
Balance and Filtering in Structured Satisfiable Problems

Henry Kautz
Yongshao Ruan

Dept. Comp. Sci. & Engr.

Univ. Washington

Seattle, WA 98195

kautz@cs.washington.edu

ruan@cs.washington.edu

Dimitris Achlioptas
Microsoft Research

Redmond, WA 98052

optas@microsoft.com

Carla Gomes
Bart Selman

Dept. of Comp. Sci.

Cornell Univ.

Ithaca, NY 14853

gomes@cs.cornell.edu

selman@cs.cornell.edu

Mark Stickel
Artificial Intelligence Center

SRI International

Menlo Park, California 94025

stickel@ai.sri.com

Abstract

New methods to generate hard random problem
instances have driven progress on algorithms for
deduction and constraint satisfaction. Recently
Achlioptas et al. (AAAI 2000) introduced a new
generator based on Latin squares that creates only
satisfiable problems, and so can be used to accu-
rately test incomplete (one sided) solvers. We in-
vestigate how this and other generators are biased
away from the uniform distribution of satisfiable
problems and show how they can be improved by
imposing a balance condition. More generally, we
show that the generator is one member of a family
of related models that generate distributions rang-
ing from ones that are everywhere tractable to ones
that exhibit a sharp hardness threshold. We also
discuss the critical role of the problem encoding in
the performance of both systematic and local search
solvers.

1 Introduction
The discovery of methods to generate hard random problem
instances has driven progress on algorithms for propositional
deduction and satisfiability testing. Gomes & Selman (1997)
introduced a generation model based on the quasigroup (or
Latin square) completion problem (QCP). The task is to de-
termine if a partially colored square can be completed so that
no color is repeated in any row or any column. QCP is an
NP-complete problem, and random instances exhibit a peak
in problem hardness in the area of the phase transition in the
percentage of satisfiable instances generated as the ratio of
the number of uncolored cells to the total number of cells is
varied. The structure implicit in a QCP problem is similar to
that found in real-world domains: indeed, many problems in
scheduling and experimental design take the form of a QCP.
Thus, QCP complements earlier simpler generation models,
such as random k-cnf (Mitchell et al. 1992). Like them QCP
generates a mix of satisfiable and unsatisfiable instances.

In order to measure the performance of incomplete solvers,
it is necessary to have benchmark instances that are known to
be satisfiable. This requirement is problematic in domains
where incomplete methods can solve larger instances than
complete methods: it is not possible to use a complete method
to filter out the unsatisfiable instances. It has proven diffi-
cult to create generators for satisfiable k-sat. Achlioptas et

al. (2000) described a generation model for satisfiable quasi-
group completion problems called “quasigroups with holes”
(QWH). The QWH generation procedure basically inverts the
completion task: it begins with a randomly-generated com-
pleted Latin square, and then erases colors or “pokes holes”.
The backbone of a satisfiable problem is the set of variables
that receive the same value in all solutions to that problem.
Achlioptas et al. (2000) showed that the hardest QWH prob-
lems arise in the vicinity of a threshold in the average size of
the backbone.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 1.2 1.4 1.6 1.8 2 2.2 2.4

fli
ps

holes / n^2

Order 33 - Walksat flips

QWH
filtered QCP

Figure 1: Comparison of the QWH and filtered QCP models
for order 33 using Walksat. The x-axis is the percentage of
holes (re-parameterized) and the y-axis is the number of flips.

model Walksat Satz Sato
flips backtracks branches

QWH 4e+ 6 41 3e+ 5
filtered QCP 1e+ 8 394 1:5e+ 6

balanced QWH 6e+ 8 4,984 8e+ 6

Table 1: Peak median hardness for different generation mod-
els for order 33 problems.

