
taint tracking

1

taint tracking idea
a lot of attacks — user data ends up in bad place

one way to diagnose/mitigate — track flow of user data

one possibility: dynamic taint tracking

some values ‘tainted’

using them to compute other values ‘taints’ them, too

2

taint tracking implementations
for the programmer:

supported as optional langauge feature — Perl, Ruby
doesn’t seem to have gotten wide adoption?

for the malware analyst/user
as part of a custom x86 VM (whole system, on machine code)
as part of a custom Android system
…

3

taint tracking in Perl (1)
#! perl -T
-T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
my $dir = $name . "-dir";

system("mkdir $dir");

“Insecure dependency in system while running with -T switch at
perltaint.pl line 10, <STDIN> line 1.”

4

taint tracking in Perl (2)
#! perl -T
-T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
keep $name only if its all alphanumeric
this marks $name as untainted
($name) = $name =~ /^([a-zA-Z0-9]+)$/;
my $dir = $name . "-dir";

system("mkdir $name");

5

taint tracking for malware analysis
mark contents of file as tainted, then ID how used

find out if/how data of file gets to output
track tainted accesses to record ‘path’ of file data use

figure out where network packet data goes
mark input as ‘tainted’
identify what functions process packet data
see where packet data ends up on disk

can ‘tag’ each byte of input differently
identify which bytes of input jump depends
identify which bytes of input malicious command came from

whole-system probably too high overhead to do in realtime
6

taint tracking assembly
taint-tracking often proposed at assembly level

examples:

Panda.RE (2013–??)
along with virtual machine record+replay

Panaroma (Yin and Song, UC Berkeley, CCS ’07)

7

high-level overview
lookup table for each register and byte of memory:

where did this value come from?

add %r9, (%r8):
memory-taint-table[register-values[R8]] =

register-taint-table[R9]

also similar for virtual disk, network, …

custom VM: all applications and the OS run with taint tracking
tracks data moving between programs “for free”

8

Panaroma special cases
xor %eax, %eax: special case: remove taint from %eax

Windows keyboard input did something like:
keycode = GetFromKeyboard();
switch (keycode) {
case KEYCODE_A: return 'a';
case KEYCODE_B: return 'b';
...
}

9

defeating ASM-based checking
if a malware author wanted to defeat this taint checking, what
ideas seem promising for confusing the analysis?

A. timing arithmetic operations to see if the machine is unusually slow
B. computing the hash of the malware’s machine code and comparing it
to a known value
C. changing x = y to
switch (x) { case 1: y = 1; break; case 2: ...}
D. changing x = y to x = z + y; x = x − z;

10

Tigress’s transformation

11

example: TaintDroid

12

TaintDroid instrumentation

13

TaintDroid results

14

	taint tracking
	implementations
	taint tracking in perl
	taint tracking as program analysis
	taint tracking asm / Panorama example
	exercise: defeating
	obfuscation to defeat taint-tracking
	taint for finding mobile leaks

