
Cray-1 and Graphics Processors
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Last time — TM

modern implementations hide all side effects

speculate that there will be no conflicts
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generalizing speculation

speculation — guess and check:
branch prediction
early loads
…

transaction mechanism is general way to support it

more opportunities:
speculate that cached file is up-to-date
check after getting reply from file server
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Common questions

swizzling???

where does the Cray-1 speedup come from?
startup times?
versus loop unrolling?

what workloads?
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swizzling

rearranging vectors:

X, Y, Z, W into [Z, W, Y, X]

X, Y, Z, W into [Z, Z, Z, W]

etc.
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GPU : rearranging vectors

every instruction allows reordering vectors
(“swizzling”):

R0.xyzw, R0.yyyy, R0.wzyx, …

every instruction allows write masks:
MUL R0.x, R1, R2 — throw away R1.y * R2.y, etc.

scalar operations — produce vector with multiple
copies of output
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Cray Block Diagram
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Cray Vector Performance
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Cray Timing — functional unit
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Cray Timing — actual
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chaining

add mult

V3 := V1 × V2
V0 := V1 + V3

vector register file

V1[0], V2[0]
V1[1], V2[1]
V1[2], V2[2]

V1[0]
V1[1]

V1[0] + V2[0]
V1[1] + V2[1]
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chaining timing

7-cycle multiply latency, 6-cycle add latency,
64-element vector:

Hennessy and Patterson, Figure G.8 12

start-up overhead

time to first result

7 + 6 cycles in the chaining example

register read + functional unit latency

hidden with pipelining?
needs logic to overlap non-chained operations
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doing multiple operations at once

Hennessy and Patterson, Figure 4.4 14



lanes — spreading out vectors

Hennessy and Patterson, Figure 4.5 15

diving up an array

Hennessy and Patterson, Figure 4.6 16

Vector length registers

Cray 1: vector register holds up to 64 values

VL — vector length register

indicates how many of 64 values are used

remaining elements unchanged
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Dealing with branches

do nothing

vector mask register
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Cray-1 Vector Merge

Vector Mask = [1, 1, 1, 0, 0, 1, 1]

V3 = Merge(V1, V2):
V3[i] = V1[i] if Mask[i] == 1
V3[i] = V2[i] otherwise
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Cray-1 Vector merge example

Cray-1 Hardware Reference Manual 20

Setting Vector Masks

Cray-1 has two options:

load integer register into vector mask

set based on vector register, bit i is 1 if element i of
register is:

zero
nonzero
negative
positive
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GPU branching

SLT V3, V1, V2 (Set Less Than):
V3[i] = 1.0 if V1[i] < V2[i]
V3[i] = 0.0 otherwise

example: R3 = MIN(R1, R2)

SLT R4, R1, R2
MUL R4, R1, R4
SGE R5, R1, R2
MUL R5, R2, R5
ADD R3, R5, R4
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Cray Branching

/* V3 = MIN(V1, V2) */
/* pseudo−assembly */
VM <− LESS−THAN(V1, V2)
/* VM[x] = 1 if V1[x] < V2[x] */
V3 <− MERGE(V1, V2)
/* V3[x] = V1[x] if VM[x] = 1 */
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Memory banks

want parallelism from loads/stores
trick: interleave memory

Bank 0
Word 0,
4, 8, …

Bank 1
Word 1,
5, 9, …

Bank 2
Word 2,
6, 10, …

Bank 3
Word 3,
7, 11, …
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Multiple banks: timeline
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Cray-1 loading vectors

load instruction

V1[0] = memory[A0]

V1[1] = memory[A0 + Ak]

V1[2] = memory[A0 + 2*Ak]

…
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Strides

typical memory layout:
0: A00
1: A01
2: A02
3: A03
4: A10
5: A11
6: A12
7: A13
8: A20
…

access column 0 — stride 4

a matrix (logically):
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
… … … …
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Vector loads/stores

bad strides create bank conflicts

latency of memory may be visible
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GPU: sources of parallelism

MUL R0.xyzw, R1.xywz, R2.xywz
1 instruction, four multiplies:
R0.x = R1.x × R2.x
R0.y = R1.y × R2.y
…

hardware multithreading
like Tera machine — fixed latency makes simple
round-robin between threads

similar effect to chaining (since same program, no
branches)
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Cray-1-style machines: parallelism

convoys/chaining — overlap consecutive instructions

overlap fetch/setup with computation:

second element fetched while first computing

first can’t overlap — “start-up time”
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Vector versus Out-of-Order

both ways of making efficient use of functional units
ideal: every functional unit used every cycle
forward values as soon as they are ready

vector: much less complexity for processor
faster?
more space for functional units/registers?
multiple lanes instead of wider/slower register files?
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GPU: specialization

limited input and output and memory

special instructions for lighting computations

(almost) no integer operations
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GPU and the CPU

CPU GPU

same bus used for memory?
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GPU and the CPU

CPU GPU

same bus used for memory?
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communicating with the GPU (1)

typical CPU interface — talk to memory bus

GPU (and/or its controller) listens to memory
reads/writes

write to memory special memory location — sends
command

memory locations often called “registers”
(even if they aren’t really registers)
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communicating with the GPU (2)

DMA — direct memory access

CPU: write values to memory (e.g. list of vertices)

CPU: send command to GPU with memory address

GPU: read values (e.g. list of vertices) from memory

CPU: do other computation while GPU is reading
from memory
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