Despite the similarities between the filtered QCP and
QWH models the problem distributions they generate are
quite different. As noted by Achlioptas et al. (AAAI 2000),
the threshold for QCP is at a higher ratio of holes than is the
threshold for QWH. But even more significantly, we discov-
ered that the hardest problems obtained using the filtered QCP



model are about an order of magnitude more difficult to solve
than the hardest one obtained using the QWH model. Fig-
ure 1 illustrates the difference for the incomplete local search
solver Walksat (Selman et al. 1992). (The critical parame-
ter for a fixed order n is the percentage of holes (uncolored
squares) in the problem. In all of the graphs in this paper
the x�axis is re-parameterized as the number of holes di-
vided by n1:55. Achlioptas et al. (2000) demonstrates that
this re-parameterization adjusts for different problem sizes.)
The first two lines of Table 1 compare the peak hardness of
QWH and filtered QCP for Walksat and two complete sys-
tematic solvers, Satz (Li & Anbulagan 1997) and Sato (Zhang
1997). These solvers are running on Boolean CNF encodings
of the problem instances. The performance of such modern
SAT solvers on these problems is competitive with or supe-
rior to the performance of optimized CSP solvers running on
the direct CSP encoding of the instances (Achlioptas et al.
2000). (Note that the number of backtracks performed by
Satz is usually much lower than the number performed by
other systematic algorithms because of its use of lookahead.)

We begin by explaining this difference in hardness by
showing how each generation model is biased away from
the uniform distribution of all satisfiable quasigroup comple-
tion problems. Next, we introduce a new satisfiable problem
model, balanced QWH, which creates problems that are even
harder than those found by filtered QCP, as summarized in the
last line of Table 1. This new model provides a tool for cre-
ating hard structured instances for testing incomplete solvers.
In addition, its simplicity and elegance suggests that it will
provide a good model to use for theoretical analysis of struc-
tured problems.

In the final section of the paper we turn to the issue of how
we encode the quasigroup problems as Boolean satisfiability
problems. For systematic methods the best encoding is based
on a view of a quasigroup as a 3-dimensional cube, rather than
as a 2-dimensional object. As shown below, the 2-D encod-
ings are almost impossible to solve by systematic methods for
larger orders. This difference is not unexpected, in that the 3-
D encodings include more redundant constraints, which are
known to help backtracking algorithms. For Walksat, how-
ever, a more complex picture emerges: the hardest instances
can be solved more quickly under the 2-D encoding, while
under-constrained instances are easier under the 3-D encod-
ing.

2 The QWH and Filtered QCP Models
In order to better understand the QWH and filtered QCP mod-
els we begin by considering the problem of choosing a mem-
ber uniformly at random from the set of all satisfiable quasi-
group completion problems of order nwith h uncolored cells.
It is easy to define a generator for the uniform model: (1)
Color n2�h cells of an order n square randomly; (2) Apply a
complete solver to test if the square can be completed; if not,
return to step (1). This generator for the uniform model is,
however, impractical for all but largest values of h. The prob-
lem is that the probability of creating a satisfiable instance in
step (1) is vanishingly small, and so the generator will loop
for an exponentially long time. In other words, the set of sat-
isfiable quasigroup completion problems, although large, is
small relative to the set of all completion problems.

Because the instances generated by placing down random
colors are almost certainly unsatisfiable, the quasigroup com-

pletion generator from Gomes & Selman (1997) tries to filter
out as many unsatisfiable configurations while incrementally
partially coloring a square. The formulation is in terms of a
CSP, with a variable for each cell, where the domain of the
variable is initialized to the set of n colors. The generator re-
peatedly selects an uncolored cell at random, and assigns it a
value from its domain. Then, forward-checking is performed
to reduce the domains of cells that share a row or column with
it. If forward-checking reaches an inconsistency (an empty
domain) the entire square is erased and the process begins
anew. Otherwise, once a sufficient number of cells have been
colored arc consistency is checked; if the square passes this
test, then it is output. The hardest mix of sat and unsat in-
stances is generated when the number of holes is such that
about 50% of the resulting squares are satisfiable. Because
of it’s popularity in the literature, we simply call the dis-
tribution generated by the process the QCP model. Adding
a final complete solver to check satisfiability and eliminat-
ing those square which are unsatisfiable results in the filtered
QCP model.1

The hardest hole ratio for the filtered QCP model is shifted
toward the more constrained side. We discovered that hardest
satisfiable instances occur when the filtering step eliminates
about 90% of the partial Latin squares.

fRg fGg
fGg fR,Gg

R G R
G

R
R

R
G

Figure 2: Top: the domains of each variable of an order
4 Latin square after the top left cell is colored R. Bottom:
the four completion problems, generated with probabilities
1=3; 1=3; 1=6; 1=6 respectively.

