Last time — TM

_ modern implementations hide all side effects
Cray-1 and Graphics Processors

speculate that there will be no conflicts

generalizing speculation Common questions

speculation — guess and check:
branch prediction
early loads where does the Cray-1 speedup come from?
startup times?
versus loop unrolling?

swizzling?7?7?

transaction mechanism is general way to support it

what workloads?
more opportunities:

speculate that cached file is up-to-date
check after getting reply from file server

swizzling

rearranging vectors:

into [Z, W, Y, X]
into [Z, Z, Z, W]
etc.

GPU : rearranging vectors

every instruction allows reordering vectors
(“swizzling”):
RO.xyzw, RO.yyyy, RO.wzyx, ..

every instruction allows write masks:
MUL RO.x, R1, R2 — throw away R1.y * R2.y, etc.

scalar operations — produce vector with multiple
copies of output

Cray Block Diagram

VECTOR REGISTERS

VECTOR|

- S |[FLOATING
MEMORY| " 53| POINT
[

SCALAR

mE

| ADDRESS

FUNCTIONAL UNITS

Cray Vector Performance

COST (CLOCK PERIODS/RESULT)
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60

40

20

o\

1 10 20 30 40 50 60 64
VECTOR LENGTH

SCALAR ’

VECTOR
N

Cray Timing — functional unit

Cray Timing — actual

Functional Execution time in clock periods per result for various simple DO loops of the form
Register unit time DO1GI = LN
10 A() = B()
usage (clock pe- oo
. 1
riods) Loop Body N=1 10 100 1000 ooy
Address function units 1. Ay = 1. 41.0 5.5 2.6 25 22.5
address add unit A 2 2. AU) = B() 44.0 5.8 2.7 2.5 31.0
1ti . A 6 3. A() = B()) + 10. 55.0 6.9 29 2.6 37.0
address multiply unit 4. A(D = B() + CW) 59.0 8.2 39 3.7 41.0
Scalar functional units 5. A(h) = B(N*10. 56.0 7.0 2.9 2.6 38.0
Scalar add unit S 3 6. A(” = BU)‘C(” 60.0 8.3 4.0 3.7 42.0
. . .) 7. A(D) = B(H/10. 94.0 10.8 4.1 3.7 52.0
scalar shift unit S 2 or 3 if double 8. All) = B/ CU) 89.0 133 76 72 600
word shift 9. A(I) = SIN(B(l)) 462.0 61.0 33.3 314 198.1
scalar logical unit S 1 10. A(f) = ASIN(B(I)) 430.0 2095 189.5 188.3 169.1
. . 11. A() = ABS(B(I)) 61.0 7.5 2.9 2.6
population/leading zero count 12. AU) = AMAX(B(I), C(I)) 800 112 5.2 48
unit S 3 Cl) = A
Vcctor functiona] units 13. A(l) = B(I) 90.0 127 6.3 58 47.0
dd unit | %4 3 B(I) = CcCI
vector add uni 9 | 14. 4 = BU)*CU) + DU)*E() 1100 16.0 7.7 71 57.0 10
vector shift unit |4 4 15. A() = B()*C(I} + (D) E(D) 113.0 14.7 6.6 6.0 63.0
1 . 1 r - 18 ALY — BN o WD Qg N 12 7 £ & aN g9 N
chaining chaining
V3 :=V1 x V2 V3 :=V1 x V2
VO := V1 + V3 VO :=V1 + V3
add mult add mult
t ! t
vi[e], v2[e] VI[o] Vi[e] + v2[e]]| (vi[e], Vv2[0]
Vi[1], V2[1] Vi[1] V1[1] + v2[1]| [vi[1], V2[1]
Vi[2], V2[2] Vi[2], V2[2]
|| ! ! ||
vector register file vector register file
11 11

chaining timing

7-cycle multiply latency, 6-cycle add latency,
64-element vector:

|7| 64 I6I 64 l
Unchained [| Total = 141
MULV ADDV
I7' 64 |
I |
Chained MULV
6 64
i | Total = 77
ADDV

start-up overhead

time to first result
7+ 6 cycles in the chaining example

register read + functional unit latency

Hennessy and Patterson, Figure G.8 12 13
start-up overhead doing multiple operations at once
time to first result po] o)
7+ 6 cycles in the chaining example ikl
register read 4 functional unit latency]
hidden with pipelining? peat| fpeat] || st oo H o)

needs logic to overlap non-chained operations n _1_' na s el _ll_]
Y Y Y Y
\:Jt/ w _-F/ _-F/ +
oY m Y = ———— L A
S
(a) Flem (b)
13 Hennessy and Patterson, Figure 4.4 14

lanes — spreading out vectors

Lane 0 Lane 1 Lane 2 Lane 3

g Y il T X
FP add FP add FP add FP add
pipe O pipe 1 pipe 2 pipe 3
Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
0,48,... 1,59, ... 2,6,10, ... 3,7, 11, ...
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3

Vector load-store unit

Hennessy and Patterson, Figure 4.5]_5

diving up an array

Value of | 0 1 2 3 n/IMVL

Range of i 0 m (m+MVL) (m+2xMVL) ... (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)
+MVL +2xMVL +3xMVL

