To read more...

This day's paper:
CS 6354 Tom asu |O Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”

Supplementary readings:

Hennessy and Patterson, Computer Architecture: A Quantitative Approach,
section 3.4-5

Shin and Lipatsi, Modern Processor Design, section 5.2

21 September 2016

Intel Skylake Scheduling

N — How can we reorder instructions?

Cache

@"@7 — Without changing the answer
(DSB) Pipeline
Auops/oycle 6 uops/eydle 5uops/cyde l

‘ Instruction Decode Queue (IDQ,, or micro-op queue) ‘

‘ Allocate/Rename/Retire/MoveElimination/Zeroldiom ‘

‘ Scheduler ‘

256K 12 Cache

Port 2 (Unified)
Port 0 Port1 Port 5 Port6 LD/STA
Int ALU, Int ALU, Int ALU,
Vec FVIA, Fast LEA, Fast LEA, Lo S Port 3
VecMUL, | | VecFMA | | Vec SHUF, IntSH, LD/STA

Vec Add, Vec MUL, VecALU, Bencht
Vec ALU, Vec Add, ar > 32(L1DataCache
Vec Shft, VecALU, _—
Divide, Vec Sht, S >
Branch2 Int MUL,
Slow LEA Port7
STA

Image: Intel Optimization Reference Manual 2 3

Recall: Data hazards

Instructions had wrong data

.. because they weren't executed one-at-a-time

Example: reading old value of register

Recall: Read-after-Write

ri <—
rs5 <—

r2 + r3
rl —

rl «— r2 + r3

r4 <— rl1l - r5

IF

MEM
WB:

S AW N

ID: read r2, r3
EX: templ <~ r2 +r3

rl<« temp

IF

ID:
EX:
MEM
WE:

read rl, r5
temp2 <~ rl-r5

r4 < temp2

Write-after-Write

ri < r2 +r3 ;

(1)

rl < r6 + r7 ; (2)

r4a < r2 + rl ;

(3)

time [Fr1 < r2 +r3rl«<r6+r7jr4d+<r2+rl
1 read r6, r7

2 read r2, r3 compute

3 compute write rl

4 write rl RN L a1
5 T ed-----_______ -, desired vaiu
6 value fread read rl, r2

7 compute

€

Write-after-Read

rl <« r2 + r3
r3 <« r4 + r5

(1)
(2)

time [F1 < r2+r3|r3+<r4+r5
1 read r4, rb

2 compute

3 write r3

4 read r2, r3

5 compute

6 write rl

Types of Data Hazards

Read-after-Write (RAW)

also called: true dependence

Write-after-Write (WAW)

also called: output dependence

Write-after-Read (WAR)

also called: anti-dependence

a problem with names

write-after-write

ri. < r2+r3 ; (1)
rix < r6 + r7 5 (2)
r4 <+ r2 4+ rilx ; (3)

write-after-read
ri <+« r2 4+ r3 ; (1)
r3x < r4 +r5 ; (2)

no problem if we used a different name each write

register renaming

original code with renaming

ri <« r2 4+ r3 newl « r2 + r3 ; (1)
r7 < rl + r3 new2 <+ newl + r3 ;(2)
rl < r6 + r7 new3 <+ r6 + r7 5 (3)
r4 < r2 + rl newd «+ r2 + new3 ; (4)
r2 < r4 +r5 new5 < r4 + r5 ; (5)

new | old | from | up to

name | name

newl | ril (1) (2)