While the use of incremental forward checking success-
fully biases QCP away from unsatisfiable problems, it also
has the unintended effect of introducing a bias between dif-
ferent satisfiable instances. For a simple example, consider
generating order 2 problems with 2 holes, where the colors
are R and G. Without loss of generality, suppose the first step
of the algorithm is to color the top left square R. As shown
in Figure 2, forward-checking reduces the domains of two
of the remaining cells. The next step is to pick one of the
three remaining cells at random, and then choose a color in
its domain at random. As a result, one of the four partial
Latin squares shown in the figure is created, but with differ-
ent probabilities: the first two with probability 1=3 each, and
the last two with probability 1=6 each. The fourth square is
immediately eliminated by the final forward checking step.
Because our choice of initial square and color was arbitrary,
we see that each of the partial Latin squares where the two
colored cells are in the same row or column is twice as like to
be generated as one in which the two colored cells appear on
a diagonal.

The QWH model introduced by Achlioptas et al. (2000)
works as follows: (1) A random complete Latin square is cre-

1The QCP generator used in Gomes & Selman (1997) did not
perform the final arc-consistency test. Thus, it generated a higher
percentage of unsatisfiable instances. The filtered (satisfiable) dis-
tribution from that generator and ours are identical.



R
R

R

R
G

B

Figure 3: Two partial Latin squares with same pattern of holes
but a different number of solutions, illustrating the bias of the
QWH model.

ated by a Markov-chain process; (2) h random cells are un-
colored. Does this generate the uniform model? Again the
answer is no. Because all patterns of h holes are equally
likely to be generated in step (2), we can without loss of
generality consider both the number and pattern of holes to
be fixed. The probability of creating a particular completion
problem is proportional to the number of different complete
Latin squares that yield that problem under the fixed pattern
of holes. Therefore, we can show that QWH does not gener-
ate the uniform model by simply presenting two partial Latin
squares with the same pattern of holes but a different number
of solutions.

Such a counterexample appears in Figure 3: The square
on the left has two solutions while the one on the right has
only a single solution. In other words, the left square is twice
as likely to be generated as the right square. In general, the
QWH model is biased towards problems that have many so-
lutions.

3 Patterns and Problem Hardness
We now consider different models of QCP and QWH, corre-
sponding to different patterns. As we will see, the complexity
of the models is dependent not only on the number of uncol-
ored cells but also on the underlying pattern.

3.1 Rectangular and Aligned Models
In order to establish a baseline, we first consider two tractable
models for QCP and QWH, which we refer to as rectan-
gular and aligned models. Figure 4 (left and middle) il-
lustrates such instances. In the rectangular QWH model,
a set of columns (or rows) is selected and all the cells in
these columns are uncolored. Moreover, one additional col-
umn (row) can be selected and be partially uncolored. The
aligned QWH model is a generalization of the rectangular
model in that we can pick both a set of rows and a set of
columns and treat them as the chosen rows/columns in the
rectangular model. Put differently, in the aligned model,
the rows and columns can be permuted so that all cells in
C = f1; : : : ; r� 1g� f1; : : : ; s� 1g are colored, some cells
of f1; : : : ; rg � f1; : : : ; sg nC are colored and all other cells
are uncolored. We note that one could also naturally generate
rectangular and aligned QCP instances.

In order to show that both the rectangular and aligned mod-
els are tractable, let us consider a Latin rectangle R on sym-
bols 1; � � � ; n. Let R(i) denote the number of occurrences of
the symbol i in R, 1 � i � n:We first introduce the following
theorem from combinatorics.

Theorem: (Ryser 1951) An r x s Latin rectangle R on sym-
bols 1; � � � ; n can be embedded in a Latin square of side n if
and only if

R(i) � r + s� n for all i; 1 � i � n.

Theorem: Completing a rectangular QCP or QWH is in P.

