A Caculus

Church’s A Calculus: Brief History

* One of anumber of approaches to a mathematical
challenge & the time (1930): Constructibili ty

— (What does it mean for an olject, e.g. a natural number, to
be constructible?)

» aka "effective computability", "computabili ty"

» Work in perallel included:
* Turing'swork on Turing madines
» GOdel'swork ongenera reaursive functions

History (continued)

 Inlate 30s, Church, Kleene and Turing showed
equivalence of their respedive nations.

» Ledto Church'sthesis: nation of a computable
function should be identified with the notion d a
general reaursive function.

Church's Lambda Calculus:

» Formally spedfies the diff erence between functions
and forms.

» Form: spedfies operations that are to be gplied to the
parameters of the form (with correspondng free
variables and constants).

e eg.of aform: aX?+ X +Y
— X, Y: parameters
— a freevariable (not parameter to form)
— 2: constant

Forms

* Note: if actua arguments are gplied to form,
there is no way to specify their bindings.

P,Q - aX2+X+Y

— —

P.X & Q-Y?
P_Y & Q- X?

A Functions

— Lambda function resolves ambiguity and defines
difference between functions and forms:

AXx.(Ay. ax2+x+Yy))

— function with two parameters, x & y, where first acua
isto be boundto x and secondto .

— Curried interpretation: function o x which yieldsa
function d y which...

— Two interesting characteristics of lambda cdculus:

1) Church defined argument substitution assuming
static scope. (and aduals boundby A wereto be
unique througho form)

A Functions

2) Form can orly contain applications of other
functions, nat their definitions.

—instances of other formal parameters boundto
other lambdas cannat exist in agiven lambda
function.

—functions canna be used as arguments or

function values becaise afunctionwould appea
where aform or objed is expected.

McCarthy’s LISP

¢ McCarthy'sLISP(19581960
- First language to be based onLambda Calculus
- Two major differences:
e 1) LISPused dyramic scope
So:
(Definepdy A (XY) (+(+ (*a(* X X) X)Y)))
(Definepl (A (&) (paly 23)))
(Definep2 (A (&) (paly 45)))

(p1 10
(P2 20

"a' has different bindingsin pdy when cdled by p1, p2
- so LISPmaintained "a-list"

(continue) McCarthy's LISP

* 2) LISP(many versions before Scheme, ML) al owed

functions as arguments.
— quaed lambda expressons were passed as "funargs.” (pass
by-name definitions)
— each time funarg was referenced it caused evaluation o
actual parameter's lambda definiti on in its defining scope.
— Note: Scheme, ML, Haskell al ow functions as arguments
« they evaluate to themselves.

» McCarthy has suggested that the reason L1SP used
dynamic scope was that he did na fully understand the
Lambda Calculus of Church during the development of
LISP..

A\ Expressions
<exp> ::= <constant> bult-in constant
| <variable> variable names
| <exp> <exp> applicaions

| IA <variable> . <exp> lambda abstractions

A Abstradions

» Purposeisto denote new functions:
(Ax . + x 1)

(A X « + X 1

1 11111

That function of x which adds x to 1

Free aad Bound Variables

(AX.+ XVY)
-- xisbourd (by theA) but y isfree

AX.+ ((Ay.+yz)7) X
--X & y arebourd; zisfree

+ X ((Ax.+x1) 4)

-- first x isfree secondis bound..

» Occurrence of variableisbourd if an enclosing A
expresson bndsit, andit isfreeotherwise.

Conversions, BAH!

» Beta(3): (abstraction and reduction)

— reduction: applying A abstradionto an argument,
making rew instance of abstradion body and
substituting argument for freeoccurrence of formal

— abstradion: going the oppasite way
» Alpha(a): changing rames

— consistent formal parameter name dhangein A
expression.

» Eta(n): eimination d redundant A abstractions

Substitution
E[M/X]

-- expresson E with all freeoccurrences of x replaced by M

X [M/X] =M
c[M/X] = ¢, wherecisvariable or constant other than x
(ER[M/X] =E[M/X] F[M/X]
(A.E)[M/X] = AX.E (because nofree occurrences of x)
(Ay.E)[M/X] wherey isnat x
= Ay.E[M/X] if x doesnat occur freein E
ory does not occur freein M
= Az.(E[zly]) [M/X] otherwise
where z is new variable not free in E or M

Conversions Summary
B: (Ax.E)M ? E[M/X]

a: if y isnot freein E then
(AX.E) = (Ay.E[y/X])
a

n: if x isnot freein E
and E denotes afunction then
(Ax .EX) 4-n> E

when applied left to right (mmsp), B and n rules are
cdled reductions

Beta Reduction

Reducing an expression:

(Ax . 3) x - 3
(AX.+4X5 mm) O
(AX.(Ay.-yXx)) 45 m)p (Ay.-y45
=) -54
- 1
M. TP AMx.+x1) wmp (AX.+x1)3
|) +3 1

Alpha Conversion

» Ought to be equivalent...
(AX.+1X & Ay.+1y)
and, inded...
(Ax.+1X ? Ay.+1y)

...aslongas newly introduced name does not
occur fredy in body d original lambda expression.

Eta Conversion

» Ought to be equivalent...
(AX.+1X & (+2)
and, inded...
(Ax.+1X ? (+2)

e Ingenerd...
(AX.FXx) ? F

...provided x isnot freein F and Fisafunction

Norma Form

Def: When an expression contains no reducible expressions
(redexes).

There may be more than ore routeto namal form for an
expression E
—eg.(+(*3.4)(*7.8))
Not every expression has anormal form
—eg. (D D) whereDis (Ax.Xx X)
e prodwces (D D)
Some reductions may read namal form while othersdo na

—eg.(M.3) (D D)
i i

OKI not
OK

Norma Form (CRT)

(CRT-I):
If E,«=» E, then there eists an E such that
E, =% E and E,=s E
--- inwords: two expressions that can be converted to
ead ather share a @mmon namal form.
Corollary: No expresson can be convereted to two
distinct normal forms
(CRT-ID):
If E, = E, andE, isin namal form, then there existsa
normal order reduction sequencefrom E, to E,.

--- Normal order reduction: reduceleftmost, outermost
redex first

10

A Calculus Utility

» Suppatsexpression d recursion!
YH=H(YH)
— Y: afixed pant combinator: takesafunctionH and
produces afixed pant of H

— SeePeyton-Jones, sedion 24.1
» Suppatstyped, untyped and pdymorphic systems
* Underlies denatational semantics...

11