new2 | r7 (2) —

new3 | ril (3) —

new4 r4 (4) —

new5 | r2 (5) — 0

scheduling with renaming

different architectual (external) and internal register
names

new internal name on each write

11

register renaming state

original code

with renaming

rl<r2+r3

X09 +— x02 + x03

r7<«rl+4r3

X10 < x09 + x03

rl<ré6+r7

X11 < x06 + x10

r4 <~ r2+rl

Xx12 + x02 + x11

r2 <+ r4 +r5

X13 < x12 + x05

external name

internal name

rl

<01+ x09 x11

r2

%02 x13

r3

x03

r4

%04 x12

r5

x05

ro

x06

r7

07 x10

r8

x08

Diversion: SSA

compiler technique: static single-assignment (SSA)
form

eewrite code as code with immutable variables only
makes optimization easier

if you know it — this will seem familiar

scheduling with renaming handling variable times
|(renamed) instructions run on |done? int. ready?
(1) [x05 < Mem[x03] Load |yes ol e
(2) [x06 « x01 + x02 |AddL |yes o e scheduling is reactive
(3) |x07 + x01 x x02 Mult [yes 03 ves
g;‘; §§Z:§22iig: o 00 s Load took longer? Doesn't matter.
(6) [x10 «+ x07 fxo6—~ladd1 |[yes 05 P . .
| Might have second adder, but x5 is not ready. Don't try to start things until ready.
time) : . . U8 ves
x09 yes
x10 yes
14 15

Running out of register names? reservation stations vs registers

recycle names with no operations, external name Tomasulo paper doesn’t seem to have extra registers
still out of names? don't issue more instructions But has reservation stations
.. with tags

these are extra registers and their names

16
pieces in Tomasulo scheduling with reservation buffers
|(renamed) instructions run on |done?
(1) |x05 <+ Mem[x03] Load |Yes d . .
STORAGE BUS , INSTRUCTION UNIT . IS atc h I n t ra n Sm ItS
‘ | internal <+ external g; ng < xgi + Xg; Addl [yes p ; %
. - . . X07 < x01 X X Mult |yes register values
E;gz:?}:}_j fm":;gdy bits , name smappmg 7 (4) |x08 + x05 x x04 Mult g
R CONTROL STACK (FLOS) busill e | FLOATING POINT 4] (5) X09 <+ x05 + x04 Add2
2 BITS REGISTERS (FLR) 2
- i " - [9] (6) [x10 < x07 + x06 Addl |yes
| PECODER | s"fﬁi 5 Add1l Add2 Mult Load
i source L tag [x01x07 |x05 |x01x05 |x03
source 1 ready? |yesnoyes|noyes yesnoyes |yes
— rL:D:us 1 source 2 tag x02x06 |[x04 x02x04
Tac | SNk [[TAG | SOURCE [FTR(]| extra reg|s‘ters sourc.e 2 ready? yesyes yes yes
::i z:zi 1:2 zx;:zzi ::t sink tag x06x10 [x09 x07x08 [x05
RESULT
COMMON DATA BUS (CDB)

18

common data bus

results are broadcast here
tag ~ internal register name

reservation stations listen for operands

register file listens for register values

keeps register file from being bottleneck

fancy buses: mutliple value+tags per clock cycle

iIssuing instructions

assign tags for operands
instruction will execute when operands are ready

handles variable length operations (e.g. loads)

20 21
integrating with reorder buffer integrating with reorder buffer (2)
[
%
A reorder buffer just another thing listening on bus
Instruction feg® Pata
. FP registers I
Load/store
operations ——
Operand
i
Load buffers
a Operation bus
aS(l;:irreess—. S Reservation ?
Store 1 stations
data Address
Memeory unit i FP addersi
lj;?s Common data bus (CDB)
Hennessy & Patterson Figure 3.11 22 23

multiple entries in reservation
stations

instead of dispathcing one instruction, issue a list

reservation station starts whichever one gets
operands first

variations on reservation stations

Intel P6: shared reservation station for all types of
operations

MIPS R10000 (next Monday's paper): read from
shared register file (with renaming)

24 25
Intel P6 execution unit datapaths summary
o TN TR register renaming to avoid data hazards
- 1 — 1) otherwise even write-after-write, write-after-read a
ol = S I Lo roblom
Writeback bus 1
Port | L-I + i
% — | Ny L-] shared bus to communicate results
L data from memory
maz |_IH o J register file, reservation buffers listen on bus
MOB DCU
| —— ST Addr = .
N e =2 T e B S can dispatch to buffer before value ready
Port 4 ! Stare d
pw— |
1
Ld data from memory
‘Writeback bus 0
Writeback bus 1
RAT Kew o
Image: Shen and Lipatsi, Figure 7.14 26 27

