taint tracking

taint tracking idea

a lot of attacks — user data ends up in bad place

one way to diagnose/mitigate — track flow of user data
one possibility: dynamic taint tracking
some values ‘tainted’

using them to compute other values ‘taints’ them, too

taint tracking implementations

for the programmer:

supported as optional langauge feature — Perl, Ruby
doesn’t seem to have gotten wide adoption?

for the malware analyst/user

as part of a custom x86 VM (whole system, on machine code)
as part of a custom Android system

taint tracking in Perl (1)

#! perl -T

-T: enable taint tracking
use warnings; use strict;
$SENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";

my S$Sname = readline(STDIN);
my $dir = $name . "-dir";
system("mkdir $dir");

“Insecure dependency in system while running with -T switch at
perltaint.pl line 10, <STDIN> line 1."

taint tracking in Perl (2)

#! perl -T

-T: enable taint tracking
use warnings; use strict;
$SENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";

my S$Sname = readline(STDIN);

keep $name only if its all alphanumeriic
this marks $name as untainted

($name) = $name =~ /"([a-zA-Z0-9]1+)$/;

my $dir $name . "-dir";

system("mkdir $name");

taint tracking for malware analysis

mark contents of file as tainted, then ID how used
find out if/how data of file gets to output
track tainted accesses to record ‘path’ of file data use

figure out where network packet data goes
mark input as ‘tainted’
identify what functions process packet data
see where packet data ends up on disk

can ‘tag’ each byte of input differently
identify which bytes of input jump depends
identify which bytes of input malicious command came from

whole-system probably too high overhead to do in realtime

taint tracking assembly
taint-tracking often proposed at assembly level
examples:

Panda.RE (2013-77)

along with virtual machine record+replay

Panaroma (Yin and Song, UC Berkeley, CCS '07)

high-level overview

lookup table for each register and byte of memory:
where did this value come from?

add %r9, (%r8):
memory-taint-table[register-values[R8]] =
register—-taint-table[R9]

also similar for virtual disk, network, ..

custom VM: all applications and the OS run with taint tracking
tracks data moving between programs “for free”

Panaroma special cases
Xor %eax, %eax: special case: remove taint from %eax

Windows keyboard input did something like:

keycode = GetFromKeyboard();
switch (keycode) {

case KEYCODE_A: return 'a';
case KEYCODE_B: return 'b';

i..

defeating ASM-based checking

if a malware author wanted to defeat this taint checking, what
ideas seem promising for confusing the analysis?
A. timing arithmetic operations to see if the machine is unusually slow
B. computing the hash of the malware's machine code and comparing it
to a known value
C. changing x = y to
switch (x) { case 1: y = 1; break; case 2: ...}
D. changing x = ytox = z + y; X = X — Z;

10

Tigress’s transformation
Anti Taint Analysis

The goal of this transformation is to disrupt analysis tools that make use of dynamic taint analysis.
Diversity
We use two basic ways to copy a variable using control-, rather than data-flow:

1. counting up to the value of the variable, and
2. copying it bit by bit, tested in an if-statement.

11

example: TaintDroid

TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones

William Enck Peter Gilbert Byung-Gon Chun
The Pennsylvania State University Duke University Intel Labs
Landon P. Cox Jaeyeon Jung Patrick McDaniel Anmol N. Sheth
Duke University Intel Labs The Pennsylvania State University Intel Labs

12

TaintDroid instrumentation

Message-level tracking

Y

Application Code

e}

Application Code

Virtual
Machine

Virtual
Machine

¢ Native System Libraries i

Network Interface ‘ Secondary Storage

*..

.q.-.

|- - -

Variable-level
tracking

Method-level
tracking

File-level
tracking

Figure 1: Multi-level approach for performance efficient
taint tracking within a common smartphone architecture.

13

TaintDroid results

Table 3: Potential privacy violations by 20 of the studied applications. Note that three applications had multiple
violations, one of which had a violation in all three categories.

Observed Behavior (# of apps) | Details

Phone Information to Content Servers (2) | 2 apps sent out the phone number, IMSI, and ICC-1D along with the
geo-coordinates to the app’s content server.

Device 1D to Content Servers (7)* 2 Social, 1 Shopping, 1 Reference and three other apps transmitted
the IMEI number to the app’s content server.

Location to Advertisement Servers (15) 5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,
2 apps to ads.mobclix.com (1 sent location both to admob.com and
ads.mobclix.com) and 4 apps sent location' to data.flurry.com.

* TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA.

TTo the best of our knowledge, the binary messages contained tainted location data (see the discussion below).

	taint tracking
	implementations
	taint tracking in perl
	taint tracking as program analysis
	taint tracking asm / Panorama example
	exercise: defeating
	obfuscation to defeat taint-tracking
	taint for finding mobile leaks

