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Abstract

The “union-closed” conjecture, sometimes attributed to Peter Frankl, dates from 1979. It
asserts that in any finite, union-closed system, S, of sets, there is some element x that is a
member of at least half the sets in S. It seems simple, but to date no one has been able to either
prove or disprove it. In this article we prove it to be true.

To do this each system of sets must be assigned to one of two classes depending on whether
the intersection of its largest sets is empty or not. Then two different proof techniques will be
required.

A system of sets, S, is said to be union-closed if X,Y ∈ S implies Z = X ∪ Y ∈ S. All sets,
X,Y, Z are sets over some finite universe U of elements. In the remainder of this paper, S, which
we will refer to as a U-C system, is always assumed to be union-closed.

Conjecture: Given a non-empty, finite, union-closed system, S, over a set of elements, U , there
exists some element x ∈ U such that x is an element in (member of) at least half the sets of S.

This conjecture, which has been attributed to Peter Frankl in 1979, appears to be absurdly sim-
ple. Yet, in 2015 Bruhn and Schaudt observe that “despite its apparent simplicity the union-closed
sets conjecture remains wide open. This is certainly not for lack of interest — there are about 50
articles dedicated to the conjecture as well as several websites” [1].

This conjecture can be rewritten as: there exists X ⊆ U such that

{Y ∈ S : X ⊆ Y }| ≥ |{Y ∈ S : X ̸⊆ Y }|. (1)

since we can always consider any element x to be a singleton set X = {x}. X need not be a set in
S, and seldom is. A set X is said to be abundant if it satisfies the inequality (1). Bruhn and Schaudt
explain that “we do not know where to expect an abundant element” [1]. In this paper we show that
one looks for an abundant set, or element, in different places depending on the structure of S. In
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Section 2, Lemmas 1.2 and 2.1 culimnate in Proposition 2.2 to establish that it is the complement
of one of the largest sets that must be abundant. In Section 3, Proposition 3.4 details where among
the smallest sets one can find an abundant set.

This conjecture can be regarded as the “holy grail” of union-closed (U-C) systems of sets.

1 Systems of Sets Closed under Union

A set Z is said to cover a set X with respect to S if X ⊂ Z but X ⊆ Y ⊆ Z, where Y ∈ S, implies
either X = Y or Y = Z, i.e. there can be no set Y ∈ S “between” X and Z. If a set Y ∈ S
covers the empty set, ∅, we call Y an atom of S and denote it by Ai. The collection of all sets {Ai}
covering ∅, we denote by A. Conversely, those sets Zi covered by U , we call co-atoms and let Z
denote this collection {Zi}.

By X̄ we mean U∼X , or the complement of X . The dual nature of complements, such as (a)
X ⊆ Y if and only if Ȳ ⊆ X̄ , and (b) Z = X ∪ Y if and only if Z̄ = X̄ ∩ Ȳ , is well known and
easily demonstrated.

A non-empty set Z in an union-closed system S is said to be reducible, if it is the union of two
distinct, non-empty sets of S . It is irreducible if there do not exist two such sets, in which case
there are only two possible situations:

(1) Z covers ∅ (so Z is an atom); or
(2) Z = X ∪ Y where X ∈ S and Y ̸∈ S.

In the latter case, we assume Z consists of a set X ∈ S and a set [Y ] = Z∼X , where [Y ] ̸∈ S.1

Readily, a set Z, that is not an atom, is irreducible if and only if it covers a single set Y ∈ S.

Lemma 1.1 Let S be a U-C system with Y ∈ S . S ′ = S∼Y is a U-C system if an only if Y is
irreducible.

Proof: If Y is reducible, Y = X ∪ V where X,V ∈ S implying S∼Y will not be union closed; so Y must
be irreducible. Conversely, any irreducible set can be deleted from a U-C system to yield another U-C system
because it covers at most a single set. 2

It is curious that it is essentially trivial to obtain another U-C system, S ′, by removing only one
irreducible set; but it is extremely difficult to add just a single set and still be union-closed.

By an interval in S we mean ⟨X,Z⟩ = {Y ∈ S : X ⊂ Y ⊂ Z}. Note that the bounding sets
X and Z may, or may not, be in S .

1We use square brackets, [. . .] as in X ∪ [Y ], to signal that the enclosed set is not a set of S. Similarly, we use [x]
when {x} ̸∈ S.
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1.1 Co-atoms

Let Zk be a co-atom, and let Z̄k = U∼Zk. It is not difficult to show that for every co-atom, Z̄k

is either a single element, or a block2 that can be replaced by a single element. Clearly, for all
Y ∈ ⟨∅, Zk⟩, Z̄k ̸⊆ Y since Z̄k ̸⊆ Zk.

