CS 6354: SMT

28 September 2016

To read more...

This day's papers:

Tullsen et al, “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor”
Alverson et al, “The Tera Computer System”

Supplementary Reading:

Hennessy and Patterson, Computer Architecture: A Quanitative Approach,
Section 3.12

Kongetira et al, “Niagara: A 32-Way Multithreaded Sparc Processor”

Shin and Lipasti, Modern Processor Design, Section 11.4.4

Definition: Thread

stream of program execution

own registers

own program counter (current instruction pointer)
may or may not share memory

appears to execute at same time as other threads

Multithreading

thread_one_func(int offset) {

}

for (int i = 0; i < N / 2; ++1)
suml += array[i];

thread_two_func() {

}

for (int i = N / 25 i < Nj ++1)
sum2 += array[i];

compute_sum() {

thread_one = thread_create(thread_one_func);
thread_two = thread_create(thread_two_func);
wait_for_thread(thread_one);
wait_for_thread(thread_two);

sum = suml + sum2;

OS context switches

suml += array[offset + 0];
if (0 < N / 2) goto donel;

suml += array[offset + 1940];
if (1940 < N / 2) goto donel;

timer interrupt/exception

copy registers to memory
OS runs

load registers from memory

return from interrupt/exception

sum2 += array[offset + N/2 + 0];
if (06 < N / 2) goto done2;

sum2 += array[offset + N/2 + 1849];
if (1849 + N / 2 < N) goto done2;

threads state AKA context

externally visible:

program counter (current instruction)
(program-visible) registers
(address of page table)

maybe shared between threads: memory

threads may or may not be in seperate programs

two approaches

Exploiting Choice Tera

out-of-order in-order

choose thread dynamically round-robin between threads

many register name maps many register files

schedule when ready compiler-specified delays

in-order completion

reorder buffer : : :
Imprecise exceptions

1-cycle data cache 70-cycle data memory

Tera: Is it usable?

minimum of nine threads to get full throughput

x 256 CPUs = 2304 threads

Amdahl’s Law
20 B T ‘
s
.’
.
) R
2 15 'l 5% serial
= |
s 0% serial «
.

Il ’
) .
N—r .
S ol 3 10% serial
=) K o Ol
-c .
q) .
0 s
L% °l %8 25% serial

L/

/ 50% serial

— ‘) ‘ ‘ ‘

10 20 30 40 20 60
Degree of Parallelism (1=serial)

Tera: the commercial version

Tera/Cray MTA (1997) — described in paper (took
7 years!)

Cray MTA-2 (2002)

Cray XMT (2009) — combines with conventional
processors for 1/0

not advertised anymore

a complaint

Why doesn’t Tera paper compare to
superscalar/out-of-order?

1960s: IBM, Control Data Corp. machines
1988: Motorola MC88100

1989: Intel iI960CA

Tera paper

1990: AMD 29000

1992: DEC Alpha 21064

1993: Pentium

1994: MIPS R8000

8 9
thread state — running superscalar thread state AKA context
e | =l O — [-
Fetd EJJH foating pont. | | | |yl ﬁ externally visible:
- @ J 7 instruction queue registers _ﬁunits |J_> . .
1 T i Daia program counter (current instruction)
‘ Cache (program-visible) registers
Instruction Cache v I |
T .
Ts integer |_p|Integer —‘ J—’ |nterna|:
nstruction queuc registers |
’—D:code ’W E— i queued instructions
Lj Renaming | units reorder buffer
Figure 1: Our base simultaneous multithreading hardware architecture. program coun ters
branch prediction info
physical register values
register map
10 11

modern SMT systems

most Intel desktop/laptop chips — 2 threads/core
2nd gen. Pentium 4 (“NetBurst”) (2002)

Oracle SPARC T5 (2013) — 8 threads/core
SPARC T1 (2005) — 4 threads/core

IBM POWERS (2013) — 8 threads/core
POWERS5 (2004) — 2 threads/core

12

running two threads

no context switch

duplicate thread state

13

shared resources

caches

instruction queues

functional units (adders, multipliers, etc.)
load /store queue

physical registers

14

duplicated resources

program counters
return address stack (branch prediction)
register maps

reorder buffer???

