CS 6354: SMT

28 September 2016

To read more...

This day's papers:

Tullsen et al, “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor”
Alverson et al, “The Tera Computer System”

Supplementary Reading:

Hennessy and Patterson, Computer Architecture: A Quanitative Approach,
Section 3.12

Kongetira et al, “Niagara: A 32-Way Multithreaded Sparc Processor”

Shin and Lipasti, Modern Processor Design, Section 11.4.4

Definition: Thread

stream of program execution

own registers

own program counter (current instruction pointer)
may or may not share memory

appears to execute at same time as other threads

Multithreading

thread_one_func(int offset) {

}

for (int i = 0; i < N / 2; ++1)
suml += array[i];

thread_two_func() {

}

for (int i = N / 25 i < Nj ++1)
sum2 += array[i];

compute_sum() {

thread_one = thread_create(thread_one_func);
thread_two = thread_create(thread_two_func);
wait_for_thread(thread_one);
wait_for_thread(thread_two);

sum = suml + sum2;




OS context switches

suml += array[offset + 0];
if (0 < N / 2) goto donel;

suml += array[offset + 1940];
if (1940 < N / 2) goto donel;

timer interrupt/exception

copy registers to memory
OS runs

load registers from memory

return from interrupt/exception

sum2 += array[offset + N/2 + 0];
if (06 < N / 2) goto done2;

sum2 += array[offset + N/2 + 1849];
if (1849 + N / 2 < N) goto done2;

threads state AKA context

externally visible:

program counter (current instruction)
(program-visible) registers
(address of page table)

maybe shared between threads: memory

threads may or may not be in seperate programs

two approaches

Exploiting Choice Tera

out-of-order in-order

choose thread dynamically round-robin between threads

many register name maps many register files

schedule when ready compiler-specified delays

in-order completion

reorder buffer : : :
Imprecise exceptions

1-cycle data cache 70-cycle data memory

Tera: Is it usable?

minimum of nine threads to get full throughput

x 256 CPUs = 2304 threads

Amdahl’s Law
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Tera: the commercial version

Tera/Cray MTA (1997) — described in paper (took
7 years!)

Cray MTA-2 (2002)

Cray XMT (2009) — combines with conventional
processors for 1/0

not advertised anymore

a complaint

Why doesn’t Tera paper compare to
superscalar/out-of-order?

1960s: IBM, Control Data Corp. machines
1988: Motorola MC88100

1989: Intel iI960CA

Tera paper

1990: AMD 29000

1992: DEC Alpha 21064

1993: Pentium

1994: MIPS R8000
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thread state — running superscalar thread state AKA context
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Figure 1: Our base simultaneous multithreading hardware architecture. program coun ters
branch prediction info
physical register values
register map
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modern SMT systems

most Intel desktop/laptop chips — 2 threads/core
2nd gen. Pentium 4 (“NetBurst”) (2002)

Oracle SPARC T5 (2013) — 8 threads/core
SPARC T1 (2005) — 4 threads/core

IBM POWERS (2013) — 8 threads/core
POWERS5 (2004) — 2 threads/core
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running two threads

no context switch

duplicate thread state
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shared resources

caches

instruction queues

functional units (adders, multipliers, etc.)
load /store queue

physical registers
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duplicated resources

program counters
return address stack (branch prediction)
register maps

reorder buffer???
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thread ids added to resources

branch target buffer — phantom branches

8-issue processor??

maximum throughput: 8 instructions/cycle

actual throughput: approx. 4.5
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what workloads benefit? one intuition
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variable gains
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Fig. 1: Comparison of performance with SMT1 vs. SMT4 for
3 applications on an 8-core POWERT system. Each application

is run alone in a separate experiment. The application uses §
threads under SMT1 and 32 threads under SMT4.

Figure from Funston, et al, “An SMT-Selection Metric to Improve Multithreaded Applications’ Performance”, IPDPS 2012
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added complexity?

huge number of registers — slower regfile
Exploiting Choice: useful for single thread

more complex interrupt logic

Tera: imprecise arithmetic exceptions
Tera: in-order completion

fetch /branch logic

Tera: fetch logic = issue logic

21
removed complexity? round-robin variants
Tera: no data cache baseline (1.8)
just have more parallelism! cycle 1: 8 from thread 1
] ) _ cycle 2: 8 from thread 2
hide long-latency instructions cycle 3: 8 from thread 1
instead of better branch prediction cycle 4: 8 form thread 2
instead of faster ALUs
multiple threads at a time (2.4)
cycle 1: 4 from thread 1, 4 from thread 2
cycle 2: 4 from thread 1, 4 from thread 2
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round-robin performance

RR.1.8
RR.2.4
RR 4.2
RR.2.8
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priority-based fetch

fetch more for faster/more starved threads

less unresolved branches
less cache misses

less pending instructions
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Tera: thread creation

CREATE instruction
no OS intervention

OS can later move each thread between processors
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Exploiting Choice: thread creation

not specified

Tera: hypertorus

16x16x16 version of:

Intel mechanism: each thread looks like processor )
= S
same as multiple processors
“logical processor/core” \ ™
/
d \
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Tera: Synchronization FMA: optimization or benchmark
cheat?
no caches — single copy of all data
complex commands to memory: Fused Multiply-Add A = B x C'+ D
read single instruction /functional unit use
write
read /write when ready : - : : -
i gives 2 floating point operations/cycle/functional
unit
really helps dense matrix math
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Next week: multiple processors

C.mmp — one of the earliest multiprocessor

T3E — supercomputer from the 90s

Some weird terminology in C.mmp

not something you are expected to know:
C.mmp deals with core memory (1950s-1970s)

tiny metal rings, magnetized to store a bit

read:

1. set magnetization direction to ‘0’
2. triggers signal if old direction was ‘1’
3. rewrite value to old direction

steps 1-2: access time

steps 1-3: cycle time
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C.mmp distractions things to think about when reading
lots of software issues that don't really concern challenges in making multiprocessor machine
multiprocessor _

design of the networks
you can skim/skip these parts .

how does one program these machines?

how does one coordinate between threads?

how well are threads isolated from each other?

what changes from the uniprocessor were required?
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