset of available files
61

Linux namespaces (4)
other resources with namespaces

network — common usage: virtual network device for set processes
different “what is my IP address?” answer for different processes

hostname (“UTS”)

process identifiers

control groups (resource limits for memory, CPU usage, disk I/O,
etc.)

62

Linux control groups
control groups — tied to namespaces

primarily: CPU/memory/IO performance restrictions
primarily intended for ‘friendly sharing’ (containers, etc.)
important for preventing denial-of-service/etc.
not as big a security conern as file/user/etc. access

also mechanism for adding IO device restrictions

also mechanism to start/stop a bunch of processes together

63

Linux sandboxing programs, generally
docker, lxc, lxd, containerd

use namespaces to create “container” with own copy of OS libraries,
services
but containers share OS ‘kernel’ and potentially files with host unlike
VM
(might also have options to use other ways of getting this functionality
— VM’s, etc.)

bubblewrap, firejail
use Linux namespace tools + “bind mounts” to give programs only
subset of files, etc.
firejail has option of running a “proxy” windowing system server

SELinux’s sandbox
uses Security Enhanced Linux’s mandatory access controls instead of
Linux namespaces
includes option for “proxy” for windoing system server

64

containers
Linux’s seccomp + namespaces + SELinux commonly used to
implement containers

(plus cgroups (control groups) for performance isolation)

usual goal: looks like virtual machine, but much lower overhead

examples: Docker, Kubernetes
(note: these may also support other ways of creating ‘lightweight VMs’)

65

runc bug
2019 bug in Docker, other container implementations
(CVE-2019-5736)

blog post for vulnerability finders:
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

bug setup:
user starts malicious container X
user tells docker to start a new command in malicious container X
malicious container X hijacks the “new command” starting program
hijacked program used to access stuff outside container

part of problem: Docker and others weren’t using user namespaces
at the time

compatability problems
66

https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

runc bug
2019 bug in Docker, other container implementations
(CVE-2019-5736)

blog post for vulnerability finders:
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

bug setup:
user starts malicious container X
user tells docker to start a new command in malicious container X
malicious container X hijacks the “new command” starting program
hijacked program used to access stuff outside container

part of problem: Docker and others weren’t using user namespaces
at the time

compatability problems
66

https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

setup: /proc/PID
Linux provides /proc directory to access info about programs

used for implementing process list utils, debugging
needed to make a functional container

subdirectory for each process in current container
process ID PID has /proc/PID subdirectory
/proc/self is alias for current process’s subdirectory

included is /proc/PID/exe file — alias for executable file

67

running a command in existing container
to run command X in existing container:

step 1: switch current process to that container

code in container can access /proc here?

including overwriting /proc/self/exe!
which is a program run as root!

step 2: execute command X

68

running a command in existing container
to run command X in existing container:

step 1: switch current process to that container

code in container can access /proc here?

including overwriting /proc/self/exe!
which is a program run as root!

step 2: execute command X

68

partial fix
can disable access to /proc/PID/exe (and related things)

system call: prctl(PR_SET_DUMPABLE, 0)

but…the run-in-container tool did this for a while

problem: this gets reset on executing a new program
and attacker could make the new program be /proc/PID/exe

one mechanism: symbolic links (file aliases)

but change dynamic linking setup to run attacker code

…which accesses /proc/self/exe

69

partial fix
can disable access to /proc/PID/exe (and related things)

system call: prctl(PR_SET_DUMPABLE, 0)

but…the run-in-container tool did this for a while

problem: this gets reset on executing a new program
and attacker could make the new program be /proc/PID/exe

one mechanism: symbolic links (file aliases)

but change dynamic linking setup to run attacker code

…which accesses /proc/self/exe
69

full fix
make single-use copy of start-in-container tool each time command
run

in-memory file

…so modifying it doesn’t change anything
(but it’s also protected from modification)

other solutions:
make executable non-writable (e.g. SELinux, don’t run container as
root)

70

Chrome sandbox escape (1)
recall: renderer communicates with ‘browser kernel’

‘browser kernel’ might have bugs in this interface
example: https://project-zero.issues.chromium.org/
issues/42451090 — missing access check for ‘wrong’ website
example: https://chromereleases.googleblog.com/
2021/09/stable-channel-update-for-desktop.html
https://starlabs.sg/blog/2022/
01-the-cat-escaped-from-the-chrome-sandbox/ — use
after free in API available from renderer

