
ASIC accelerators

1

To read more…

This day’s papers:
Reagan et al, “Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators”
Shao et al, “The Aladdin Approach to Accelerator Design and Modeling”
(Computer magazine version)

Supplementary reading:
Han et al, “EIE: Efficient Inference Engine on Compressed Neural Networks”
Shao et al, “Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator
Enabling Large Design Space Exploration of Customized Architectures”

1

A Note on Quoting Papers

I didn’t look closely enough at paper reviews earlier
in the semester
Some paper reviews copying phrases from papers
You must make it obvious you are doing so
This will get you in tons of trouble later if you don’t
have good habits

Usually — better off rewriting completely
even if your grammar is poor

Consistent style — easier to read
2

Homework 3 Questions?

Part 1 — due tomorrow, 11:59PM

Part 2 — serial codes out

3



Accelerator motivation

end of transistor scaling

specialization as way to further improve performance

especially performance per watt

key challenge: how do we design/test custom chips
quickly?

4

Behavioral High-Level Synthesis

take C-like code, produce HW

problem (according to Aladdin paper):

requires lots of tuning…

to handle/eliminate dependencies

to make memory accesses/etc. efficient

5

Data Flow Graphs

int sum_ab = a + b;
int sum_cd = c + d;
int result = sum_ab + sum_cd;

a

+b

c +

d

+ result

6

DFG scheduling
two add functional units: one add functional unit:
a

b

c

d

+

+

+ result

a

b

c

d

+

+

+ result

7



DFG realization — data path

MUX

MUX

a
c

b
d ADDADD

sum_ab

sum_cd

result

plus control logic
selectors for MUXes, write enable for regs

8

Dynamic DDG

Aladdin trick:
use dynamic (runtime) dependencies
assume someone will figure out scheduling HW

full synthesis:
actually need to make working control logic
need to figure out memory/register connections

9

Dynamic Data Dependency Graph

10

full synthesis: tuning

11



tuning: false dependencies

“the reason is that when striding over a partitioned
array being read from and written to in the same
cycle, though accessing different elements of the
array, the HLS compiler conservatively adds
loop-carried dependences.”

12

Aladdin area/power modeling

functional unit power/area + memory power/area

library of functional units
tested via microbenchmarks

memory model
select latency, number of ports (read/write units)

13

Missing area/power modeling

control logic accounting

wire lengths, etc., etc.

14

Pareto-optimum

Pareto-optimum: can’t make anything better
without making something worse

15



design space example (GEMM)

16

Neural Networks (1)

I1

I2

I3

I4

a1

a2

a3

a4

b1

b2

b3

c1 out

real world: outreal = F (I1, I2, I3, I4)

compute approximation outpred ≈ F̂ (I1, I2, I3, I4)
using intermediate values ais, bis

17

Neural Networks (2)

I1

I2

I3

I4

a1

a2

a3

a4

b1

b2

b3

c1 out

a1 = K (wa1,1I1 + wa1,2I2 + · · · + wa1,4I4)
b1 = K (wb1,1a1 + wb1,2a2 + wb1,3a3)
ws — weights, selected by training

18

Neural Networks (3)

neuron: a1 = K (wa1,1I1 + wa1,2I2 + · · · + wa1,4I4)

K(x) — activation function, e.g. 1
1 + e−x

close to 0 as x approaches −∞
close to 1 as x approaches +∞
differentiable

19



Minerva’s problem

evaluating neural networks

train model once, deploy in portable devices

example: handwriting recognizer

goal: low-power, low-cost (≈ area) ASIC

20

High-level design

21

Tradeoffs

mathematical — design of neural network
hardware — size of memory, number of calculations

mathematical — precision of calculations
hardware — size of memory, number of calculations

hardware — amount of inter-neuron parallelism
approx. cores

hardware — amount of intra-neuron parallelism
i.e. pipeline depth

22

Neural network parameters

23



“intrinsic inaccuracy”

24

intrinsic inaccuracy assumption

don’t care if precision variation similar to training
variation

sensible?

25

HW tradeoffs (1)

26

HW tradeoffs (1)

27



parameters varied

functional unit placement (in in pipeline)

number of lanes

28

HW pipeline

29

Decreasing precision (1)

from another neural network ASIC accelerator paper:

30

Decreasing precision (2)

from another neural network ASIC accelerator paper:

31



Pruning

short-circuit calculations close to zero

statically — remove neurons with almost all zero
weights

dynamically – compute 0 if input is near-zero without
checking weights

32

SRAM danger zone

33

Traditional reliability techniques

don’t run at low voltage/etc.

redundancy — error correcting codes

34

Algorithmic fault handling

calculations are approximate anyways

“noise” from imprecise training data, rounding, etc.

physical faults can just be more noise

35



round-down on faults

36

design exploration

huge number of variations:

amount of parallel computations

width of computations/storage

size of models

best power per accuracy

37

note: other papers on this topic

EIE — same conference

omitted zero weights in more compact way

noted: lots of tricky branching on GPUs/CPUs.

solved general sparse matrix-vector multiply problem

38

design tradeoffs in the huge

next time: Warehouse-Scale Computers

AKA datacenters — most common modern
supercomputer

no paper review

reading on schedule: Barroso et al, The Datacenter
as a Computer, chapters 1 and 3 and 6

39



next week — security

general areas of HW security:

protect programs from each other — page tables,
kernel mode, etc.

protect programs from adversaries — bounds
checking, etc.

protect programs from people manipulating the
hardware

next week’s paper: last category
40


