Assume the following definitions:
notation | meaning |
---|---|
\mathbb{Z} | The integers |
\mathbb{Z}^{+} | The positive integers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x > 0 \big\} |
\mathbb{N} | The natural numbers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x \geq 0 \big\} |
\mathbb{Z}^{-} | The negative integers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x < 0 \big\} |
\mathbb{R} | The real numbers |
\mathbb{Q} | The rational numbers; i.e., \Big\{ \frac{x}{y} \; \Big| \; x \in \mathbb{Z} \land y \in \mathbb{Z}^{+} \Big\} |
\pi | The ratio of the circumference of a circle to its diameter; 3.1415926535… |
Assume that \mathbb Q^{+}, \mathbb Q^{-}, \mathbb R^{+}, and \mathbb R^{-} are defined similarly to \mathbb Z^{+} and \mathbb Z^{-}.
Each of the following is either true or false; which one?
3 \in \mathbb Z1
3.5 \in \mathbb Z2
\pi \in \mathbb Z3
3 \in \mathbb Q4
3.5 \in \mathbb Q5
\pi \in \mathbb Q6
3 \in \mathbb R7
3.5 \in \mathbb R8
\pi \in \mathbb R9
3 \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}10
\{3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}11
\{2, 3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}12
\{2, 3\} \in \mathcal{P}\big(\{2, 3\}\big)13
|\{2, 3\}| \in \{2, 3\}14
|\{2, 3\}| \in \mathcal{P}\big(\{2, 3\}\big)15
\infty \in \mathbb R16
A set is said to be closed over an operation if applying that operation to members of the set always results in another member of that set.
For each of the following, fill in the blank with the first element of the following list that applies:
disjointif the intersection of the two is \emptyset; otherwise
Set 1 | Set 2 | |
---|---|---|
\mathbb R | 53 | \mathbb Q |
\mathbb N | 54 | \mathbb Z^{+} |
even numbers | 55 | odd numbers |
prime numbers | 56 | odd numbers |
\{1, 3, 5\} | 57 | \{\{1\}, \{3\}, \{5\}\} |
\{1, 3, 5\} | 58 | \{5, 3, 1\} |
\{1, 3, 5\} | 59 | \{5, 3\} |
\mathbb R \setminus \mathbb Z | 60 | \mathbb R \setminus \mathbb Q |
\mathbb Q \setminus \mathbb Z | 61 | \{1, 2, 4\} |
\emptyset | 62 | \mathcal{P}(\emptyset) |
\{1\} | 63 | \mathcal{P}(\{1\}) |
For each of the following, list the members of the set:
Assume A = \{1,2,3\} and B = \{2,3,5\}. Write out each of the following in full.
Note that \land
means and
(like and
in Python or &&
in Java); \lor
means or
(like or
in Python or ||
in Java); and \lnot
means not
(like not
in Python or !
in Java).
true↩︎
false↩︎
false↩︎
true↩︎
true↩︎
false↩︎
true↩︎
true↩︎
true↩︎
false↩︎
false↩︎
true↩︎
true↩︎
true↩︎
false↩︎
false↩︎
true↩︎
true↩︎
true↩︎
false↩︎
mostly true, except for 0 divisors↩︎
false↩︎
true↩︎
false↩︎
true↩︎
false↩︎
mostly true, except for 0 divisors↩︎
false↩︎
true↩︎
false↩︎
false↩︎
false↩︎
false. At a minimum, -1 \mod -1 = 0 \notin \mathbb Z^{-}. Also, there are two interpretations of -4 \mod -3; either it is -1 or it is 2. -1 is more common in programming languages, 2 is more common in the mathematics used in encryption.↩︎
false↩︎
true↩︎
true↩︎
true↩︎
mostly true, except for 0 divisors↩︎
mostly true, except for 0 divisors↩︎
false↩︎
false↩︎
false↩︎
true↩︎
true↩︎
false; 1 \mod 1 = 0↩︎
false↩︎
true↩︎
true↩︎
true↩︎
mostly true, except for 0 divisors↩︎
mostly true, except for 0 divisors↩︎
false because \mathbb R contains negative numbers↩︎
\supset↩︎
\supset↩︎
disjoint↩︎
\neq↩︎
disjoint↩︎
=↩︎
\supset↩︎
\supset↩︎
disjoint↩︎
\subset↩︎
disjoint↩︎
\Big\{ \{\}, \big\{\{\}\big\} \Big\}↩︎
\bigg\{ \{\}, \big\{\{\}\big\}, \Big\{\big\{\{\}\big\}\Big\}, \Big\{\{\}, \big\{\{\}\big\}\Big\} \bigg\}↩︎
\big\{25, 0, 1, \emptyset, \{25\}, \{0\}, \{1\}, \{25,0\}, \{25,1\}, \{0,1\}, \{25,0,1\}\big\}↩︎
2^{90} which is 1,237,940,039,285,380,274,899,124,224↩︎
0↩︎
2^{90}+90 which is 1,237,940,039,285,380,274,899,124,314↩︎
\{1,2,3\}↩︎
\{0,1,2\}↩︎
\{2,3\}↩︎
\{1,2,3,5\}↩︎
\{1\}↩︎
\{2,3,4\}↩︎
\{3,4,5,6,7,8\}↩︎
\big\{ \{1\}, \{2\}, \{3\} \big\}↩︎
\big\{\{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,5\}, \{3,5\}\big\}↩︎
\big\{\{1,2\}, \{1,3\}, \{1,5\}, \{2\}, \{2,3\}, \{2,5\}, \{3\}, \{3,5\}\big\}↩︎
\big\{ \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \big\}↩︎
\big\{ \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \big\}↩︎
\big\{ \{\}, \{2\}, \{3\}, \{2,3\}, \big\}↩︎
\big\{ \{\}, \{2\}, \{3\}, \{2,3\}, \big\}↩︎
\big\{ \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{5\}, \{2,5\}, \{3,5\}, \{2,3,5\} \big\}↩︎
\big\{ \{\}, \{1\}, \{2\}, \{3\}, \{5\}, \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,5\}, \{3,5\}, \{1,2,3\}, \{1,2,5\}, \{1,3,5\}, \{2,3,5\}, \{1,2,3,5\}, \big\}↩︎
\Big\{ \big\{\{\},\{1\}\big\}, \big\{\{\},\{2\}\big\}, \big\{\{\},\{3\}\big\} \Big\}↩︎
An ill-defined set; as written, would contain everything except 1, 2, and 3
but everything
is not a mathematically valid concept.↩︎
all integers except 1, 2, and 3. Roughly, \{\dots, -3, -2, -1, 0, 4, 5, 6, 7, \dots\}, though \dots is not a mathematically rigorous symbol.↩︎