Lemma 1.2 Let Y ∈ S. If Y ̸⊆ Zk then Z̄k ⊆ Y . Or equivalently, Y ̸∈ ⟨∅, Zk⟩ then Y ∈ ⟨∅, Z̄k⟩.

Proof: Y ̸⊆ Zk implies Zk ⊆ Y ∪ Zk ⊆ U . But U covers Zk, so either Zk = Y ∪ Zk or Y ∪ Zk = U .
Since the former is impossible by assumption, Z̄k ⊆ Y . 2

This is a rather surprising lemma and worth examining further. In Figure 1, where the co-
atoms are numbered left to right and their complements, Z̄i indicated as superscripts, −k. We have
delimited ⟨∅, Z3⟩ = ⟨∅, {12356}⟩ with bolder lines and a dashed enclosure. Z̄3 = [4] and we observe

{12} {14} {34} {46} {56}

{235}{124} {134} {346} {456}

{1234} {1346} {3456}

{12346} {13456} {23456}

{123456}

0

{1235} {2345} {1456} {2356}

{12345} {12456}{12356}

{146}

{1246} {1256}

-1-2-3-4-5-6

[4]

/

Figure 1: ⟨∅, {12356}⟩, Z̄3 = [4].

that for every non-empty set Y ̸∈ ⟨∅, Z3⟩, [4] ⊆ Y , even though [4] is not a set of S .
Another example involves Poonen’s classic U-C system [3], shown as Figure 2, which was

created to provide a counter-example to the rather natural supposition that if |Ai| were minimal,
then the members of Ai would also be members of many other sets Y .

Poonen’s U-C system [3] shown as Figure 2, is one counter-example of the supposition. Readily,
{123} is the minimal atom; but for all x ∈ {123}, |{Y : [x] ⊆ Y }| = 10 < 13 = 1/2 ∗ 26 =
|S|/2. We use this U-C sysem to provide a second illustration of Proposition 1.2. In Figure 2 we
have delimited ⟨∅, Z4⟩, which is not minimal, with a dashed line and enboldened their connections.

2A block is a set of elements that always appear together.
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{56789} {46789} {45789} {45689} {45679} {45678}

{456789}
{[3]45678}{[3]45679}{[2]45689}{[2]45789}{[1]46789}{[1]56789}

{12356789} {12346789} {12345789} {12345689} {12345679} {12345678}

{1456789} {2456789} {3456789}

{12456789} {13456789} {23456789}

{123456789}

0

{123}

-1-2-3

-4 -5 -6 -7 -8 -9

/

Figure 2: The U-C system of Poonen [3].

Observe that for all non-empty Y ̸∈ ⟨∅, Z4⟩, [3] = Z̄4 ⊆ Y . In the U-C systems illustrated in
Figures 1 or 2, neither Z̄3 = [4] in the former nor Z̄4 = [3] of the latter is a subset of S.

It is easy to show that any singleton set {a} ∈ S is “abundant” since for all Y ∈ S such that
{a} ̸⊆ Y , there exists {a} ∪ Y ∈ S . This can be extended to show that any system, S , with a
doubleton atom, {ab} is also “abundant”. Bruhn and Schaudt [1] observe that trying to extend this
approach to tripleton atoms, {abc} fails. So, we are only concerned with U-C systems for which
Y ∈ S implies |Y | ≥ 3. Consequently, we can assume that an aundant set X is of the form [x] since
|X| > 2 and every element x ∈ X is abundant.

Before continuing, we can eliminate two trivial kinds of U-C systems.

Lemma 1.3 If |A| = 1 or |Z| = 1 then there exists [x] such that |{Y ∈ S : [x] ⊆ Y }| ≥ |{Y ∈
S : [x] ̸⊆ Y }|.