71

https://project-zero.issues.chromium.org/issues/42451090
https://project-zero.issues.chromium.org/issues/42451090
https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html
https://starlabs.sg/blog/2022/01-the-cat-escaped-from-the-chrome-sandbox/
https://starlabs.sg/blog/2022/01-the-cat-escaped-from-the-chrome-sandbox/

Chrome sandbox escape (2)
Chrome Windows sandbox

based on “restricted access tokens”
on Windows, programs have ‘access tokens’ representing their
permissions
can create ‘restricted’ version to limit access

72

Chrome sandbox escape (3)
https://googleprojectzero.blogspot.com/2020/04/you-wont-believe-what-this-one-line.html:

problem: Windows erronously allowed starting new processes with
a more unrestricted token

supposed to have check where the token being used came from, but
incomplete

…but needed to get ‘handle’ to that token

solution: ask to duplicate another running process

73

https://googleprojectzero.blogspot.com/2020/04/you-wont-believe-what-this-one-line.html

Android sandbox
Android — Linux based OS for phones/tablets

https:
//source.android.com/security/app-sandbox

current version: SELinux + seccomp (system call filter)

74

https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox

OS X sandboxing
OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

OS X solution: OS service displays file-open dialog
OS knows user really choose a file

application can ask to remember file was chosen previously

not chosen/remembered — can’t access
requires changes to how applications open files

75

OS X sandboxing
OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

OS X solution: OS service displays file-open dialog
OS knows user really choose a file

application can ask to remember file was chosen previously

not chosen/remembered — can’t access
requires changes to how applications open files

75

another sandboxing OS: Qubes
Qubes: heavily sandboxed OS

runs seperate VMs instead of filtering syscalls

UI that clearly shows what VM each window is from

advantage: easier to gaurentee isolation
many, many more bugs in system call filtering than VMs

disadvantage: harder to share between VMs

disadvantage: much more runtime overhead

76

Qubes screenshot

77

which sandboxing?
which whole-application sandboxing technique seems better for

security, performance, usability, handling unchanged applications

(full answer: could mix techniques + probably depends on details
of app)

A. chroot + system call filtering

B. chroot + mount and user namespaces

C. virtual machine dedicated to application

D. SELinux-like mandatory access control
78

sandboxing without OS support
so far: relying on OS features for sandboxing

good reasons:
primarily want to filter system calls
hardware-assisted, strong protection

but problems with relying on OS:
sending information in/out of sandbox relatively slow
requires heavily OS-specific code

79

sandboxing without OS ideas
‘dynamic’ language virtual machine, like Java VM, .Net CLR

hard to use with code intended to compile to native machine code

virtual machine targetted for C/C++-like code, like WebAssembly

assembly-to-assembly conversion
example: Wahbe, Lucco, Anderson, and Graham, “Efficient
Software-Based Fault Isolation” (1993)
example: Ford and Cox, “Vx32: Lightweight User-level Sandboxing on
the x86” (2008)

80

WebAssembly
WebAssembly: language virtual machine specification intended…

similar idea to Java VM

to be compiled to from C/C++
support by Clang/LLVM

to be easy to just-in-time compile to native machine code

to be run in web browsers (fast web apps)

81

WebAssembly memory management
WebAssembly ‘modules’ have a single “linear memory”
starts at index 0, goes to some maximum
load/store instructions take index into current memory

observation 1: close to memory model “normal” C/C++ code
expects

observation 2: only goal is to prevent sandbox (WebAssembly)
code from interfering with outside code
…so no need to check array bound or similar

observation 3: no need to worry about garbage collection

82

WebAssembly validation
WebAssembly virtual machine code designed to be validated before
running

allows for efficient interpreters or conversion to assembly
validation ensures that you can safely skip certain type checks, etc.

language specification very explicit about what needs to be checked
at runtime

83

example WebAssembly validation
check that instructions have right number of operands available

WebAssembly instructions use stack (compile 2 + 2 into 2 2 +)

check operands that can be checked (constants)

check the calls go to only functions listed in table
should make it easier to do just-in-time compilation to machine code?

check the branches go to only locations listed in table, and only
within one function

should make it easier to do just-in-time compilation to machine code?

