
greybox fuzzing / static analysis / taint tracking

1

on testing
challenges with testing for security:

security bugs use “unrealistic” inputs — e.g. > 8000 character
name

memory errors often don’t crash

bounds checking, etc. tools will fix

2

on testing
challenges with testing for security:

security bugs use “unrealistic” inputs — e.g. > 8000 character
name

memory errors often don’t crash
bounds checking, etc. tools will fix

2

automatic testing tools
basic idea: generate lots of random inputs — “fuzzing”

easy to generate weird inputs

look for memory errors
segfaults, or
use memory error detector, or
add (slow) ‘assertions’ or other checks to code

one of the most common ways to find security bugs

3

‘blackbox’ fuzzing
void fuzzTestImageParser(std::vector<byte> &originalImage) {

for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {
/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

4

‘blackbox’ fuzzing
void fuzzTestImageParser(std::vector<byte> &originalImage) {

for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {
/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

4

‘blackbox’ fuzzing
void fuzzTestImageParser(std::vector<byte> &originalImage) {

for (int i = 0; i < NUM_TRIES; ++i) {
std::vector<byte> testImage;
testImage = originalImage;
int numberOfChanges = rand() % MAX_CHANGES;
for (int j = 0; j < numberOfChanges; ++j) {
/* flip some random bits */
testImage[rand() % testImage.size()] ^= rand() % 256;

}
int result = TryToParseImage(testImage);
if (result == CRASH) ...

}
}

4

blackbox fuzzing pros
works with unmodified software

even with embedded assembly, etc.

works with many kinds of input
don’t need to understand input format

easy to parallelize

has actually found lots of bugs

5

‘blackbox’?
the program is a “black box” — can’t look inside

we only run it, see if it works

for memory errors — works ≈ doesn’t crash

6

what can fuzzing find
easiest to find crashes

intuition: segfault could be security problem

otherwise: how do we know if test cases are useful?

need some way to know if test result is correct

example: fuzz-testing of C compilers versus other C compilers
Yang et al, “Finding and Understanding Bugs in C compilers”, 2011
79 GCC, 209 Clang bugs
about one third “wrong generated code”
but using smarter fuzzing strategy (we’ll talk about it later)

7

testing for non-memory flaws?
fuzzing for cross-site scripting bugs?

run on web application
assert that HTML is well-formed?

fuzzing for SQL injection?
assert that no malformed SQL gets executed?

operating system?
input = requests (system calls) to make to the OS

(less likely) fuzzing for permissions issues?
assert that admin. data doesn’t change?

8

fuzzing challenges
isolation:

need to detect crashes/etc. reliably
want reproducible test cases
need to distinguish hangs from “machine is randomly slow”

speed:
need to run many millions of tests
application startup times are a problem

completeness:
might have to get really lucky to make interesting input

9

fuzzing challenges
isolation:

need to detect crashes/etc. reliably
want reproducible test cases
need to distinguish hangs from “machine is randomly slow”

speed:
need to run many millions of tests
application startup times are a problem

completeness:
might have to get really lucky to make interesting input

9

completeness problem
let’s say we’re testing an HTML parser

what code is usually going to when we flip random bits?
(or remove/add random bytes)

how often are we going to generate tags not in starting document?

how often are we going to generate new almost-valid documents?

10

completeness problem
let’s say we’re testing an HTML parser

what code is usually going to when we flip random bits?
(or remove/add random bytes)

how often are we going to generate tags not in starting document?

how often are we going to generate new almost-valid documents?

10

HTML with changes
<html><head><title>A</title></head><body>B</body></html>
<html*<head><title>A</title></head><body>B</body></html>
<html><iead><title>C</title></head><body>B</body></html>

11

CSmith
Yang et al wrote a random C program generator

“Finding and Understanding Ubgs in C compilers” (PLDI 2011)

carefully avoided code with unspecified effects
most of the work was about doing this

don’t need to know what program does: comparing two compilers
or one compiler with different settings

random selection of types, operators, etc.

…instead of just random bytes
12

CReduce
Regher et al (including Yang)’s follow-up work

“Test-Case Reduction for C Compiler Bugs” (PLDI 2012)

take a C program that triggers bug…

try removing things to make it smaller

needed: automated way of checking “is bug still there”

same idea applies to security bugs
remove as much as possible and get it to still segfault

13

thinking about testing
void expand(char *arg) {

if (arg[0] == '[') {
if (arg[2] != '-' || arg[4] != ']') {

putchar('[');
expand(&arg[1]);

} else {
for (int i = arg[1]; i <= arg[3]; ++i) {

putchar(i);
}
expand(&arg[5]);

}
} else if (arg[0] != '\0') {

putchar(arg[0]);
expand(&arg[1]);

}
}

14

coverage
“coverage”: metric for how good tests are

% of code reached

easy to measure

correlates with bugs found
but not the same thing as finding all bugs

15

automated test generation
conceptual idea: look at code, go down all paths

seems automatable?
just need to identify conditions for each path

16

a compromise: coverage-guided fuzzing
symbolic execution: try to maximize paths run…

by finding potential paths, solving to run them

observation: easy to measure which paths a test case uses
way, way, way easier than solving eqn to find a case for that path

can make random tests biased towards finding new paths

17

coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

18

coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

18

coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

18

coverage-guided example
void foo(int a, int b) {

if (a != 0) {
// W
b −= 2;
a += b;

} else {
// X

}
if (b < 5) {

// Y
b += 4;
if (a + b > 50) {

// Q
...