Proof: We can complete the rectangular QCP or QWH
instance column by column (or row by row), starting with the
column (or row) partially uncolored. (If there is no partially
uncolored columns or rows, consider an arbitrary fully uncol-
ored column or row.) We construct a bipartite graph G, with
parts U = fu1; u2; : : : ; umg, and W = fw1; w2; : : : ; wmg
in the following way: U represents the uncolored cells of the
column (row) that needs to be colors; W represents the colors
not used in that column (row). An edge (u i,wj ) denotes that
node ui can be colored with color wj . To complete the first
column (row) we find a perfect matching in G. If there is
no such matching we know that the instance is unsatisfiable.
After completing the first column (row), we can complete the
remaining columns (rows) in the same way.QED

Theorem: Completing an aligned QCP or QWH is in P.

Proof: We start by noting that an aligned instance can be
trivially rearranged into an r x s rectangle, s � n, by per-
mutating rows and columns (with possibly a row or column
partially uncolored). So, if we show that we can complete
an r x s rectangle into an r x n rectangle, we have proved
our theorem, since we obtain an instance of the rectangular
model. To complete an r x s rectangle into an r x n, again
we complete a column (or row) at a time, until we obtain a
rectangle of side n. For the completion of each column (or
row), again, we solve a matching on the bipartite graph. The
only difference resides in the way we build the graph: W only
contains colors for which the condition in Ryser’s theorem is
satisfied. QED

3.2 Balance
While the rectangular and aligned models cluster holes, we
now turn to a model that attempts to increase problem hard-
ness by minimizing clustering. Let us start by reviewing the
role of balance in the two most studied combinatorial opti-
mization problems over random structures: random satisfia-
bility and random graph coloring. It is particularly interesting
to note the features shared by algorithms performing well on
these problems.

Random k-SAT. A random formula is formed by select-
ing uniformly and independently m clauses from the set of
all 2k

�
n

k

�
k-clauses on a given set of n variables. The first

algorithm to be analyzed on random k-SAT employs the pure
literal heuristic repeatedly: a literal ` is satisfied only if �̀does
not appear in the formula. Thus, a pure variable has all its oc-
currences appear with the same sign – a rather dramatic form
of sign imbalance. The next key idea is unit-clause propaga-
tion, i.e., immediately satisfying all clauses of length 1. More
generally, dealing with shortest clauses first has turned out
to be very useful. Subsequent improvements also come from
exploiting imbalances in the formula: using degree informa-
tion to determine which variable to set next and considering
the number of positive and negative occurrences to determine
value assignment.

Bayardo & Schrag (1996) gave experimental results on the
role of balance, by considering random k-SAT formulas in
which all literals occur in the same number of clauses. In such
formulas, an algorithm has to first set a non-trivial fraction
of all variables (essentially blindly) before any of the ideas
mentioned above can start being of use. This suggests the
potential of performing many more backtracks and indeed,



Figure 4: Left: an example of the rectangular model; middle: an example of the aligned model; right: a balanced model. Holes
are in white.

balanced random k-SAT formulas are an order of magnitude
harder than standard ones.

Random graph coloring. A random graph on n vertices
is formed by including each of the

�
n

2

�
edges with probability

p. For graph coloring the most interesting range is p = d=n,
where d is a constant. One can also consider list-coloring,
where each vertex has a prescribed list of available colors.
Analogously to the pure literal heuristic, a first idea is to ex-
ploit the advantage offered by low degree vertices. In partic-
ular, if we are using k colors then we can safely remove from
the graph all vertices having degree smaller than k: if we can
color the remaining graph then we can certainly complete the
coloring on these vertices since each one of them will have
at least one available color (as it has at most k � 1 neigh-
bors). Upon potentially reaching a k-core, where every vertex
has degree at least k, it becomes useful to consider vertices
having fewest available colors remaining and, among them,
those of highest degree. Conversely, random graphs that are
degree-regular and with all lists having the same size tend to
be harder to color.

3.3 Balance in Random Quasigroups
In the standard QWH model we pick a random quasigroup
and then randomly turn a number of its entries to holes. Fix-
ing the quasigroup choice and the number of holes, let us
consider the effect that different hole-patterns have on the
hardness of the resulting completion problem. (For brevity,
we only refer to rows below but naturally all our comments
apply to columns just as well.)

Two extreme cases are rows with just one hole and rows
with n holes. In the first case, the row can be immediately
completed, while in the second case it turns out that given any
consistent completion of the remaining n � (n � 1) squares
one can always complete the quasigroup. More generally, it
seems like a good idea for any algorithm to attempt to com-
plete rows having a smallest number of holes first, thus min-
imizing the branching factor in the search tree. Equivalently,
having an equal number of holes in each row and column
should tend to make things harder for algorithms.

