
1

λ Calculus

Church’s λ Calculus: Brief History

• One of a number of approaches to a mathematical
challenge at the time (1930): Constructibili ty
– (What does it mean for an object, e.g. a natural number, to

be constructible?)
• aka "effective computability", "computabili ty"

• Work in parallel included:
• Turing's work on Turing machines

• Gödel's work on general recursive functions

2

History (continued)

• In late 30's, Church, Kleene and Turing showed
equivalence of their respective notions.

• Led to Church's thesis: notion of a computable
function should be identified with the notion of a
general recursive function.

Church's Lambda Calculus:

• Formally specifies the difference between functions
and forms.

• Form: specifies operations that are to be applied to the
parameters of the form (with corresponding free
variables and constants).

• e.g. of a form: a X2 + X + Y
– X, Y: parameters

– a: free variable (not parameter to form)

– 2: constant

3

Forms

• Note: if actual arguments are applied to form,
there is no way to specify their bindings.

P, Q → a X2 + X + Y

P → X & Q → Y ?

P → Y & Q → X ?

λ Functions
– Lambda function resolves ambiguity and defines

difference between functions and forms:

 (λλ x. (λλy . a x2 + x + y))

– function with two parameters, x & y, where first actual
is to be bound to x and second to y.

– Curried interpretation: function of x which yields a
function of y which...

– Two interesting characteristics of lambda calculus:

1) Church defined argument substitution assuming
static scope. (and actuals bound by λ were to be
unique throughout form)

4

λ Functions

2) Form can only contain applications of other
functions, not their definitions.

– instances of other formal parameters bound to
other lambdas cannot exist in a given lambda
function.

– functions cannot be used as arguments or
function values because a function would appear
where a form or object is expected.

McCarthy’s LISP
• McCarthy's LISP (1958-1960)

 - First language to be based on Lambda Calculus
 - Two major differences:

• 1) LISP used dynamic scope
 so:
 (Define poly (λ (X Y) (+ (+ (* a (* X X)) X) Y)))
 (Define p1 (λ (a) (poly 2 3)))
 (Define p2 (λ (a) (poly 4 5)))

 (p1 10)
 (p2 20)

 "a" has different bindings in poly when called by p1, p2.
 - so LISP maintained "a-list"

5

(continue) McCarthy's LISP
• 2) LISP (many versions before Scheme, ML) allowed

functions as arguments.
– quoted lambda expressions were passed as "funargs." (pass-

by-name definitions)

– each time funarg was referenced it caused evaluation of
actual parameter's lambda definition in its defining scope.

– Note: Scheme, ML, Haskell allow functions as arguments
• they evaluate to themselves.

• McCarthy has suggested that the reason LISP used
dynamic scope was that he did not fully understand the
Lambda Calculus of Church during the development of
LISP...

λ Expressions

<exp> ::= <constant> built -in constant

 | <variable> variable names

 | <exp> <exp> applications

 | λ <variable> . <exp> lambda abstractions

6

λ Abstractions

• Purpose is to denote new functions:

 (λλx . + x 1)

(λ λ x . + x 1)

That function of x which adds x to 1

Free and Bound Variables
(λλx . + x y)

-- x is bound (by the λ) but y is free

λλx . + ((λλy . + y z) 7) x
-- x & y are bound; z is free

+ x ((λλx . + x 1) 4)
-- first x is free; second is bound…

• Occurrence of variable is bound if an enclosing λλ
expression binds it, and it is free otherwise.

7

Conversions, BAH!

• Beta (β): (abstraction and reduction)
– reduction: applying λ abstraction to an argument,

making new instance of abstraction body, and
substituting argument for free occurrence of formal

– abstraction: going the opposite way

• Alpha (α): changing names
– consistent formal parameter name change in λ

expression.

• Eta (η): elimination of redundant λ abstractions

Substitution
 E[M/x]

 -- expression E with all free occurrences of x replaced by M

x [M/x] = M

c [M/x] = c, where c is variable or constant other than x

(E F)[M/x] = E [M/x] F[M/x]

(λx.E)[M/x] = λx.E (because no free occurrences of x)

(λy.E)[M/x] where y is not x

= λy.E[M/x] if x does not occur free in E

 or y does not occur free in M

= λz.(E[z/y]) [M/x] otherwise

 where z is new variable not free in E or M

8

Conversions Summary

• ββ: (λx . E) M E[M/x]

• αα: if y is not free in E then

 (λx . E) (λy . E[y/x])

• ηη: if x is not free in E

 and E denotes a function then

 (λx . E x) E

• when applied left to right (), ββ and ηη rules are
called reductions

ββ

αα

ηη

• Reducing an expression:

(λx . 3) x 3

(λx . + 4 x) 5 9

(λx . (λy . - y x)) 4 5 (λy . - y 4) 5

- 5 4

1

(λf . f 3) (λx . + x 1) (λx . + x 1) 3

+ 3 1

4

Beta Reduction

function
argument

9

• Ought to be equivalent...

(λx . + 1 x) & (λy . + 1 y)

and, indeed…

(λx . + 1 x) (λy . + 1 y)

...as long as newly introduced name does not
occur freely in body of original lambda expression.

Alpha Conversion

αα

• Ought to be equivalent...

(λx . + 1 x) & (+ 1)

 and, indeed…

(λx . + 1 x) (+ 1)

• In general…

(λx . F x) F

…provided x is not free in F and F is a function

Eta Conversion

ηη

ηη

10

• Def: When an expression contains no reducible expressions
(redexes).

• There may be more than one route to normal form for an
expression E

– e.g. (+ (* 3 4) (* 7 8))

• Not every expression has a normal form

– e.g. (D D) where D is (λx . x x)

• produces (D D)

• Some reductions may reach normal form while others do not

– e.g. (λx . 3) (D D)

Normal Form

OK not
OK

• (CRT-I):
If E1 E2 then there exists an E such that

E1 E and E2 E

 --- in words: two expressions that can be converted to
each other share a common normal form.

• Corollary: No expression can be convereted to two
distinct normal forms

• (CRT-II):
If E1 E2 and E2 is in normal form, then there exists a
normal order reduction sequence from E1 to E2.

--- Normal order reduction: reduce leftmost, outermost
redex first

Normal Form (CRT)

11

• Supports expression of recursion!
Y H = H (Y H)
– Y: a fixed point combinator: takes a function H and

produces a fixed point of H

– See Peyton-Jones, section 2.4.1

• Supports typed, untyped and polymorphic systems

• Underlies denotational semantics...

λ Calculus Utility

