
FPGAs

1

To read more…

This day’s papers:
Brown and Rose, ”Architecture of FPGAs and CPLDs: A Tutorial”. (no
review required)
Putnam et al, ”A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services”

1

reconfigurable hardware
‘normal’ processor reconfig. HW
stream of instructions set of wirings
fetch 1+ instruction/cycle milliseconds+ to reconfigure
lots of control logic lots of routing
fixed, fast functional units flexible, slower functional units

2

the accelerator concept

second processor specialized for particular
computation

examples:

GPUs — vector computations

FPGAs — ???

custom chips — ??? (next week)

3



FPGA structure

Brown and Rose, Figure 2 4

FPGA programs: RTL

e.g.: Verilog

determines wiring between gates, registers, memories

everything happens in parallel every cycle

manually specify what’s in registers, etc.

same languages used to design real processors

5

RTL example

module counter(clock,reset,value);
input clock;
input reset;
output value;

reg [32:0] count;

always @ (posedge reset or posedge clock)
if (reset)
begin

count <= 0;
end

else
begin

count <= count + 1'b1;
end

assign value = count;
endmodule

6

A note about HW programming

not intuitive
attempts at easier interfaces:

“schematic capture” — draw circuit diagram
common, doesn’t seem great at scale

higher-level tools, e.g., Chisel (Berkeley research
project)

compile to RTL; used at scale

automatic translation of C-like language (C to gates)
Very mixed reputation — very hard compilers problem
But see Aladdin paper

7



FPGA design pipeline

Brown and Rose, Figure 7 8

FPGA: place and route

RTL compiles to “gate list”

needs to turn into what components in the FPGA to
connect

not straightforward; hours+ to compute if FPGA
nearly full

effects performance — longer wires/more switches

9

Programmable switches: example

Example switch: transistor + SRAM cell
(SRAM cell ≈ 1-bit register)

SRAM cell continously outputs stored value

can be written by seperate circuit (not shown)

Brown and Rose, Figure 5 10

Programmable switches: example

Brown and Rose, Figure 5 11



FPGA routing example

12

FPGA logic block example (1)

13

FPGA logic block example (2)

14

FPGA configuration

what to do for every switch

just loading values into memory that controls switch

15



FPGA efficiency

most transistors perform routing, not computation

much longer signal paths than in CPUs
slower clock rates for same task

development tool usefulness/quality is not great

16

FPGA: more complex logic

many FPGAs include specialized fixed functionality
RAM
adders, multipliers
floating point units
common DSP computations
full embedded-class CPU cores
…

could implement these using fully programmable
logic

but slower/bigger

17

review comments

what are FPGAs good for anyways?

versus/combined with GPUs/CPUs?

other large-scale deployments?

programmability?

18

Catapult challenges

datacenter logistics
cost (only 10% more???)
power density (cooling, power distribution)
physical space

programs across multiple FPGAs
needs fast FPGA-to-FPGA communication
centralized allocation

failure handling

19



The Shell

23% of FPGA (configurable) area:

20

CPU to FPGA transfers

10 µs for 16 KB — approx 15 GB/s

(about maximum PCIe 3.0 transfer rate)

21

Catapult roles

hand-coded Verilog (RTL language)

hand partitioned across FPGAs?

precise duplication of existing software

22

Search engine architecture

search
query cache

top-level
aggregator

(TLA)

MLA

MLA

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

ranking service

qu
ery

query

do
cum

ent
s

documents

documents, queryrankings

23



Search engine architecture

search
query cache

top-level
aggregator

(TLA)

MLA

MLA

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

ranking service

qu
ery

query

do
cum

ent
s

documents

documents, queryrankings

23

Search engine architecture

search
query cache

top-level
aggregator

(TLA)

MLA

MLA

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

ranking service

qu
ery

query

do
cum

ent
s

documents

documents, queryrankings

23

Search engine architecture

search
query cache

top-level
aggregator

(TLA)

MLA

MLA

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

ranking service

qu
ery

query

do
cum

ent
s

documents

documents, query

rankings

23

Search engine architecture

search
query cache

top-level
aggregator

(TLA)

MLA

MLA

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

index shard

ranking service

qu
ery

query

do
cum

ent
s

documents

documents, query

rankings

23



Overall Motivation

24

FPGA operation

recieve: document, some features via shared memory
output: score
each FPGA runs a macropipeline stage — 8 µs
(1600 clock cycles)

25

Queue Manager

“model reload”

can only store one model at a time — takes 250 µs
to load from external RAM

on FPGA memories: approx. 40MB capacity
(distributed)

trick: proess queries for same model together

26

Feature Extraction FSMs

parallel finite-state machines

essentially regexes compiled to gates?

fully pipelined

27



Feature Expressions

speialized mathematical expressions

custom multithreaded processor

model determines what the expressions are

mostly integer — small FPGA area — but some FP

split across multiple FPGAs

threads priority-scheduled

28

“Complex” logic area

29

What are FPGAs good for?

bit-twiddling (lots of simple CPU instrs.)?

inherently parallel programs?
perhaps even if different operations — hard for GPUs

low-latency I/O interface and processing?

prototyping CPUs, GPUs

30

What are FPGAs bad at?

floating point, other ‘big’ arithmetic operations
purpose-built, denser ALUs just win

caching lots of data?
… but sometimes dedicated SRAM blocks

being easy to program well
programming FPGAs ≈ processor design!

31



FPGAs versus GPUs

both good at doing massively parallel computations

FPGAs better at exploiting multiple instruction
parallelism?

FPGAs can be lower latency for simple operations

FPGAs much worse at floating
point/non-small-integer calculations?

32

Interlude: Homework 3

33

Homework 3 supplied kernel

what does the supplied kernel do?
0 1 2 … 255 256 257 258 … 511 512 …

255 511 …

34

Exam topics

Memory hierarchy — caches, TLBs
Pipelining, instruction scheduling, VLIW
Multiple issue/out-of-order:

register renaming and reservation stations
reorder buffers and branch prediction
hardware multithreading

Multicore shared memory:
cache coherency protocols/networks
relaxed memory models and sequential consistency
synchronization: spin locks, transaction memory, etc.

Vector machines, GPUs, other accelerators
35



Next time: Custom ASICs

higher dev cost/higher efficiency

two papers:
one on: automating design of custom ASIC accelerators
(Aladdin)
another: a case study using that (Minerva)

all these things probably apply to FPGA stuff

36

Preview: Minerva

Deep Neural Networks — machine learning models

accelerating evaluating DNNs (making predictions
from a pre-trained model)

mathematical tradeoffs (remove “unimportant”
things from model)

architectural tradeoffs

37

Previre: Aladdin

Tool (used by Minerva) for quickly evaluating
accelerator designs

Produces fast estimates

Complements existing high-level synthesis (“C to
gates”-like) tools

38