Even upon deciding to have an equal number of holes in
each row and column, the exact placement of the holes re-
mains highly influential. Consider for example a pair of rows
having holes only in columns i; j and further assume that
there are no other holes in columns i; j. Then, by permut-
ing rows and columns it is clear that we can move these four
holes to, say, the top left corner of the matrix. Note now that
in this new (isomorphic) problem the choices we make for
these four holes are independent of all other choices we make
in solving the problem, giving us a natural partition to two
independent subproblems.

More generally, given the 0/1 matrix A where zeros cor-
respond to colored entries and ones correspond to holes, one
can attempt to permute the rows and columns to minimize the
bandwidth of A (the maximum absolute difference between i
and j for which A(i; j) is 1). Having done so, the completion
problem can be solved in time exponential in the bandwidth.

We were surprised to discover that even though Satz con-
tains no code that explicitly computes or makes use of band-
width (indeed, exactly computing the bandwidth of a prob-
lem is NP-complete), it is extremely efficient for bounded-
bandwidth problems. We generated bounded-bandwidth in-
stances by first punching holes in a band along the diagonal
of a Latin square, and then shuffling the rows and columns
1,000 times to hide the band. Satz solved all instances of this
type for all problem sizes (up to the largest tested, order 33)
and hole ratios in either 0 or 1 backtrack! Satz’s strategy is
Davis-Putnam augmented with one-step lookahead: this com-
bination is sufficient to uncover limited-bandwidth instances.

When the holes are placed randomly then with high prob-
ability the resulting matrix A will have high bandwidth. Al-
ternatively, we can view A as a random n� n bipartite graph
in which vertex i is connected to vertex j iff there is a hole in
position (i; j). The high bandwidth of A then follows from
relatively standard results from random graph theory (Fernan-
dez de la Véga 1981). Moreover, having an equal number of
holes in each row/column makes the random graph regular,
which guarantees that A has large bandwidth. Intuitively,
small balanced instances should exhibit properties that hold
of large random instances in the asymptotic limit.

Viewing the hole pattern as a regular random bipartite
graph readily suggests a way for generating a uniformly ran-
dom hole pattern with precisely q holes in each row and col-
umn for any q (i.e., q = h=n) by the following algorithm:

Set H = ;.
Repeat q times:

Set T to f1; : : : ; ng � f1; : : : ; ng nH .
Repeat n times:

Pick a uniformly random (i; j) 2 T ;
Add (i; j) to H ;
Remove all elements in row i and column j from T .

Balancing can be applied to either the QWH or QCP mod-
els: in the former, the pattern is used to uncolor cells; in the
latter, the pattern is used to determine the cells that are not
colored incrementally.

3.4 Empirical Results
We measured the difficulty of solving problem distributions
generated under each of the models using three different al-



1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

fli
ps

holes / n^1.55

Order 33
Walksat flips (log scale)

balanced QCP
balanced QWH

filtered QCP
QWH

aligned QWH
rectangular QWH

Figure 5: Comparison of generation models for order 33 using Walksat. Y-axis is the number of flips (log scale) and x-axis
is the percentage of holes (re-parameterized). Each data point represents the median number of flips for 100 instances. Less-
constrained instances appear to the right.

gorithms. As a preliminary step problems were simplified
by arc consistency and then translated into SAT problems
in conjunctive normal form, as described in Sec. 4 below.
For each data point for a range of percentage of holes 100
problems were generated and solved by three different algo-
rithms: Walksat, which performs local search over the space
of truth assignments, using 30% noise and no cutoff; Satz,
which implements the backtracking Davis-Putnam algorithm
augmented with 1-step lookahead; and Sato (Zhang 1997),
another Davis-Putnam type solver that uses dependency-
directed backtracking and clause learning. In this paper we
present the data for order 33, a size which clearly distin-
guishes problem difficulty but still allows sufficient data to be
gathered. For reasons of space, we will omit detailed results
for Sato, which are qualitatively similar to those for Satz.

