
Exam Review 2

1

ROB: head/tail

log. phys.
R0 X0
R1 X1
R2 X11
R3 X9
R4 X12

rename map
(for next rename)

free list:
X11, X3

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes old tail
B R1 X1 no none yes tail
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes
B R1 X7 no fault yes
C R1 X10 no none no
D R4 X8 no none yes head
--- --- --- --- --- --- next entry

exercise: result of processing rest? 2

Questions?

3

vector instructions

register types: scalar, vector, predicate/mask, length
made-up syntax follows:
@MaskRegister V0 ← V1 + V2,
@MaskRegister VADD V0, V1, V2
for (int i = 0;

i < MIN(VectorLengthRegister,
MaxVectorLength);

i += 1) {
if (MaskRegister[i]) {

V0[i] = V1[i] + V2[i];
}

}
4

vector exercise

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

exercise: write as a vector machine program with
64-element vectors

vector length register or predicate (mask) registers

5

vector exercise answer

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

// R1 contains X, R2 contains length
VL ← R2 MOD 64

Loop: IF R2 <= 0, goto End
V1 ← MEMORY[R1]
V1 ← V1 + 1
MEMORY[R1] ← V1
R2 ← R2 − VL
VL ← 64
goto Loop

End: 6

relaxed memory models ex 1

reasons for reorderings?

7

relaxed reasons

optimizations to think about:
executing loads/stores out-of-order (if addresses don’t
conflict)
combining two loads for same address (“load
forwarding”)
combining load + store for same address (“store
forwarding”)
not waiting for invalidations to be acknowledged (esp.
non-bus network)

8

relaxed memory models ex 2

What can happen?
X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

examples of possible sequential orders? (there are 8)

examples of non-sequential orders?

what could happen to cause other orders?

9

possible sequential orders

X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

R1 R2 R3 R4
0 0 1 0
0 0 1 1
0 0 2 0
0 0 2 1
0 2 1 0
0 2 2 0
0 2 2 1
2 2 1 0

10

non-seq orders
X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

R2 = 2 and R3 = 1 and R4 = 1
example cause: store forwarding (use stored value in X)
example cause: load forwarding (reuse first load)

R1 = 2 and R3 = 2
example cause: reordered stores in CPU2
example cause: CPU2 doesn’t wait for CPU1 invalidate

11

(HW) transactional memory

what is a transaction?

atomic — as if uninterrupted by other things

limitations?

I/O
amount of space to store “transaction log”

when is performance good/bad?

livelock — transcations abort each other over and over?
possibly more “wasted work” if contention (e.g. short
transaction aborts long one)
fairness?
overhead to manipulate transaction log if lots of items?

12

(HW) transactional memory

what is a transaction?
atomic — as if uninterrupted by other things

limitations?

I/O
amount of space to store “transaction log”

when is performance good/bad?

livelock — transcations abort each other over and over?
possibly more “wasted work” if contention (e.g. short
transaction aborts long one)
fairness?
overhead to manipulate transaction log if lots of items?

12

(HW) transactional memory

what is a transaction?
atomic — as if uninterrupted by other things

limitations?
I/O
amount of space to store “transaction log”

when is performance good/bad?

livelock — transcations abort each other over and over?
possibly more “wasted work” if contention (e.g. short
transaction aborts long one)
fairness?
overhead to manipulate transaction log if lots of items?

12

(HW) transactional memory

what is a transaction?
atomic — as if uninterrupted by other things

limitations?
I/O
amount of space to store “transaction log”

when is performance good/bad?
livelock — transcations abort each other over and over?
possibly more “wasted work” if contention (e.g. short
transaction aborts long one)
fairness?
overhead to manipulate transaction log if lots of items?

12

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

13

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?

Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

13

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap

Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

13

Physically Tagged, Virtually Indexed

14

Plausible splits

page #/tag
tag only

set index offset

page #/tag set index 15

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first

Solution #3: Allow virtual indexes (with overlap)

16

Translate First

address TLB Cache value

page table lookup

memory access

17

Virtual Caches

no translation for entire cache lookup
including tag checking

exist, but more complicated

need to handle aliasing
multiple virtual addresses for one physical

example ways:
OS must prevent/manage aliasing
physical L2 tracks virtual to physical mappping in L1

18

OOO tradeoffs

19

gem5 pipeline

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

20

OOO tradeoffs (1)

dependencies plus latency limits performance
diminishing returns from additional computational
resources

latencies that can be especially long:
cache/memory accesses
branch resolution

speculation helps “cheat” on dependencies
branch prediction
memory reordering (+ check if addresses conflict later)

21

OOO tradeoffs (2)

limits on number of instructions “in flight”

number of physical registers

size of queues (instruction, load/store)

size of reorder buffer

active cache misses

22

OOO tradeoffs (3)

miscellaneous issues:

right types of functional units for programs?

wasted work from frequent “exceptions”?
might include, e.g., memory ordering error

23

OOO tradeoff exercise

what programs will be most affected by a
smaller/larger:

reorder buffer
instruction queue
number of floating point adders
number of physical registers
number of instructions
fetched/decoded/renamed/issued/committed per cycle

24

VLIW

fetch instruction bundles

parallel pipelines, shared registers

specialized pipelines

Fetch Read Regs Simple ALU — Write Back

Fetch Read Regs Address ALU Memory Write Back

Fetch Read Regs Int/Mul ALU 1 Int/Mul ALU 2 Write Back

Longer instruction word pipeline

Fetch

25

VLIW vs OOO

VLIW is like OOO but…

instructions are scheduled at compile-time, not
run-time

eliminates OOO scheduling logic/queues

compiler does dependency detection
including dealing with functional unit latency

possibly eliminates reorder buffer

26

VLIW problems

requires smart compiler

can’t reschedule based on memory latency, etc.

assembly/machine code tied to particular HW design

27

VLIW exercise

int *foo; int *bar;
...
for (int i = 0; i < 1000; ++i) {

*foo = *foo * *bar;
foo += 1;
bar += 1;

}

ouline what assembly for a VLIW processor with:
bundles of two instructions:
1: load/store (address is reg+offset) or add/subtract
2: compare-and-branch or multiply or add/subtract
all instructions take two cycles to produce usable result
all instructions take registers or constants
adds can load a constant

28

VLIW exercise: slow answer

R0: FOO; R1: BAR; R2: I
R3: FOO temp1, R4: BAR temp1
R2 ← 0 . NOP
Loop:
NOP . IF R1 < 1000 GOTO End
R3 ← M[R0+0] . R2 ← R2 + 1 // foo . ++i
R4 ← M[R1+0] . R1 ← R1 + 4 // bar . ++bar
NOP . R0 ← R0 + 4 // . ++foo
NOP . R3 ← R3 × R4 // . ×
NOP . NOP // wait for ×
M[R1−4] ← R3 . NOP // foo .
NOP . GOTO Loop
End:

29

VLIW exercise: faster answer?

needed nops due to instruction delays/lack of work

alternative:

unroll loop several times

move loads/stores between iterations of the loop

eliminate branch at beginning

30

final notes

a bunch of multiple choice (because I could write it)

have room until 7:15PM — will give 2 hours

office hours Friday 10am–12pm / Piazza

super last minute questions? office hours Monday
1pm–3pm

31

