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Good to have in your back pocket:
p → q



Predicates and First-Order Logic

We can only do so much with atomic propositions. To say more interesting things, like:

We need more.



Predicates and First-Order Logic

We can only do so much with atomic propositions. To say more interesting things, like:



Predicates

[FOL stands for First Order Logic]

https://www.youtube.com/watch?v=r3wQM4vQUT
c&feature=emb_logo



Predicates

“A function that evaluates to True or False”
“A proposition missing the noun(s)”
“A proposition template”



Predicates Example

Determine the predicate and the arguments of the 
following:

“Sam loves Diane”



Predicates Example

_______   loves  ______   =   L(x, y)
      x                         y

“Sam loves Diane”
Formalizes to

L(Sam, Diane)



Predicates Example

_______   loves  ______   =   L(x, y)
      x                         y

“Sam loves Diane”  =  L(Sam, Diane)
“Diane doesn’t love Sam”  =   ????



Predicates Example

_______   loves  ______   =   L(x, y)     H(x)....
      x                         y

“Sam loves Diane”  =  L(Sam, Diane)
“Diane doesn’t love Sam”  =  ¬L(Diane, Sam )   
“I Love Lucy”  =  ????
 



Predicates Example

_______   loves  ______   =   L(x, y)
      x                         y

“Sam loves Diane”  =  L(Sam, Diane)
“Diane doesn’t love Sam”  =  ¬L(Diane, Sam)
“I Love Lucy”  =  L(me, Lucy)
“Everyone Loves Raymond”  =  ????

 



Predicates Example

_______   loves  ______   =   L(x, y)          ∀ = “for all”
      x                         y
Domain: people

“Sam loves Diane”  =  L(Sam, Diane)
“Diane doesn’t love Sam”  =  ¬L(Diane, Sam)
“I Love Lucy”  =  L(me, Lucy)
“Everybody Loves Raymond”  =  ∀x L(x, Raymond)

 



Predicates Example

No predicates in predicates
No T/F in arguments

 



Universal Quantifier (∀)

∀ = “for all” or “given any”
It expresses that a propositional function can be satisfied by every 
member of the domain

Domain: People     L(x, y) = x loves y

∀x L(x, Raymond) means ???

 



Universal Quantifier (∀)

∀ = “for all” or “given any”
It expresses that a propositional function can be satisfied by every member of 
the domain.

Domain: People     L(x, y) = x loves y

∀x L(x, Raymond) means “For all people x, each one loves Raymond”
                                            “Given any person x, that person loves Raymond”

   “Every person loves Raymond” 

 



Predicates Example

_______   loves  ______   =   L(x, y)          ∀ = “for all”
      x                         y
Domain: people

“Everybody Loves Raymond”  =  ∀x L(x, Raymond)
“Everybody does not love Chris”  =  ????
 



Predicates Example

Domain: People     L(x, y) = x loves y
“Everybody does not love Chris”

How could I rephrase this?
 



Predicates Example

Domain: People     L(x, y) = x loves y
“Everybody does not love Chris”

How could I rephrase this?
 “For all people, each one does not love Chris”
“There does not exist one person who loves Chris”



Predicates Example

Domain: People     L(x, y) = x loves y
“Everybody does not love Chris”
How could I formalize this?

 “For all people, each one does not love Chris”
∀x ¬L(x, Chris)

¬∀x L(x, Chris) = ???



Predicates Example

Domain: People     L(x, y) = x loves y
“Everybody does not love Chris”

How could I formalize this?
 “For all people, each one does not love Chris”

∀x ¬L(x, Chris)



Predicates Example

Domain: People     L(x, y) = x loves y ∃ = “there exists”
“Everybody does not love Chris”

How could I formalize this?
 “There does not exist one person who loves Chris”



Existential Quantifier (∃)

∃ = "there exists", "there is at least one", or "for some"
It expresses that a propositional function can be satisfied by 
at least one member of the domain.

Domain: People     L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”                                

 



Existential Quantifier (∃)

∃ = "there exists", "there is at least one", or "for some"
It expresses that a propositional function can be satisfied by at least one 
member of the domain.

Domain: People     L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”                                 

(also see ∄)

 



∃ and ∀ 

Domain: People     L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”   
∀x ¬L(x, Chris) means “For all people, each one does not love Chris”     

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)             

 



∃ and ∀ 

Domain: People     L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”   
∀x ¬L(x, Chris) means “For all people, each one does not love Chris”     

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)  

≢ [   ∃x ¬L(x, Chris) ≡ ¬∀x L(x, Chris)  ]              

 



Another Example

Is the logical expression
 ∀x. Q(x)

 true or false
with

Q(x) = (x² ≥ x)



Another Example

Is the logical expression
 ∀x. Q(x)

 true or false
with

Q(x) = (x² ≥ x)
Q(4) = ??? 



Another Example

Is the logical expression
 ∀x. Q(x)

 true or false
with

Q(x) = (x² ≥ x)
Q(4) = true 
Q(0.5) = ??? 



Another Example

Is the logical expression true or false?

                ∀x∈ℤ . Q(x) vs ∀x∈ℝ . Q(x)

with

Q(x) = (x² ≥ x)



∃ and ∀

Associate “for all” with AND’s since it becomes false if just one truth value is 
false

Associate “there exists” with OR’s since it becomes true if just one truth value 
is true

 



What about more than 1 quantifier:

Domain: People     L(x, y) = x loves y

Are these equivalent? 

∃y ( ∀x ( L(x,y) ) )  ≡/ ∀x ( ∃y ( L(x,y) ) )
∃y. ∀x. L(x,y)  ≡/ ∀x. ∃y. L(x,y)

                     
There exists a person y such that for each person x, x loves y.  ≡/ For each person x, there exists a person y such that x loves y. 

At least one person is loved by everyone  ≡/  everyone loves at least one person

 



Quick Intro to Multiple Quantifiers:

Domain: People     L(x, y) = x loves y
Are these equivalent? 

∃y∀x L(x,y)  is not equivalent to  ∀x∃y L(x,y) 

 



Quick Intro to Multiple Quantifiers:

Domain: People     L(x, y) = x loves y
Are these equivalent? 

∃y∀x L(x,y)  is not equivalent to ∀x∃y L(x,y) 

 



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)

// since ∃ means stuff “or’d” together, start with false
existValue = False   
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)
How will this code change for “∀x∃y L(x,y)”?
// since ∃ means stuff “or’d” together, start with false
existValue = False   
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∀x∃y L(x,y)

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

// since ∃ means stuff “or’d” together, start with false
existValue = False  
for y in {Ann, Bob, Chris}:

existValue = existValue ∨ L(x,y)
end
univValue = existValue ∧ univValue

end
Return univValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)

(   L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann)   )
∨     (   L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob)   )
∨     (   L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris)   )

  

 

Think about boolean logic



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)
How will this change for “∀x∃y L(x,y)”?

(   L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann)   )
∨     (   L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob)   )
∨     (   L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris)   )

  

 

Think about boolean logic



Domain: {Ann, Bob, Chris}     ∃y. ∀x. L(x,y) = ∃y(∀x (L(x,y)))
How will this change for “∀x ∃y L(x,y)”?

(   L(Ann, Ann) ∨ L(Ann, Bob) ∨ L(Ann, Chris)   )
∧     (   L(Bob, Ann) ∨ L(Bob, Bob) ∨ L(Bob, Chris)   )
∧     (   L(Chris, Ann) ∨ L(Chris, Bob) ∨ L(Chris, Chris)   )

  

 

Think about boolean logic



 

https://www.cs.virginia.edu/luther/2102/S2021/eng2qua
nt.html