Figure 5 displays the results for Walksat: note the log scale,
so that each major division indicates an order of magnitude
increase in difficulty. Less constrained problems appear to
the right in the graphs: note that is the opposite of the con-
vention for presenting results on random k-cnf (but is con-
sistent with Achlioptas et al. (2000)). On the log scale we
see that the most constrained instances are truly easy, be-
cause they are solved by forward-checking alone. The under-
constrained problems are of moderate difficulty. This is due
to the fact that the underconstrained problem are simply much
larger after forward-checking. Again note that this situation
is different from that of random k-cnf, where it is the over-
constrained problems that are of moderate difficulty (Cook
and Mitchell 1997).

At the peak the balanced QWH problems are much harder
than the filtered QCP problems, showing that we have
achieved the goal of creating a better benchmark for testing
incomplete solvers. Balancing can be added to the filtered
QCP model; the resulting balanced QCP model are yet more
difficult. This indicates that balancing does not make QWH

and QCP equivalent: the biases of the two approaches remain
distinct. Both of the QWH models are harder than the QCP
models in the under-constrained region to the right; we do not
yet have an explanation for this phenomena.

Both the aligned and rectangle models are easy for Walk-
sat, and show no hardness peak. In the over-constrained area
(to the left) they require more flips to solve than the oth-
ers. This is because clustering all the holes prevents arc con-
sistency from completely solving the problems in the over-
constrained region (there are more than one solutions), as it
usually does for the other models.

Figure 6 shows the same ordering of hardness peaks for
Satz. The behavior of Satz on the rectangle case is an in-
teresting anomaly: it quickly becomes lost on the under-
constrained problems and resorts to exhaustive search. This
is because Satz gains its power from lookahead, and on
under-constrained rectangular problems lookahead provides
no pruning. Sato, which employs look-back rather than
lookahead, does not exhibit this anomaly: it solves the rect-
angular problems as easily as the aligned ones.

We also measured the variance in the number of holes per
row or column and the bandwidth of the balanced and ran-
dom models. As expected, the variance was very low for the
balanced case, averaging between 0.0 and 0.2 over the rage
of ratios, compared with a range of 5.4 to 8.2 for the ran-
dom case. Thus non-balanced problems will often have rows
or columns that contain only a few, highly-constrained holes
that can be easily filled in.

4 3-D and 2-D Encodings
Up to this point of the paper we have been concerned with
understanding what makes a problem intrinsically hard. In
practice, the difficulty of solving a particular instance using a
particular algorithm is also dependent upon the details of the



1

10

100

1000

10000

100000

1 1.2 1.4 1.6 1.8 2 2.2 2.4

ba
ck

tr
ac

ks

holes / n^1.55

Order 33
Satz backtracks (log scale)

balanced QCP
balanced QWH

filtered QCP
QWH

aligned QWH
rectangular QWH

Figure 6: Comparison of generation models for order 33 using the Davis-Putnam type solver Satz. The x-axis is the percentage
of holes (re-parameterized) and the y-axis is the number of backtracks (log scale). Each data point represents the median
number of backtracks for 100 instances.

holes holes=n1:55 2-D 3-D
247 1.41 18 17
254 1.45 33 66
261 1.49 32 108

268 1.53 23 109
275 1.57 17 61
282 1.61 14 61
289 1.65 12 23

Table 2: Average number unit propagations performed im-
mediately after each branch by Satz for the 2-D and 3-D en-
codings of order 28 QWH instances. Hardness peak is at
n1:55 = 1:53 (261 holes).

representation of the problem.
Although quasigroup completion problems are most natu-

rally represented as a CSP using multi-valued variables, en-
coding the problems using only Boolean variables in clausal
form turns out to be surprisingly effective. Each Boolean
variable represents a color assigned to a cell, so wheren is the
order there are n3 variables. The most basic encoding, which
we call the “2-dimensional” encoding, includes clauses that
represent the following constraints:

1. Some color must be assigned to each cell;
2. No color is repeated in the same row;
3. No color is repeated in the same column.

Constraint (1) becomes a clause of length n for each cell, and
(2) and (3) become sets of negative binary clauses. The total
number of clauses is O(n4).

