
Cray-1 and Graphics Processors

1

Last time — TM

modern implementations hide all side effects

speculate that there will be no conflicts

2

generalizing speculation

speculation — guess and check:
branch prediction
early loads
…

transaction mechanism is general way to support it

more opportunities:
speculate that cached file is up-to-date
check after getting reply from file server

3

Common questions

swizzling???

where does the Cray-1 speedup come from?
startup times?
versus loop unrolling?

what workloads?

4



swizzling

rearranging vectors:

X, Y, Z, W into [Z, W, Y, X]

X, Y, Z, W into [Z, Z, Z, W]

etc.

5

GPU : rearranging vectors

every instruction allows reordering vectors
(“swizzling”):

R0.xyzw, R0.yyyy, R0.wzyx, …

every instruction allows write masks:
MUL R0.x, R1, R2 — throw away R1.y * R2.y, etc.

scalar operations — produce vector with multiple
copies of output

6

Cray Block Diagram

7

Cray Vector Performance

8



Cray Timing — functional unit

9

Cray Timing — actual

10

chaining

add mult

V3 := V1 × V2
V0 := V1 + V3

vector register file

V1[0], V2[0]
V1[1], V2[1]
V1[2], V2[2]

V1[0]
V1[1]

V1[0] + V2[0]
V1[1] + V2[1]

11

chaining

add mult

V3 := V1 × V2
V0 := V1 + V3

vector register file

V1[0], V2[0]
V1[1], V2[1]
V1[2], V2[2]

V1[0]
V1[1]

V1[0] + V2[0]
V1[1] + V2[1]

11



chaining timing

7-cycle multiply latency, 6-cycle add latency,
64-element vector:

Hennessy and Patterson, Figure G.8 12

start-up overhead

time to first result

7 + 6 cycles in the chaining example

register read + functional unit latency

hidden with pipelining?
needs logic to overlap non-chained operations

13

start-up overhead

time to first result

7 + 6 cycles in the chaining example

register read + functional unit latency

hidden with pipelining?
needs logic to overlap non-chained operations

13

doing multiple operations at once

Hennessy and Patterson, Figure 4.4 14



lanes — spreading out vectors

Hennessy and Patterson, Figure 4.5 15

diving up an array

Hennessy and Patterson, Figure 4.6 16

Vector length registers

Cray 1: vector register holds up to 64 values

VL — vector length register

indicates how many of 64 values are used

remaining elements unchanged

17

Dealing with branches

do nothing

vector mask register

18



Cray-1 Vector Merge

Vector Mask = [1, 1, 1, 0, 0, 1, 1]

V3 = Merge(V1, V2):
V3[i] = V1[i] if Mask[i] == 1
V3[i] = V2[i] otherwise

19

Cray-1 Vector merge example

Cray-1 Hardware Reference Manual 20

Setting Vector Masks

Cray-1 has two options:

load integer register into vector mask

set based on vector register, bit i is 1 if element i of
register is:

zero
nonzero
negative
positive

21

GPU branching

SLT V3, V1, V2 (Set Less Than):
V3[i] = 1.0 if V1[i] < V2[i]
V3[i] = 0.0 otherwise

example: R3 = MIN(R1, R2)

SLT R4, R1, R2
MUL R4, R1, R4
SGE R5, R1, R2
MUL R5, R2, R5
ADD R3, R5, R4

22



Cray Branching

/* V3 = MIN(V1, V2) */
/* pseudo−assembly */
VM <− LESS−THAN(V1, V2)
/* VM[x] = 1 if V1[x] < V2[x] */
V3 <− MERGE(V1, V2)
/* V3[x] = V1[x] if VM[x] = 1 */

23

Memory banks

want parallelism from loads/stores
trick: interleave memory

Bank 0
Word 0,
4, 8, …

Bank 1
Word 1,
5, 9, …

Bank 2
Word 2,
6, 10, …

Bank 3
Word 3,
7, 11, …

24

Multiple banks: timeline

25

Cray-1 loading vectors

load instruction

V1[0] = memory[A0]

V1[1] = memory[A0 + Ak]

V1[2] = memory[A0 + 2*Ak]

…

26



Strides

typical memory layout:
0: A00
1: A01
2: A02
3: A03
4: A10
5: A11
6: A12
7: A13
8: A20
…

access column 0 — stride 4

a matrix (logically):
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
… … … …

27

Strides

typical memory layout:
0: A00
1: A01
2: A02
3: A03
4: A10
5: A11
6: A12
7: A13
8: A20
…

access column 0 — stride 4

a matrix (logically):
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
… … … …

27

Strides

typical memory layout:
0: A00
1: A01
2: A02
3: A03
4: A10
5: A11
6: A12
7: A13
8: A20
…

access column 0 — stride 4

a matrix (logically):
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
… … … …

27

Vector loads/stores

bad strides create bank conflicts

latency of memory may be visible

28



GPU: sources of parallelism

MUL R0.xyzw, R1.xywz, R2.xywz
1 instruction, four multiplies:
R0.x = R1.x × R2.x
R0.y = R1.y × R2.y
…

hardware multithreading
like Tera machine — fixed latency makes simple
round-robin between threads

similar effect to chaining (since same program, no
branches)

29

Cray-1-style machines: parallelism

convoys/chaining — overlap consecutive instructions

overlap fetch/setup with computation:

second element fetched while first computing

first can’t overlap — “start-up time”

30

Vector versus Out-of-Order

both ways of making efficient use of functional units
ideal: every functional unit used every cycle
forward values as soon as they are ready

vector: much less complexity for processor
faster?
more space for functional units/registers?
multiple lanes instead of wider/slower register files?

31

GPU: specialization

limited input and output and memory

special instructions for lighting computations

(almost) no integer operations

32



GPU and the CPU

CPU GPU

same bus used for memory?

33

GPU and the CPU

CPU GPU

same bus used for memory?

33

communicating with the GPU (1)

typical CPU interface — talk to memory bus

GPU (and/or its controller) listens to memory
reads/writes

write to memory special memory location — sends
command

memory locations often called “registers”
(even if they aren’t really registers)

34

communicating with the GPU (2)

DMA — direct memory access

CPU: write values to memory (e.g. list of vertices)

CPU: send command to GPU with memory address

GPU: read values (e.g. list of vertices) from memory

CPU: do other computation while GPU is reading
from memory

35