84

example WebAssembly instruction
specification

85

WebAssembly as sandboxing
can compile existing C/C++ library using WebAssembly…

then call using language virtual machine

86

RLBox
saw interfaces for using sandboxes from user perspective?
what about for privilege separation?

recall: like Chrome separate renderer process idea
need to navigate OS sandboxing API + create interface for sandboxed
part?

some reusable tools have appeared for this (but no clear winner)
one example: RLBox (published in Usenix Security 2020)

Shravan Narayan and Craig Disselkoen, UC San Diego; Tal Garfinkel,
Stanford University; Nathan Froyd and Eric Rahm, Mozilla; Sorin
Lerner, UC San Diego; Hovav Shacham, UT Austin; Deian Stefan, UC
San Diego

87

RLBox usage
part of example from author’s presentation:

goal: invoke JPEG parser in sandbox
autosandbox = rlbox::create_sandbox<wasm>();
tainted<jpeg_decompress_struct*> p_jpeg_img = sandbox.malloc_in_sandbox<jpeg_decompress_struct>();
tainted<jpeg_source_mgr*> p_jpeg_input_source_mgr = sandbox.malloc_in_sandbox<jpeg_source_mgr>();
sandbox.invoke(jpeg_create_decompress, p_jpeg_img);
p_jpeg_img−>src = p_jpeg_input_source_mgr;
p_jpeg_img−>src−>fill_input_buffer = ...;
sandbox.invoke(jpeg_read_header,p_jpeg_img/*...*/);

tool handles running ‘jpeg_create_decompress’,
‘jpeg_read_header’ in sandbox
values shared with sandbox marked as “tainted”

C++ (template) class

this example: using WebAssembly-based sandbox
used in firefox 88

some Android prompts

from Clark et al, “No Time At All: Opportunity Cost of Android Permissions” (HotWireless’16) 89

UI problems with application permissions
do applications request sensible permissions?

do users pay attention to permission requests?

do users understand what permissions mean?

are permissions fine-grained enough?

are permissions coarse-grained enough?

90

UI problems with application permissions
do applications request sensible permissions?

do users pay attention to permission requests?

do users understand what permissions mean?

are permissions fine-grained enough?

are permissions coarse-grained enough?

91

right permissions?
Felt, Chin, Hanna, Song and Wagner, “Android Permissions
Demystified” (CCS 2011)

used static analysis to compare requested permissions to what
applications did

at the time: permissions requested at installation

sample of 900 applications

estimate approx 200 over-privileged
(estimate because using false positive rate from manual checking)

92

why extra permissions?
selected from Felt et al’s analysis:
developers confused similar permissions

ACCESS_NETWORK_STATE versus ACCESS_WIFI_STATE

developers thought permissions were needed for delegated tasks
CALL_PHONE not needed to invoke phone app
INSTALL_APPLICATION not needed to open app store install dialog

developers thought permissions needed for all methods of class
WRITE_SETTINGS when using (no-permission) read-settings
operations

copy-and-paste
93

UI problems with application permissions
do applications request sensible permissions?

do users pay attention to permission requests?

do users understand what permissions mean?

are permissions fine-grained enough?

are permissions coarse-grained enough?

94

a user study (2012)
Felt, Ha, Egelman, Haney, Chin, Wagner, “Android Permissions:
User Attention, Comprehension, and Behavior”
performed lab study; task: find + install coupon app
at the time: Android prompted for permissions on installation

17% looked at app permissions detail
42% aware of permissions
42% unaware of permissions

versus: 88% read reviews

95

a user study (2012)
Felt, Ha, Egelman, Haney, Chin, Wagner, “Android Permissions:
User Attention, Comprehension, and Behavior”
performed lab study; task: find + install coupon app
at the time: Android prompted for permissions on installation

17% looked at app permissions detail
42% aware of permissions
42% unaware of permissions

versus: 88% read reviews 95

a user survey (2012)
same paper did survey about what permissions meant

three multiple choice questions
selected from bank of 11

302 respondents; 3 fully correct

average 21%

96

example survey question
‘Read phone state and identity’ allows which of these?

Read your phone number

See who you have called

Track you across applications

Load adverisements

97

survey questions (1)

98

survey questions (2)

99

survey questions (3)

100

survey questions (4)

101

from Felt et al, “How To Ask For Permission” (HotSec’12)

102

principles
Felt et al list “principles”:

“Conserve user attention, utilizaing it for only permissions that
have severe consquences”

too many security warnings means users won’t pay attention

“When possible, avoid interrupting the user’s primary task with
explicit security decisions”

users will dismiss warnings because they get in the way of work

103

Cloak and Dagger

104

cloak and dagger permissions
the two permissions:

SYSTEM_ALERT_WINDOW:
draw windows on top of screen
(at time: enabled by default)
BIND_ACCESSIBILITY_SERVICE:
“Observe your actions”
“Retrieve window content”

can hide window content while user interacts with it

…and stealthy get user to do more things

105

also, a clickjacking attack
at the time, could draw overlay window over permissions dialog

