
Exam Review 2
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ROB: head/tail

log. phys.
R0 X0
R1 X1
R2 X11
R3 X9
R4 X12

rename map
(for next rename)

free list:
X11, X3

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes old tail
B R1 X1 no none yes tail
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes
B R1 X7 no fault yes
C R1 X10 no none no
D R4 X8 no none yes head
--- --- --- --- --- --- next entry

exercise: result of processing rest? 2

Questions?
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vector instructions

register types: scalar, vector, predicate/mask, length
made-up syntax follows:
@MaskRegister V0 ← V1 + V2,
@MaskRegister VADD V0, V1, V2
for (int i = 0;

i < MIN(VectorLengthRegister,
MaxVectorLength);

i += 1) {
if (MaskRegister[i]) {

V0[i] = V1[i] + V2[i];
}

}
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vector exercise

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

exercise: write as a vector machine program with
64-element vectors

vector length register or predicate (mask) registers
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vector exercise answer

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

// R1 contains X, R2 contains length
VL ← R2 MOD 64

Loop: IF R2 <= 0, goto End
V1 ← MEMORY[R1]
V1 ← V1 + 1
MEMORY[R1] ← V1
R2 ← R2 − VL
VL ← 64
goto Loop

End: 6

relaxed memory models ex 1

reasons for reorderings?

7

relaxed reasons

optimizations to think about:
executing loads/stores out-of-order (if addresses don’t
conflict)
combining two loads for same address (“load
forwarding”)
combining load + store for same address (“store
forwarding”)
not waiting for invalidations to be acknowledged (esp.
non-bus network)
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relaxed memory models ex 2

What can happen?
X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

examples of possible sequential orders? (there are 8)

examples of non-sequential orders?

what could happen to cause other orders?
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possible sequential orders

X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

R1 R2 R3 R4
0 0 1 0
0 0 1 1
0 0 2 0
0 0 2 1
0 2 1 0
0 2 2 0
0 2 2 1
2 2 1 0
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non-seq orders
X = Y = 0
CPU1:
R1 ← Y
X ← 1
R2 ← Y
R3 ← X

CPU2:
R4 ← X
X ← 2
Y ← 2

R2 = 2 and R3 = 1 and R4 = 1
example cause: store forwarding (use stored value in X)
example cause: load forwarding (reuse first load)

R1 = 2 and R3 = 2
example cause: reordered stores in CPU2
example cause: CPU2 doesn’t wait for CPU1 invalidate
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(HW) transactional memory

what is a transaction?

atomic — as if uninterrupted by other things

limitations?

I/O
amount of space to store “transaction log”

when is performance good/bad?

livelock — transcations abort each other over and over?
possibly more “wasted work” if contention (e.g. short
transaction aborts long one)
fairness?
overhead to manipulate transaction log if lots of items?
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Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)
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Physically Tagged, Virtually Indexed
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Plausible splits

page #/tag
tag only

set index offset

page #/tag set index 15
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Translate First

address TLB Cache value

page table lookup

memory access
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Virtual Caches

no translation for entire cache lookup
including tag checking

exist, but more complicated

need to handle aliasing
multiple virtual addresses for one physical

example ways:
OS must prevent/manage aliasing
physical L2 tracks virtual to physical mappping in L1
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OOO tradeoffs
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gem5 pipeline

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File
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OOO tradeoffs (1)

dependencies plus latency limits performance
diminishing returns from additional computational
resources

latencies that can be especially long:
cache/memory accesses
branch resolution

speculation helps “cheat” on dependencies
branch prediction
memory reordering (+ check if addresses conflict later)
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OOO tradeoffs (2)

limits on number of instructions “in flight”

number of physical registers

size of queues (instruction, load/store)

size of reorder buffer

# active cache misses
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OOO tradeoffs (3)

miscellaneous issues:

right types of functional units for programs?

wasted work from frequent “exceptions”?
might include, e.g., memory ordering error
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OOO tradeoff exercise

what programs will be most affected by a
smaller/larger:

reorder buffer
instruction queue
number of floating point adders
number of physical registers
number of instructions
fetched/decoded/renamed/issued/committed per cycle

24

VLIW

fetch instruction bundles

parallel pipelines, shared registers

specialized pipelines

Fetch Read Regs Simple ALU — Write Back

Fetch Read Regs Address ALU Memory Write Back

Fetch Read Regs Int/Mul ALU 1 Int/Mul ALU 2 Write Back

Longer instruction word pipeline

Fetch
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VLIW vs OOO

VLIW is like OOO but…

instructions are scheduled at compile-time, not
run-time

eliminates OOO scheduling logic/queues

compiler does dependency detection
including dealing with functional unit latency

possibly eliminates reorder buffer
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VLIW problems

requires smart compiler

can’t reschedule based on memory latency, etc.

assembly/machine code tied to particular HW design
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VLIW exercise

int *foo; int *bar;
...
for (int i = 0; i < 1000; ++i) {

*foo = *foo * *bar;
foo += 1;
bar += 1;

}

ouline what assembly for a VLIW processor with:
bundles of two instructions:
1: load/store (address is reg+offset) or add/subtract
2: compare-and-branch or multiply or add/subtract
all instructions take two cycles to produce usable result
all instructions take registers or constants
adds can load a constant
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VLIW exercise: slow answer

# R0: FOO; R1: BAR; R2: I
# R3: FOO temp1, R4: BAR temp1
R2 ← 0 . NOP
Loop:
NOP . IF R1 < 1000 GOTO End
R3 ← M[R0+0] . R2 ← R2 + 1 // foo . ++i
R4 ← M[R1+0] . R1 ← R1 + 4 // bar . ++bar
NOP . R0 ← R0 + 4 // . ++foo
NOP . R3 ← R3 × R4 // . ×
NOP . NOP // wait for ×
M[R1−4] ← R3 . NOP // foo .
NOP . GOTO Loop
End:
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VLIW exercise: faster answer?

needed nops due to instruction delays/lack of work

alternative:

unroll loop several times

move loads/stores between iterations of the loop

eliminate branch at beginning
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final notes

a bunch of multiple choice (because I could write it)

have room until 7:15PM — will give 2 hours

office hours Friday 10am–12pm / Piazza

super last minute questions? office hours Monday
1pm–3pm
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