Proof: If |A| = 1, with A1 ∈ A, then for all Y ∈ S, A1 ⊆ Z, so the inequality is trivial.
If |Z| = 1, let Z1 ∈ Z . We may inductively assume that the inequality is true for S ′ = ⟨∅, Z1⟩ where
U ′ = Z1. The satisfying set [x′] ⊆ U , so again the inequality is trivial. 2

The proof technique of Lemma 1.3 employs an induction on the cardinality, |S|. Readily, if |S| = 1
the conjecture (1) is satisfied. We can that assume that if S ′ ⊂ S then S ′ satisfies (1) provided S ′ is
U-C. Lemma 1.1 will play its role here.
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2 When
⋂

j{Zj ∈ Z} = ∅

In this section we explore those U-C systems for which ∩j{Zj ∈ Z} = ∅. Since ∩j{Zj ∈ Z} =
U∼∪j {Z̄j ∈ Z} we will assume that each Z̄i denotes a single element of U .3 The U-C systems of
Figures 1 and 2 are members of this class.

Proposition 1.2 identifies one source of many abundant sets, namely the complements of co-
atoms, Z̄k. This will lead to Proposition 2.2 which provides a partial answer to the U-C conjecture.
But, first we must establish that if |⟨∅, Zk⟩| is minimal then |⟨∅, Zk⟩| ≤ |S|/2, provided ∩j{Zj ∈
Z} = ∅. This seems intuitively obvious, but the concluding proviso is essential as shown by the
ssimple counter-example of Figure 3. Here |⟨∅, Z1⟩| = |⟨∅, Z2⟩| = 3, so both are minimal. But,

{123}

{[1]2} {2[3]}

{2}

O

-3 -1

-13

/

Figure 3: ∩j{Zj ∈ Z} = {2} ≠ ∅.

|⟨∅, Z1⟩| = 3 > 5/2 = |S|/2.

Lemma 2.1 Let ∩j{Zj ∈ Z} = ∅. If |⟨∅, Zk⟩| is minimal, then |⟨∅, Zk⟩| ≤ |S∼⟨∅, Zk⟩|, with
equality if and only if for each Yi ∈ ⟨∅, Zk⟩, we have Ȳi ∈ S∼⟨∅, Zk⟩.

Proof: We run a finite induction on |Yi ∈ ⟨∅, Zk⟩|. If |Yi ∈ ⟨∅, Zk⟩| = 0 then |Z| ≥ 2 ensures that
|CALS| ≥ 4 and |⟨∅, Zk⟩| = 2 ≤ |S|/2.

Let |⟨∅, Zk⟩| = 1 with Y1 ∈ ⟨∅, Zk⟩. Since |⟨∅, Zk⟩| is minimal, for all j ̸= k, |Yi ∈ ⟨∅, Zj⟩| ≥ 1.
Suppose |S∼⟨∅, Zk⟩| = 0 < 1, then Y1 ∈ ⟨∅, Zj⟩ for all j, contradicting the assumption that ∩j{Zj ∈
Z} = 0. So |S∼⟨∅, Zk⟩| > 0. If for j ̸= k, Y1 ̸∈ ⟨∅, Zj⟩ then ∃X1 ̸= Y1 where X1 ∈ ⟨∅, Zj⟩ implying
X1 ∈ S∼⟨∅, Zk⟩ and |⟨∅, Zk⟩| ≤ |S∼⟨∅, Zk⟩|. Finally, if |S∼⟨∅, Zk⟩| = 1, then X1 ∈ ⟨∅, Zj⟩ for all j ̸= k
then by Lemma 1.2 X1 = Z̄k.

Assume the lemma is true for |Yi ∈ ⟨∅, Zk⟩| < m and let |Yi ∈ ⟨∅, Zk⟩| = m, with Ym ∈ ⟨∅, Zk⟩.
By inductive assumption, S∼⟨∅, Zk⟩| ≥ m − 1. If |S∼⟨∅, Zk⟩| = m − 1 then the argument above implies
Ym ∈ ∩j{Zj ∈ Z} and the same contradiction. Thus |S∼⟨∅, Zk⟩| ≥ m with equality implying Ȳm ∈ ⟨∅, Zj⟩
for all j ̸= k. 2

3This class corresponds to the “first class” of FC(n) systems explored by Vaughan [5], that is, the n-set U , together
with all of its (n− 1)-subsets.

5



Proposition 2.2 Let |Z| = |U | ≥ 2 and let ∩j{Zj ∈ Z} = ∅. If |⟨∅, Zk⟩| is minimal then
|{Y ∈ S : Z̄k ⊆ Y }| ≥ |{Y ∈ S : Z̄k ̸⊆ Y }|.

Proof: By Lemmas 1.2 and 2.1, |{Y ∈ S : Z̄k ̸⊆ Y }| = |⟨∅, Zk⟩| ≤ |S∼⟨∅, Zk⟩| = |{Y ∈ S : Zk ⊆ Y }|.
Reverse this inequality to obtain (1). 2

Consequently, this result resolves Frankl’s conjecture for this large class of U-C systems. Z̄k =
[x] an abundant set for any co-atom, Zk, such that |⟨∅, Zk⟩| is minimal.