The binary representation of a Latin square can be viewed
as a cube, where the dimensions are the row, column, and
color. This view reveals an alternative way of stating the Latin
square property: any set of variables determined by holding
two of the dimensions fixed must contain exactly one true

variable. The “3-dimensional” encoding captures this condi-
tion by also including the following constraints:

1. Each color much appear at least once in each row;
2. Each color much appear at least once in each column;
3. No two colors are assigned to the same cell.

As before, the total size of the 3-D encoding is O(n4).
As reported in Achlioptas et al. (2000), state of the art

backtracking and local search SAT solvers using the 3-D
encoding are competitive with specialized CSP algorithms.
This is particularly surprising in light of the fact that the best
CSP algorithms take explicit advantage of the structure of the
problem, while the SAT algorithms are generic. Previous re-
searchers have noted that the performance of backtracking
CSP solvers on quasigroup problems is enhanced by using
a dual representation (Slaney et al. 1995, Shaw et al. 1998,
Zhang and Stickel 2000). This suggests a reason for the suc-
cess of Davis-Putnam type SAT solvers: In the CSP dual en-
coding, there are variables for color/row pairs, where the do-
main is the set of columns, and similarly for color/column
pairs, where the domain is the set of rows. The 3-D SAT
encoding essentially gives us these dual variables and con-
straints for free.

This explanation is supported by the extremely poor perfor-
mance of SAT solvers on the 2-D encodings of the problems.
Neither Satz nor Sato can solve any instances at the hardness
peak for orders larger than 28; using the 3-D encoding, by
contrast, either could solve all instances with one backtrack
on average. As shown in Figure 7, the work required by Satz
explodes as the problem becomes underconstrained , requir-
ing over 100,000 backtracks for order 28.

An explanation for the difference in performance of Satz
on the different encodings can be found by examining the
number of unit propagations triggered by each split in the
search trees. Table 2 compares the number of unit propaga-
tions around the point at which the 2-D encodes become hard



1

10

100

1000

10000

100000

1e+06

0.6 0.8 1 1.2 1.4 1.6 1.8 2

ba
ck

tr
ac

ks

holes / n^1.55

2D encodings
Satz backtracks (log scale)

order 28
order 26
order 24
order 22
order 20

Figure 7: Comparison of 3-D versus 2-D encodings using Satz (backtracks, log scale) for 2-D encodings for orders 20 to 28.
All problems of this size using the 3-D encodings could be solved by Satz in 0 or 1 backtracks.

for Satz (in bold). Note that at this point each split sets about
5 times more variables for the 3-D encoding than for the 2-D
encodings.

Are the 2-D encodings inherently hard? Consider the per-
formance of Walksat, on even larger orders (30 and 33),
shown on in Figure 8. Walksat shows an unusual pattern: the
2-D encodings are somewhat easier than the 3-D encodings
at the peak, and somewhat harder than then 3-D encodings in
the under-constrained region to the right. Thus the 2-D and
3-D are in fact incomparable in terms of any general notion
of hardness.

A significant difference between the 3-D and 2-D encod-
ings is that for both Walksat and Satz it is difficult to see any
hardness peak at the threshhold: the problems become hard
and then stay at least as hard as they become more and more
under-constrained. Note that the most underconstrained in-
stances are inherently easy, since they correspond to a empty
completion problem. This reinforces our argument that the
3-D encoding more accurately reflects the underlying com-
putational properties of the quasigroup problem.

In summary, it is important to distinguish properties of a
problem instance that make it inherently hard for all meth-
ods of attack and properties that make it accidently hard for
particular methods. While the encoding style is such an acci-
dental property, the main conjecture we present in this paper
is that balance is an inherent property. The evidence for the
conjecture is that increasing balance increases solution time
for a variety of solvers.

5 Conclusions
Models of random problem generation serve two roles in AI:
first, to provide tools for testing search and reasoning al-
gorithms, and second, to further our understanding of what
makes particular problems hard or easy to solve, as distinct
from the fact that they fall in a class that is worst-case in-

tractable. In this paper we introduced a range of new models
of the quasigroup completion problem that serve these roles.
We showed how a new notion of balance is an important fac-
tor in problem hardness. While previous work on balancing
formulas considered the roles of positive and negative liter-
als, our notion of balance is purely structural. Balancing im-
proves the usefulness of the QWH model – one of the best
models known for testing incomplete solvers – while retain-
ing its formal simplicity and elegance.

