
CS 6354: Tomasulo

21 September 2016

1

To read more…

This day’s paper:
Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”

Supplementary readings:
Hennessy and Patterson, Computer Architecture: A Quantitative Approach,
section 3.4-5
Shin and Lipatsi, Modern Processor Design, section 5.2

1

Intel Skylake

Image: Intel Optimization Reference Manual 2

Scheduling

How can we reorder instructions?

Without changing the answer

3

Recall: Data hazards

Instructions had wrong data

… because they weren’t executed one-at-a-time

Example: reading old value of register

4

Recall: Read-after-Write

r1 <− r2 + r3
r5 <− r1 − r5

r1 ← r2 + r3 r4 ← r1 - r5
1 IF
2 ID: read r2, r3 IF
3 EX : temp1 ← r2 + r3 ID: read r1, r5
4 MEM EX : temp2 ← r1 - r5
5 WB: r1 ← temp MEM
6 WB: r4 ← temp2

5

Write-after-Write

r1 ← r2 + r3 ; (1)
...
r1 ← r6 + r7 ; (2)
r4 ← r2 + r1 ; (3)

time r1 ← r2 + r3 r1 ← r6 + r7 r4 ← r2 + r1
1 read r6, r7
2 read r2, r3 compute
3 compute write r1
4 write r1
5
6 read r1, r2
7 compute

desired value
value read

6

Write-after-Read

r1 ← r2 + r3 ; (1)
r3 ← r4 + r5 ; (2)

time r1 ← r2 + r3 r3 ← r4 + r5
1 read r4, r5
2 compute
3 write r3
4 read r2, r3
5 compute
6 write r1

7

Types of Data Hazards

Read-after-Write (RAW)
also called: true dependence

Write-after-Write (WAW)
also called: output dependence

Write-after-Read (WAR)
also called: anti-dependence

8

a problem with names

write-after-write
r1 ← r2 + r3 ; (1)
r1× ← r6 + r7 ; (2)
r4 ← r2 + r1× ; (3)

write-after-read
r1 ← r2 + r3 ; (1)
r3× ← r4 + r5 ; (2)

no problem if we used a different name each write

9

register renaming
original code with renaming
r1 ← r2 + r3
r7 ← r1 + r3
r1 ← r6 + r7
r4 ← r2 + r1
r2 ← r4 + r5

new1 ← r2 + r3 ;(1)
new2 ← new1 + r3 ;(2)
new3 ← r6 + r7 ;(3)
new4 ← r2 + new3 ;(4)
new5 ← r4 + r5 ;(5)

new
name

old
name

from up to

new1 r1 (1) (2)
new2 r7 (2) —
new3 r1 (3) —
new4 r4 (4) —
new5 r2 (5) — 10

scheduling with renaming

different architectual (external) and internal register
names

new internal name on each write

11

register renaming state
original code with renaming
r1 ← r2 + r3 x09 ← x02 + x03
r7 ← r1 + r3 x10 ← x09 + x03
r1 ← r6 + r7 x11 ← x06 + x10
r4 ← r2 + r1 x12 ← x02 + x11
r2 ← r4 + r5 x13 ← x12 + x05

external name internal name
r1 x01 x09 x11
r2 x02 x13
r3 x03
r4 x04 x12
r5 x05
r6 x06
r7 x07 x10
r8 x08

12

Diversion: SSA

compiler technique: static single-assignment (SSA)
form

eewrite code as code with immutable variables only

makes optimization easier

if you know it — this will seem familiar

13

scheduling with renaming
(renamed) instructions run on done?
(1) x05 ← Mem[x03] Load yes
(2) x06 ← x01 + x02 Add1 yes
(3) x07 ← x01 × x02 Mult yes
(4) x08 ← x05 × x04 Mult yes
(5) x09 ← x05 + x04 Add2 yes
(6) x10 ← x07 + x06 Add1 yes

int.
name ready?

x01 yes
x02 yes
x03 yes
x04 yes
x05 yes
x06 yes
x07 yes
x08 yes
x09 yes
x10 yes

time Add1 Add2 Mult Load
0 (2) start — (3) start (1) start
1 (2) — (3) (1)
2 (2) done — (3) (1)
3 — — (3) (1)
4 — — (3) done (1)
5 (6) start — — (1) done
6 (6) (5) start (4) start —
7 (6) done (5) (4) —
8 — (5) done (4) —
9 — — (4) —
10 — — (4) done —

Might have second adder, but x5 is not ready.

14

handling variable times

scheduling is reactive

Load took longer? Doesn’t matter.

Don’t try to start things until ready.

15

Running out of register names?

recycle names with no operations, external name

still out of names? don’t issue more instructions

16

reservation stations vs registers

Tomasulo paper doesn’t seem to have extra registers

But has reservation stations

… with tags

these are extra registers and their names

17

pieces in Tomasulo

internal ↔ external
name mappingready bits

extra registers

18

scheduling with reservation buffers
(renamed) instructions run on done?
(1) x05 ← Mem[x03] Load yes
(2) x06 ← x01 + x02 Add1 yes
(3) x07 ← x01 × x02 Mult yes
(4) x08 ← x05 × x04 Mult
(5) x09 ← x05 + x04 Add2
(6) x10 ← x07 + x06 Add1 yes

dispatching transmits
register values

Add1 Add2 Mult Load
source 1 tag x01x07 x05 x01x05 x03

source 1 ready? yesnoyes noyes yesnoyes yes
source 2 tag x02x06 x04 x02x04

source 2 ready? yesyes yes yes
sink tag x06x10 x09 x07x08 x05

19

common data bus

results are broadcast here
tag ≈ internal register name

reservation stations listen for operands

register file listens for register values

keeps register file from being bottleneck

fancy buses: mutliple value+tags per clock cycle

20

issuing instructions

assign tags for operands

instruction will execute when operands are ready

handles variable length operations (e.g. loads)

21

integrating with reorder buffer

Copyright © 2011, Elsevier Inc. All rights Reserved. 6

Figure 3.11 The basic structure of a FP unit using Tomasulo’s algorithm and extended to handle speculation. Comparing this
to Figure 3.6 on page 173, which implemented Tomasulo’s algorithm, the major change is the addition of the ROB and the
elimination of the store buffer, whose function is integrated into the ROB. This mechanism can be extended to multiple issue by
making the CDB wider to allow for multiple completions per clock.

Hennessy & Patterson Figure 3.11 22

integrating with reorder buffer (2)

reorder buffer just another thing listening on bus

23

multiple entries in reservation
stations

instead of dispathcing one instruction, issue a list

reservation station starts whichever one gets
operands first

24

variations on reservation stations

Intel P6: shared reservation station for all types of
operations

MIPS R10000 (next Monday’s paper): read from
shared register file (with renaming)

25

Intel P6 execution unit datapaths

Image: Shen and Lipatsi, Figure 7.14 26

summary

register renaming to avoid data hazards
otherwise even write-after-write, write-after-read a
problem

shared bus to communicate results

register file, reservation buffers listen on bus

can dispatch to buffer before value ready

27