3 When
⋂

j{Zj ∈ Z} = I ̸= ∅

In this section we are concerned with the structure of S when the intersection, I , of all the co-atoms
Zj ∈ Z is non-empty. The resulting set, I , may be a member of S, or not. A completely different
proof structure will be required.

Figure 4 illustrates two representative U-C systems for which I = ∩j{Zj ∈ Z} ≠ ∅. In Figure

{12345}

{1234} {1235} {1245}

{12[4]}{123} {125}

{13} {23} {12} {2[5]}

{3} {1} {2}

O

-5 -4 -3

-45 -35 -34

-134-345-245 -145

-1245 -2345 -1345

{235}

{123456}

{1[3]456} {12456} {12356} {12345}

{1456} {1245} {12[3]5}

{1[5]6{146} {[1]25}

{16} [15]{14} {25}

O

(a) (b)

-2 -3 -4 -6

-23
-34

-36 -46

-235 -234 -346

-2345 -2356 -2346 -1346

-14

 = I

{1256}

Figure 4: Two U-C systems in which I = ∩j{Zj ∈ Z} ≠ ∅.

4(a), I = {12} = {12345}∼{345} = U∼ ∪j {Z̄j} ∈ S. In Figure 4(b), I = [15] ̸∈ S. In both, the
interval ⟨I, U⟩ has been emboldened, and S ∼ ⟨I, U⟩ is denoted with thinner, but solid, lines. One
expects that an abundant set will be found in I , or some subset of I . In both these figures it is easy
to verify that I is itself abundant.

However, this need not always be the case. In Figure 5 , I = [3] is clearly not abundant since
|{Y ∈ S : [3] ⊆ Y }| = 4 < 7 = |{Y ∈ S : [3] ̸⊆ Y }|. Readily I = [3] has no subset that might be
abundant.
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{12345}

{12[3]4} {12[3]5} {1[3]45} {2[3]45}

{124}

{12} {14} {24}

{1} {2} {4}

O

[3]

-5 -4 -2 -1

-35

-345 -235 -135

-2345 -1345 —1235

= I

_
/

I = [1245]
_

Figure 5: I = [3] is not abundant.

Proposition 3.1 If |⟨I, U⟩| ≥ |S ∼ ⟨I, U⟩| then |{Y ∈ S : I ⊆ Y }| ≥ |{Y ∈ S : I ̸⊆ Y }|.

Proof: Trivial 2

Proposition 3.1 resolves the conjecture whenever |⟨I, U⟩| ≥ |S∼⟨I, U⟩| since I itself and any
subset [x] ⊂ I will be abundant. Consequently, we need only be concerned when the number of sets
not in ⟨I, U⟩ outnumber those in it. In Figures 4(a) and (b), S ∼ ⟨I, U⟩ consists of the sets “below”
the bolder ⟨I, U⟩ that are connected by the thinner lines. It is no longer assured that an abundant set
[x] will be contained in I; we may find [x] ∈ S∼⟨I, U⟩. The rest of this section is focused on the
structure of S ∼ ⟨I, U⟩.

Proposition 3.2 If S ∼ ⟨I, U⟩ ⊆ ⟨∅, I⟩ then there exists [x] ⊆ I such that |{Y ∈ S : [x] ⊆ Y }| >
|{Y ∈ S : [x] ̸⊆ Y }|.

Proof: S ′ = ⟨∅, I⟩ is a U-C system contained in S. It is assumed that the U-C conjecture is true for S ′. Let
[x] be that set. Since [x] ⊆ I , for all Y ∈ ⟨I, U⟩, [x] ⊆ Y and the result follows easily. 2

A key subset of S ∼ ⟨I, U⟩ is the interval ⟨∅, Ī⟩. Ī ̸∈ S since otherwise Ī ∈ Z and ∩j{Zj ∈
Z} = ∅, contradicting the assumed co-atom structure. (In fact, no set Y ∈ ⟨Ī , U⟩ can be in S for
the same reason.) ⟨∅, Ī⟩ in Figure 5 is interesting. Ī = [1245] ̸∈ S and ⟨∅, Ī⟩ = ⟨∅, [1245]⟩ consists
of the eight sets {∅, . . . , {124}}, so |⟨∅, Ī⟩| = 8 > 6 = |⟨[3], U⟩| = |⟨I, U⟩|. Because ⟨∅, Ī⟩ is U-C,
∪i{Yi ∈ ⟨∅, Ī⟩} ⊂ Ī . Consequently, ⟨∅, Ī⟩ must have a unique greatest element which is an element
of S , but cannot be Ī . We see this in Figure 5 where {124} ⊂ [1245] = Ī .