References

D. Achlioptas, C. Gomes, H. Kautz, B. Selman (2000).
Generating Satisfiable Instances. Proc. AAAI-2000.

Bayardo, R.J. and Schrag, R.C. (1996) Using csp look-back
techniques to solve exceptionally hard sat instances.
Proc. CP-96), 46–60.

Cheeseman, P. and Kanefsky, R. and Taylor, W. (1991).
Where the Really Hard Problems Are. Proc. IJCAI-91,
163–169.

Cook, S.A. and Mitchell, D. (1997). Finding Hard Instances
of the Satisfiability Problem: A Survey, in D. Du, J. Gu,
and P. Pardalos, eds. The Satisfiability Problem. Vol. 35
of DIMACS Series in Discr. Math. and Theor. Comp.
Sci., 1-17.

Fernandez de la Véga, W. (1981) On the bandwidth of ran-
dom graphs. Combinatorial Mathematics, North-
Holland, 633–638.

Gent, I. and Walsh, T. (1993) An empirical analysis of search
in GSAT. J. of Artificial Intelligence Research, vol. 1,
1993.

Gibbs, N.E. , Poole, Jr., W.E. and Stockmeyer, P.K. (1976).
An algorithm for reducing the bandwidth and profile of
a sparse matrix, SIAM J. Numer. Anal., 13 (1976), 236–
249.



1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

fli
ps

holes / n^1.55

2D vs. 3D Encodings
Walksat flips (log scale)

2D - order 33
2D - order 30
3D - order 33
3D - order 30

Figure 8: Comparison of 3-D versus 2-D encodings using Walksat (flips, log scale) for orders 30 and 33.

Gomes, C.P. and Selman, B. (1997a). Problem structure in
the presence of perturbations. Proc. AAAI-97.

Hall, M. (1945). An existence theorem for latin squares.
Bull. Amer. Math Soc., 51, (1945), 387–388.

Hogg, T., Huberman, B.A., and Williams, C.P. (Eds.)
(1996). Phase Transitions and Complexity. Art. Intell.,
81, 1996.

Hoos, H. 1999. SATLIB. A collection of SAT tools and data.
See www.informatik.tu-darmstadt.de/AI/SATLIB.

Impagliazzo, R., Levin, L., and Luby, M. (1989). Pseudo-
random number generation of one-way functions. Proc.
21st STOC.

Kirkpatrick, S. and Selman, B. (1994). Critical behavior in
the satisfiability of Boolean expressions. Science, 264,
1994, 1297–1301.

Li, Chu Min and Anbulagan (1997). Heuristics based on unit
propagation for satisfiability problems. Proc. IJCAI-97,
366–371.

Mitchell, D., Selman, B., and Levesque, H.J. (1992). Hard
and easy distributions of SAT problems. Proc. AAAI-92,
459–465.

Regin, J.C. (1994). A filtering algorithm for constraints of
difference in CSP. Proc. AAAI-94, 362–367.

Ryser, H. (1951). A combinatorial theorem with an appli-
cation to latin rectangles. Proc. Amer. Math. Soc., 2,
(1951), 550-552.

Selman, B. and Levesque, H.J., and Mitchell, D.G. (1992).
A New Method for Solving Hard Satisfiability Prob-
lems. Proc. AAAI-92.

Shaw, P., Stergiou, K., and Walsh, T. (1998) Arc consistency
and quasigroup completion. Proc. ECAI-98, workshop.

Slaney, J., Fujita, M., and Stickel, M. (1995) Automated
reasoning and exhaustive search: quasigroup existence
problems. Computers and Mathematics with Applica-
tions, 29 (1995), 115-132.

Stergiou, K. and Walsh, T. (1999) The Difference All-
Difference Makes. Proc. of IJCAI-99.

Van Gelder, A. (1993). Problem generator (mkcnf.c) con-
tributed to the DIMACS 1993 Challenge archive.

Zhang, H. (1997). SATO: An Efficient Propositional Prover.
Proc. CADE-97.

Zhang, H. and Stickel, M.E. (2000) Implementing the Davis-
Putnam method. Journal of Automated Reasoning 24(1-
2) 2000, 277-296.