}
} else {

// Z
}

}

initial test case A:
a = 0x17, b = 0x08; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08; covers: WZ
a = 0x15, b = 0x08; covers: WZ
a = 0x17, b = 0x0c; covers: WZ
a = 0x13, b = 0x08; covers: WZ
a = 0x17, b = 0x08; covers: WZ
…
a = 0x17, b = 0x00; covers: WY

found test case B:
a = 0x17, b = 0x00; covers: WY

generate random tests based on A, B

a = 0x37, b = 0x08; covers: WZ
a = 0x04, b = 0x00; covers: WY
a = 0x17, b = 0x01; covers: WZ
a = 0x16, b = 0x00; covers: WY
…
a = 0x97, b = 0x00; covers: WYQ
…
a = 0x00, b = 0x08; covers: XY

18

coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

19

coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

19

coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

19

coverage-guided example
void foo(unsigned a,

unsigned b,
unsigned c) {

if (a != 0) {
b −= c; // W

}
if (b < 5) {

if (a > c) {
a += b; // X

}
b += 4; // Y

} else {
a += 1; // Z

}
assert(a + b != 7);

}

initial test case A:
a = 0x17, b = 0x08, c = 0x00; covers: WZ

generate random tests based on A
a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x15, b = 0x08, c = 0x02; covers: WZ
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x13, b = 0x08, c = 0x40; covers: WZ
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x01; covers: WXY

found test case B:
a = 0x17, b = 0x00, c = 0x01; covers: WXY

generate random tests based on A, B

a = 0x37, b = 0x08, c = 0x00; covers: WZ
a = 0x17, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x0c, c = 0x00; covers: WZ
a = 0x37, b = 0x00, c = 0x03; covers: WXY
a = 0x17, b = 0x08, c = 0x10; covers: WZ
…
a = 0x17, b = 0x00, c = 0x81; covers: WY

19

exercise: coverage guidance good for?
void example1(int a, int b) {

if (a < 4 && b < 4 && a == b) {
assert(a + b != 6);

}
}
void example2(int a, int b) {

assert(a != 10325);
}
void example3(int a, int b) {

assert(a != 10325 && b != 10543);
}

exercise: for which of these functions would coverage guided
fuzzing be most/least better than random testing for making the
assertion fail?

20

american fuzzy lop
one example of a fuzzer that uses this strategy

“whitebox fuzzing”

assembler wrapper to record computed/conditional jumps:
CoverageArray[Hash(JumpSource, JumpDest)]++;

use values from coverage array to distinguish cases

outputs only unique test cases

goal: test case for every possible jump source/dest
21

american fuzzy lop heuristics
american fuzzy lop does some deterministic testing

try flipping every bit, every 2 bits, etc. of base input
overwrite bytes with 0xFF, 0x00, etc.
etc.

has many strategies for producing new inputs
bit-flipping
duplicating important-looking keywords
combining existing inputs

22

simplifying testing cases
int array[10];
void vulnerable(char *input) {

char *p;
int count = 0;
p = input;
if (*p == 'A') {

p += 1;
while (*p == '0') {p += 1; count −= 1;}
while (*p >= 'A' && *p < 'E') p += 1;
while (*p == '0') {p += 1; count += 1;}

}
if (*p == 'B')

array[count] += 1;
}

example crash:
A00ABDBBBDEEDDDCCCBBBDDDAAAA00000000000000000000000B

might be what coverage-guided fuzzing finds

would really prefer minimal example: A00000000000B
23

automatically simplifying test cases
but look for same result and/or coverage

systematic simplifications:
try removing every character (one-by-one)
try decrementing every byte
…

keep simplifications that don’t change result

AFL uses some of this strategy to help get better ‘base’ tests
also has tool to do this on a found test
prefers simpler ‘base’ tests

24

AFL: manual keywords
AFL supports a dictionary

list of things to add to create test cases
example: all possible HTML tags

other strategy: test-case template

other strategy: test postprocessing (fix checksums, etc.)

25

still guessing
AFL’s strategy is still guessing-based

key idea: way to observe if more coverage

will talk about more systematic strategy:
read code to find out when branch condition true/false

26

	testing for security
	fuzzing, generally
	``blackbox''
	what can we test
	other applications
	some practical issues
	lots of bad tests?
	example: Yang et al

	what makes good tests?

	metric: coverage
	coverage-guided fuzzing
	examples
	exercise
	AFL as running example
	automatic test case simplification
	AFL: test template support
	whiter boxes