Proposition 3.3 If ⟨∅, Ī⟩ is not empty and ⟨∅, Ī⟩ = S ∼ ⟨I, U⟩ then there exists [x] ⊆ Ī satisfying
the inequality (??).

Proof: Since ⟨∅, Ī⟩ is a U-C family |⟨∅, Ī⟩| < |S| we may assume there exists an abundant [x] ∈ A1 where
∅ ⊂ A1 ⊂ Ī . Now let Yi ∈ ⟨I, U⟩, [x] ̸⊆ Yi. Since S is U-C there exists Xi = Yi ∪ A1 such that [x] ⊆ Xi.
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Moreover, because I and Ī are disjoint, Yi ̸= Yj ∈ ⟨I, U⟩ implies Xi = Yi ∪A1 ̸= Yj ∪A1 = Xj . Thus [x]
is abundant in S. 2

Figure 6 graphically illustrates relationships between ⟨I, U⟩,S ∼ ⟨I, U⟩, and ⟨∅, Ī⟩. Here the

{123456}

{23456}{13456}{12456}{12356}

{123}

{12} {1[3]}

{1} {2} [3]

O

I = [1234]

[56] = I{2[3]}

[5]

{1235}

{3[5]}

{12[5]}

-1-2-3-4

-46

-456

_

{135} {235}

/

Figure 6: A schematic representation of ⟨∅, Ī⟩ contained in S ∼ ⟨I, U⟩.

characterising parameters of S are |U | = 6, |Z| = 4. I = [56] which may, or may not, be a set in
S. ⟨I, U⟩ is only sketched out with dashed lines; it may consist of other sets, but need not be. But,
we assume that |⟨I, U⟩| < |S ∼ ⟨I, U⟩| else Proposition 3.1 is invoked. Note that if I = {56} ∈ S
there would be at least 11 more sets, {156}, . . . , {12356} ∈ ⟨I, U⟩. S ∼ ⟨I, U⟩ has been circled by
a dotted line and ⟨∅, Ī⟩ within it is indicated by bolder lines.

Because of Propositions 3.1, 3.2 and 3.3, the only remaining case involves S ∼ ⟨I, U⟩, where
|S∼⟨I, U⟩| ≥ |⟨I, U⟩| and there exists at least one Y ∈ S ∼ ⟨I, U⟩ such that Y ∩I ̸= ∅, but Y ̸⊆ I .

Proposition 3.4 Let
⋂

j{Zj ∈ Z} = I ̸= ∅ and let there exist Y ∈ S ∼ ⟨I, U⟩ such that Y ∩I ̸= ∅.
(a) If |⟨∅, Ī⟩| ≤ |S|/2 then there exists [x] ⊆ I such that . . .
(b) If |⟨∅, Ī⟩| ≥ |⟨I, U⟩| then there exists [x] ⊆ Ī such that . . .

|{Y ∈ S : [x] ⊆ Y }| ≥ |{Y ∈ S : [x] ̸⊆ Y }|.

Proof: As in Section 1, we can assume that Y ∈ S implies |Y | > 2 else the result is trivial. Readily,
|⟨I, U⟩|+ |S ∼ ⟨I, U⟩| = |S|, and since ⟨∅, Ī⟩ ⊆ S ∼ ⟨I, U⟩, |⟨∅, Ī⟩| ≤ |S ∼ ⟨I, U⟩|.
Let I = {x1x2 . . . xt}. We will run an induction on xi ∈ I .
Initially, let i = 1 and let Y ∈ S ∼ ⟨I, U⟩.
(a) If [x1] ̸⊆ Y then Y ⊆ Ī . Thus |{Y ∈ S ∼ ⟨I, U⟩ : [x1] ̸⊆ Y }| = |⟨∅, Ī⟩| = |{Y ∈ S : [x1] ̸⊆ Y }|,
because for all Y ∈ ⟨I, U⟩, [x1] ⊂ Y . Consequently, if |⟨∅, Ī⟩| ≤ |S|/2 = (|⟨I, U⟩|+ |S ∼ ⟨I, U⟩|)/2 then
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[x1] ⊆ I is abundant.
(b) Since ⟨∅, Ī⟩ is itself a U-C system we can assume ∃x′ ∈ Ī where [x′] is an abundant set in ⟨∅, Ī⟩.
If Y ∈ S ∼ ⟨I, U⟩ and Y ∩ I ̸= ∅ then Y = Y ′ ∪ [x1] for some Y ′ ∈ ⟨∅, Ī⟩. Thus [x′] must be
in at least (|S ∼ ⟨I, U⟩| + |⟨∅, Ī⟩|)/2 sets of S. So [x′] is abundant if (|S ∼ ⟨I, U⟩| + |⟨∅, Ī⟩|)/2 ≥
(|S ∼ ⟨I, U⟩| + |⟨I, U⟩|)/2 = |S|/2 or equivalently, if |⟨∅, Ī⟩| ≥ a. (Figure 6 illustrates a U-C system
with the properties of this initial configuration (b) where Y = {1235} and [x1] = [5]. Increasing the number
of sets in ⟨I, U⟩ = ⟨[56], U⟩ would eventually yield condition (a).)

