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Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X i1,..., X1, X,
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.;_;

First-order Markov process: P(X;|Xg; 1) = P(X;|X;_ 1)
Second-order Markov process: P(X;| X, 1) = P(X;|X; 9, X4 1)
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Sensor Markov assumption: P(E;| X, Eo.; 1) = P(E;|X})

Stationary process: transition model P(X;|X; 1) and
sensor model P(E;|X;) fixed for all ¢
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Example

Ri_1| P(Ry)

0.7
0.3

— —+

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,
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Inference tasks

Filtering: P(X;|e1.)
belief state—input to the decision process of a rational agent

Prediction: P (X, x|e1) for k& > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|eq) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(xi.|e1.)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1‘91:t+1) = f(et+17 P(Xt|el:t))

P(X¢iilerst1) = P(Xip1lers, e1)
= OéP<et+1‘Xt—l-17 el:t)P<Xt+1|elit)
= QP<et_|_1‘Xt+1)P(Xt—{—1|ellt)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xi1leni1) = aP(ep1]|X1) 2%, P (X 1]xe, e1.4) P(x¢]er)
= aP(e;1]Xi11) x, P (Xpp1]x:) P(xs]ery)

fl:H—l = FORWARD(th, eH_l) Where fl:t = P(Xt|elzt)
Time and space constant (independent of t)
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Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.%!18 0.2;83
False 0.500 0.182 0.117

Umbrella, Umbrella,
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Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

)gl&g{(t P<X17 ey Xty Xt—l—l‘el:t—H)
= P(e;1|X41) ng(atx (P<Xt+1|xt) X{F}%_l P(x1,..., %1, Xt\elzt))

|dentical to filtering, except f;.; replaced by

mi.; = XlI.n..?gt(_l P(Xb ceey Xt 1, Xt‘el:t)7

l.e., my,(i) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

mi.t41 = P<et+1‘Xt+1) n}(agx (P(XtJrl‘Xt)ml:t)
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Viterbi example

state
space
paths

umbrella

most
likely
paths

<

<

Rain, Rain,
false false
.8182 5155
.1818 .0491
m 1:1 m 1:2

1:3

Raing Rain, Raing
false false false
false

.0361 0334 v 0210
1237 0173 A 0024
m m m

1:4 1.5
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Viterbi example

Rain, Rain, Rain, Rain,
state i
space
paths

false false false false
umbrella false
most
likely

paths

Raing
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Viterbi example

Rain, Rain, Rain, Rain, Raing

state [
space
paths
false false false false false
umbrella false
most
likely
paths

Viterbi == Shortest path where arcs are labeled with the negative log probability of
the transition: -log( Prob(xi+1 | xi)P(ei+1 | xi+1) )

Higher probability means negative log is a SMALLER positive number

Path length = sum of logs = product of probabilities
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Viterbi == Shortest path where arcs are labeled with the negative log probability of the transition:  -log( Prob(xi+1 | xi)P(ei+1 | xi+1) )
       Higher probability means negative log is a SMALLER positive number
       Path length = sum of logs = product of probabilities


Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X is {1,...,S}

Transition matrix T;; = P(X,=j|X,_1=1), e.g, (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;| X; =1)

e.g., with Uy =true, O = (0(')9 002)

Forward and backward messages as column vectors:

f1.4401 = 040t+1TTf1:t
b1t = TOp11bgyo:

Forward-backward algorithm needs time O(S%t) and space O(St)
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