Hennessy and Patterson, Figure 4.6

16

Vector length registers

Cray 1: vector register holds up to 64 values
VL — vector length register
indicates how many of 64 values are used

remaining elements unchanged

17

Dealing with branches

do nothing

vector mask register

18

Cray-1 Vector Merge

Vector Mask = [1, 1, 1, 0, 0, 1, 1]

V3 = Merge(V1, V2):
V3[i] = V1]i] if Mask[i] == 1
V3Ji] = V2[i] otherwise

Cray-1 Vector merge example

2. Suppose that a 147 instruction is to be executed and the following
register conditions exist:
(VL) = 4
(VM) = 0 600000 0000 OOOOD DOOO DOOO

(Element 0) of V2 = 1 (Element 0) of V3 = -1
(Element 1) of V2 = 2 (Element 1) of V3 = -2
(Element 2) of V3 = 3 (Element 2) of V3 = -3
(Element 3) of V4 = 4 (Element 3) of V3 = -4

Instruction 147123 is executed and following execution, the first four
elements of V1 contain the following values:

(Element 0) of V1 = -1

(Element 1) of V1 = 2

(Element 2) of V1 = 3

(Element 3) of V1 = -4
The remaining elements of V1 are unaltered.

19 Cray-1 Hardware Reference Manual 20
Setting Vector Masks GPU branching
Cray-1 has two options: SLT V3, V1, V2 (Set Less Than):
V3[i] = 1.0 if V1[i] < V2[i]
V3Ji] = 0.0 otherwise
load integer register into vector mask
example: R3 = MIN(R1, R2
set based on vector register, bit 7 is 1 if element ¢ of P ()
register is: SLT R4, R1, R2
Zero MUL R4, R1, R4
nonzero SGE R5, R1, R2
negative MUL R5, R2, RS
positive ADD R3, R5, R4
21 22

Cray Branching

/* V3 = MIN(V1, V2) */
/* pseudo—assembly x/

Memory banks

want parallelism from loads/stores

trick: interleave memory

VM <— LESS—THAN(V1, V2)
/* VM[x] = 1 1f VI1[x] < V2[x] */
V3 <— MERGE(V1, V2)
/* V3[x] = Vi[x] i1f VM[x] = 1 */
Bank 0 Bank 1 Bank 2 Bank 3
Word 0, Word 1, Word 2, Word 3,
4,8, .. 5,0, .. 6, 10, .. 7,11, ..
23 24
Multiple banks: timeline Cray-1 loading vectors
B ank 1764 xk Transmit (VL) words from memory to Vi elements
Cycle no. 4] 1 2 3 4 5 6 7 starting at memory address KAIJ} and fnCT'EI'I'IEﬁ‘t'iﬂQ
by (Ak) for successive addresses
0 136
: Busy 14 load instruction
2 Busy Busy 152
3 Busy Busy Busy 160 V].[O] — memory[AO]
4 Busy Busy Busy Busy 165
3 Busy Busy Busy Busy Busy 176 V].[].] — memory[AO _|_ Ak]
[§] Busy Busy Busy Busy Busy 154
7 192 Busy Busy Busy Busy Busy V1[2] — memory[AO + 2*Ak]
8 Busy 200 Busy Busy Busy Busy
9 Busy Busy 208 Busy Busy Busy
10 Busy Busy Busy 216 Busy Busy
11 Busy Busy Busy Busy 224 Busy
12 Busy Busy Busy Busy Busy 232 25 26
13 Busvy Busv Busv Busv Busv 240

Strides

a matrix (logically):
Aop Agt Az Ags
A An A A
Agy Az A Ass

27

Strides

typical memory layout:
0: AOO

WO AW
=~
&

a matrix (logically):
Aop Agt Az Ags
A An A A
Agy Az A Ao

27

Strides

typical memory layout:
0: AOO

OO AW
=~
s

access column 0 — stride 4

a matrix (logically):
Agp Agt Az Ags
A An A A
Agy Az A Ass

27

Vector loads/stores

bad strides create bank conflicts

latency of memory may be visible

28

GPU: sources of parallelism

MUL RO.xyzw, R1l.xywz,
1 instruction, four multiplies:
RO.x = R1.x x R2.x
RO.y = Rl.y x R2.y

R2.xywz

hardware multithreading

like Tera machine — fixed latency makes simple
round-robin between threads

similar effect to chaining (since same program, no
branches)

Cray-1-style machines: parallelism

convoys/chaining — overlap consecutive instructions

overlap fetch/setup with computation:
second element fetched while first computing

first can't overlap — “start-up time"

29 30
Vector versus Out-of-Order GPU: specialization
both ways of making efficient use of functional units limited input and output and memory

ideal: every functional unit used every cycle

forward values as soon as they are ready special instructions for lighting computations
vector: much less complexity for processor (almost) no integer operations

faster?

more space for functional units/registers?

multiple lanes instead of wider/slower register files?

31 32

GPU and the CPU

CPU

A
Y

GPU

GPU and the CPU

same bus used for memory?

CPU

A
Y

GPU

33 33
communicating with the GPU (1) communicating with the GPU (2)
typical CPU interface — talk to memory bus DMA — direct memory access
GPU (and/or its controller) listens to memory CPU: write values to memory (e.g. list of vertices)
reads/writes :
CPU: send command to GPU with memory address
write to memory special memory location — sends _ _ _
command GPU: read values (e.g. list of vertices) from memory
(even if they aren't really registers) from memory
34 35