Thus both (a) and (b) are true when i = 1; we inductively assume they are true when i = s < t. Let S be any
U-C system satisfying the condition that if Y ∩ I ̸= ∅ then Y ∩ I ⊆ {x1x2 . . . xt}. We construct a smaller
U-C system S ′ ⊂ S as follows. For all Y in either ⟨I, U⟩ or ⟨∅, Ī⟩, let Y = Y ′ ∈ S ′. For Y ∈ S ∼ ⟨I, U⟩
(excluding ⟨∅, Ī⟩), if [xt] ̸⊂ Y, again let Y = Y ′ ∈ S ′, but if [xt] ⊂ Y and Y∼[xt] ̸∈ S ∼ ⟨I, U⟩ (that is
Y∼[xt] is not already a set of Y ′) then Y∼[xt] = Y ′ ∈ S ′, otherwise Y ̸∈ S ′.

Since Y ∈ S is deleted only if Y∼[xt] ∈ S ∼ ⟨I, U⟩, Y is irreducible, and by Lemma 1.1, S ′ so created
is U-C and S ′ satisfies the conditions of the proposition. Now consider S as an extension of S ′. |S ′| ≤ |S|
with equality if no irreducible sets of the form Y ∪ [xt] exist in S. Thus if |⟨∅, Ī⟩| ≤ |S ′|/2 in S ′, then since
⟨∅, Ī⟩ is unchanged in S ′, |⟨∅, Ī⟩| ≤ |S|/2 in S and (a) follows. And since no sets of ⟨∅, Ī⟩ or ⟨I, U⟩ ∈ S are
deleted, if |⟨∅, Ī⟩| ≥ |⟨I, U⟩| in S ′ then |⟨∅, Ī⟩| ≥ |⟨I, U⟩| in S, so conclusion (b) follows. 2

All possible configurations, when ∩j{Zj ∈ Z} = I ̸= ∅, have been accounted for. But this
final proposition also demonstrates that whenever |⟨I, U⟩| ≤ |⟨∅, Ī⟩| ≤ |S|/2 we are assured that
abundant elements [xi] can be found in both I and Ī .

4 Epilogue

Either ∩j{Zj ∈ Z} = ∅, or not. Taken together, Propositions 2.2, 3.1, 3.2 and 3.4 resolve Frankl’s
U-C Conjecture. It is true — as almost everyone has thought it was.

The other important result of this paper is uncovering the bifurcated nature of U-C systems.
They fall into two distinct structural classes, Class I, where I = ∩j{Zj ∈ Z} = ∅, and Class II,
where I = ∩j{Zj ∈ Z} ̸= ∅. Because of this no single proof technique could work for both.
In Class II, the atom set A tends to be small, so one looks for some abundant element [x] in A,
frequently [x] ⊆ I . In Class I, A can be rather large, while |Z| is limited by n, so one searches for
an abundant element in Z̄.

It appears that the relatively novel concepts of co-atoms, intervals and specifically the roles
of ⟨∅, Ī⟩ and ⟨I, U⟩ will be useful tools in further investigations of these two classes of union-
closed set systems. And since the complement of union-closed systems are intersection-closed,
these discoveries are applicable to finite closure systems [2] as well.

Acknowledgment: The authors wish to thank Luca Studer [4] and Peter Johnson for their encour-
agement and support, as well as unnamed referees whose astute critiques have helped shape this
paper.
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