…convince user to press where “OK” button is

countermeasure: permissions dialog would detect this, ignore clicks

problem: wouldn’t detect if overlay didn’t cover enough of button

106

privacy and permissions

2019 paper

many mobile application permissions related to privacy

getting phone ID, email address, location, …

but applications (especially ad libraries) find workarounds
107

permissions being insufficient
permissions check limited API calls for getting private info,…

…but there were alternative, unfiltered system calls for

getting MAC address (effectively phone ID)
Linux ioctl system call on socket

WiFi base station address
ARP cache (recently seen machines on network, to know where to send
packets)

location
geolocation tag on recent photos

108

covert channels
advertising libraries would store phone ID/account info in a file

…when they had permissions to retrieve it

and would read phone ID/account info from a file
…when they did not

109

backup slides

110

backup slides

111

SELinux
Security Enhanced Linux
“Mandatory Access Control” system for the Linux

mandatory: can be configured to require enumeration of files programs
can access
(versus normally: specify what files programs can’t access)

not necessairily run in mandatory control mode

programs run in particular “domain”
objects (files, port numbers, other programs, etc.) can be assigned
labels
rules about what labels programs are allowed to access 112

viewing/assigning labels (1)
$ ls -Z /var/log/lastlog
-rw-r--r--. root root system_u:object_r:lastlog_t:s0 /var/log/lastlog

above: default Red Hat Linux/CentOS configuration

system user

object role

lastlog type
$ chcon --type=newtype_t some_file

113

assigning labels (2)
labels via: “file context mapping”
$ semanage fcontext --add --type web_files_t '/var/www/html(/.*)?'
$ restorecon -R -v /var/www/html

pattern matching rules set default labels

restorecon — switch to default labels, applying rules

114

assigning rules
subset of default rules for Apache httpd (webserver):
define(`read_files_pattern',`
allow $1 $2:dir search_dir_perms;
allow $1 $3:file read_file_perms;

')
...
define(`read_lnk_files_pattern',`
allow $1 $2:dir search_dir_perms;
allow $1 $3:lnk_file read_lnk_file_perms;

')
...
allow httpd_t httpd_config_t:dir list_dir_perms;
read_files_pattern(httpd_t, httpd_config_t, httpd_config_t)
read_lnk_files_pattern(httpd_t, httpd_config_t, httpd_config_t)
httpd_t: ‘type’ for webserver process 115

application confinement
confining whole browsers was hard

we trust them to do a lot of things — e.g. write arbitrary files

but maybe we can do this for simpler applications?

idea 1: applications send system calls to OS
limit syscalls like we limited browser kernel commands
constructing command language “in reverse”

116

filtering system calls?
example: video player VLC playing a local file on my laptop

uses 73 unique kinds of system calls
opens many files that are not the video file

libraries
fonts
configuration files
translations of messages

can I limit the files my video player can read?

how do I come up with a useful filter?
117

exercise: app confinement options
sandboxed applications want to access display server

which option seems best for security/performance?
A. proxy for protocol display server supports natively that filters display
calls
B. custom protocol that sends bitmaps + receives inputs, plus copy of
display server runs with application
C. divide application into UI and non-UI part, sandbox just the non-UI
part
D. have application take over screen when running, give its own display
server

118

SELinux escape

119

	principle: least privilege
	what do browsers need?
	OS users
	promise: privilege separation

	privilege separation: video decode
	another user is not enough
	awkwardness of creating a new user

	system calls as OS interface
	definition: sandbox
	Linux system call filtering
	simple Linux system call filtering

	aside: strace
	more fine-grained filtering?
	aside: libseccomp
	problems with filter
	shared services?
	more sophisticated filters

	Chrome architecture
	Site Isolation

	OpenSSH architecture
	exercise: priv sep for
	versus capability-type approach
	chroot
	exercise

	Linux namespaces
	Linux programs that attempt confinement
	containers
	runC bug
	Chrome sandbox escapes

	the Android sandbox
	OSX sandboxing
	Qubes

	Which sandboxing?
	sandboxing without OS support
	Wasm

	sandboxing API: RLBox
	application permissions
	UI problems
	do request right permissions?
	do users understand permissions?
	how to ask for permission?
	permissions abuse: Cloak and Dagger
	permissions abuse: information leak

	backup slides
	SELinux

	normal application confinement?
	applied to VLC?
	pro/con shared services
	SELinux sandbox escape