15

thread ids added to resources

branch target buffer — phantom branches

8-issue processor??

maximum throughput: 8 instructions/cycle

actual throughput: approx. 4.5

5
3 47 D\n
5
£
S 3]
=
[=]
E
2 -
16 L 1 T T T T T 17
1 2 3 4 5
what workloads benefit? one intuition
. . . [ATATA] 8 ;
two floating point intensive threads? R B P T A
how many floating point adders? . | [A[ATA] - n | (L[]
) 3 : 1A‘AIA|) T4 H i L|‘|'|'
. . . 2 Cix switch—p : : Cix switch—» '
two intensive integer threads? B m @ B (L
' ? n (A e [LLLILLT
how many integer ALUs" T R SMT™EFFr i
T E E E T+ L"“L'---L|
two cache-bound threads?
|Q“ AlA[AJAAJATAJA[ALATAJATALALA mulgn L =||L[= L
how many cache accesses per cycle? = [AIA[ATATATAIATATATAIATATATAIA D AME L
n [A[AJA[A[A[A[A]A]A]A[A[A]A[A]A] core s L HE L
two branch-heavy threads? = WAAN AR A 2
) Figure 1. CPU-bound workload. Threads T1 through T4 Figure 2. Memory-bound workload. Systems B and C
contend for ALU on each cycle. Systems A and B perform outperform System A by a factor of four, because they are
comparably, because they each have one ALU. System C able to overlap memory access latencies for the four threads.
has an ALU per each of its four processors, and it
outperforms A and B by a factor of four. W'!len l'unr'lingllllhe |Ilemoly—b0und.\fvol'kluad. nSysllem
]_8 Figure from Fedorova et al, “Chip multithreading systems need a new operating system scheduler”, 2004]_9

variable gains

P
ol
I

7
2
= £ |
A
E 15 | -
BMT1

2 [mE-1
g 4
m
E
T 05
[

[

Equake MG EF
Applications

Fig. 1: Comparison of performance with SMT1 vs. SMT4 for
3 applications on an 8-core POWERT system. Each application

is run alone in a separate experiment. The application uses §
threads under SMT1 and 32 threads under SMT4.

Figure from Funston, et al, “An SMT-Selection Metric to Improve Multithreaded Applications’ Performance”, IPDPS 2012

20

added complexity?

huge number of registers — slower regfile
Exploiting Choice: useful for single thread

more complex interrupt logic

Tera: imprecise arithmetic exceptions
Tera: in-order completion

fetch /branch logic

Tera: fetch logic = issue logic

21
removed complexity? round-robin variants
Tera: no data cache baseline (1.8)
just have more parallelism! cycle 1: 8 from thread 1
]) _ cycle 2: 8 from thread 2
hide long-latency instructions cycle 3: 8 from thread 1
instead of better branch prediction cycle 4: 8 form thread 2
instead of faster ALUs
multiple threads at a time (2.4)
cycle 1: 4 from thread 1, 4 from thread 2
cycle 2: 4 from thread 1, 4 from thread 2
22 23

round-robin performance

RR.1.8
RR.2.4
RR 4.2
RR.2.8

BOBEO

Throughput (IPC)
w
1

24

priority-based fetch

fetch more for faster/more starved threads

less unresolved branches
less cache misses

less pending instructions

25

5 N 5
|
4 N : a s § i L 4
2] : N 1R “H [N |
| | s \ 1 N | R
! HR NIIRIIR
N | N | H IR (N LI R
o : RR.1.8 { N RR.2.8 -2
38 : BRCOUNT.1.8 Q BRCOUNT.2.8
- MISSCOUNT. 1.8 ' a MISSCOUNT.28|| |
ICOUNT.1.8 N ICOUNT.2.8
IQPOSN.1.8 a IQPOSN.2.8
. T AL Lo
2 4 6 8 2 4 6 8

Number of Threads Number of Threads

26

Tera: thread creation

CREATE instruction
no OS intervention

OS can later move each thread between processors

27

Exploiting Choice: thread creation

not specified

Tera: hypertorus

16x16x16 version of:

Intel mechanism: each thread looks like processor)
= S
same as multiple processors
“logical processor/core” \ ™
/
d \
28 Image: Wikimedia Commons user $$ 2 & A B¢ 29
Tera: Synchronization FMA: optimization or benchmark
cheat?
no caches — single copy of all data
complex commands to memory: Fused Multiply-Add A = B x C'+ D
read single instruction /functional unit use
write
read /write when ready : - : : -
i gives 2 floating point operations/cycle/functional
unit
really helps dense matrix math
30 31

Next week: multiple processors

C.mmp — one of the earliest multiprocessor

T3E — supercomputer from the 90s

Some weird terminology in C.mmp

not something you are expected to know:
C.mmp deals with core memory (1950s-1970s)

tiny metal rings, magnetized to store a bit

read:

1. set magnetization direction to ‘0’
2. triggers signal if old direction was ‘1’
3. rewrite value to old direction

steps 1-2: access time

steps 1-3: cycle time

32 33
C.mmp distractions things to think about when reading
lots of software issues that don't really concern challenges in making multiprocessor machine
multiprocessor _

design of the networks
you can skim/skip these parts .

how does one program these machines?

how does one coordinate between threads?

how well are threads isolated from each other?

what changes from the uniprocessor were required?

34 35

