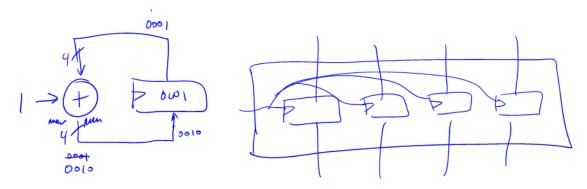
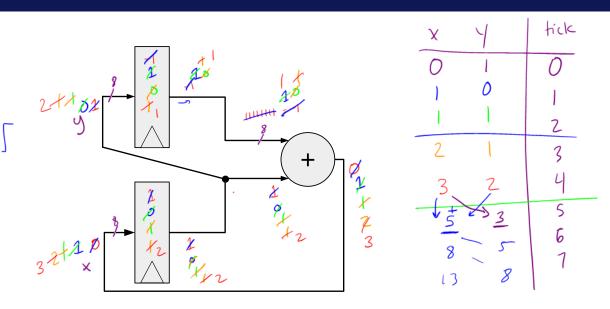

Code and Circuits

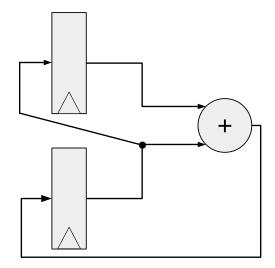
CS 2130: Computer Systems and Organization 1 September 14, 2022

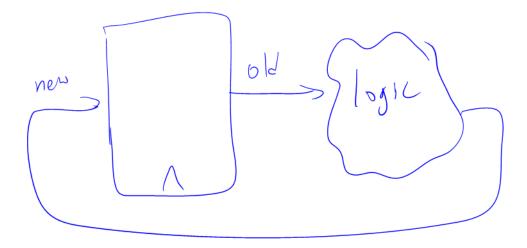

- Homework 1 due tonight!
- Homework 2 available (due on Gradescope, 11pm Monday)

1-bit Register Circuit

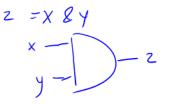


Building a Counter


ກຳ້ກ


Another Circuit

Another Circuit


Common Model in Computers

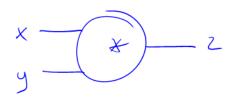
Write code to build circuits from gates

- Gates we already know: δ, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:

¥ 060024 2130__

Write code to build circuits from gates

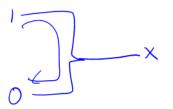
- Gates we already know: δ, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:
- Ternary operator: ? :


z = a ? x ; y = z = x z = y $z = (a = b ? 3z; y) \neq y$ $z = (a = b ? 3z; y) \neq y$

Equals

Equals: =

2= x * 41


- Attach with a wire (i.e., connect things)
- Ex: z = x * y

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?
 - x = 1
 - x = 0

Equals

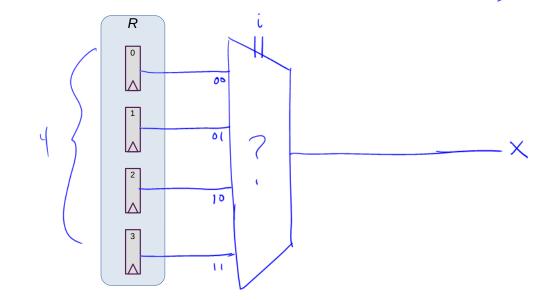
Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?
 - x = 1
 - x = 0
- Single assignment: each variable can only be assigned a value once

- == xor then nor bits of output
- != same as == without not of output

- \cdot == xor then nor bits of output
- != same as == without not of output
- \cdot < consider x < 0

x < y x - y < 0


- \cdot == xor then nor bits of output
- != same as == without not of output
- \cdot < consider x < 0
- >, <=, => are similar

Indexing with square brackets: []

- Register bank (or register file) an array of registers
 - Can programmatically pick one based on index
 - I.e., can determine which register while running
- Two important operations:
 - x = R[i] Read from a register
 - R[j] = y Write to a register

Reading

x = R[i] - connect output of registers to x based on index *i*

