PROBLEM 1 English to logic

Rewrite each of the following English sentences as an expression over propositions. Include both a mapping from symbols to propositions and the final expression (see the example). If there are ambiguities, explain where they arise, and give two non-equivalent interpretations.

- 1. (example) If I forget my keys I can't get into the house unless my roommate is home.
 - K: I remember my keys
 - H: I can enter my house
 - R: My roommate is home

$$(\neg K \land \neg R) \rightarrow \neg H$$

- 2. I prefer oranges to apples, although apples are less messy to eat
 - *P*: I prefer apples to oranges
 - M: apples are less messy than oranges

 $P \wedge M$

- 3. If you can prove $P \neq NP$ (or P = NP, though I hope you don't), you'll become famous and I'll give you an A in this class
 - *E*: You can prove P = NP
 - *N*: You can prove $P \neq NP$
 - F: You'll be famous
 - A: I'll give you an A
 - H: I hope E

$$((E \lor N) \to (F \land A)) \land \neg H$$

note: the parenthetical is a separate claim, implicitly anded with others

- 4. Python programmers must be lazy because Python programs are so much shorter than the equivalent Java or C++ programs
 - *L*: Python programmers are lazy
 - J: Python programs are shorter than Java programs
 - C: Python programs are shorter than C++ programs

$$(J \wedge C) \rightarrow L$$

note: the "or" linguistically means "and" logically in this case

PROBLEM 2 If Statements

Write an expression for when the following function returns the given return values. Use the variables a and b as your propositions.

PROBLEM 3 Truth Tables

Fill in the following truth tables

A	В	C	$A \lor C$) ↔ ($(B \wedge C)$	\boldsymbol{A}	В	C	$(A \oplus B)$) V ($A \oplus C$) <mark>)</mark>	$B \oplus C$)
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	1	0	1	1	1	1
0	1	0	0	1	0	0	1	0	1	1	0	1	1
0	1	1	1	1	1	0	1	1	1	1	1	1	0
1	0	0	1	0	0	1	0	0	1	1	1	1	0
1	0	1	1	0	0	1	0	1	1	1	0	1	1
1	1	0	1	0	0	1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1	1	0	0	0	0	0

In each of the blanks below, put 1st if the first truth table above is the given idea; 2nd if the second truth table is; leave it blank if neither is.

____ at least one of *A*, *B*, and *C* is 1
____ at least one of *A*, *B*, and *C* is 0
____ *A*, *B*, and *C* are all the same
____ either *A* and *C* are both false or *B* and *C* are both true, but not both
____ either *A* and *C* are both false or *B* and *C* are both true, or both