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Abstract

Research on computer-based recognition of ordinary house-
hold activities of daily living (ADLs) has been spurred
by the need for technology to support care of the elderly
in the home environment. We address the issue of rec-
ognizing ADLs at multiple levels of detail by combining
multi-view computer vision and radio-frequency identifica-
tion (RFID)-based direct sensors. Multiple places in our
smart home testbed are covered by distributed synchro-
nized cameras with different imaging resolutions. Learn-
ing object appearance models without costly manual la-
beling is achieved by applying the RFID sensing. A hi-
erarchical recognition scheme is proposed by building a
dynamic Bayesian network (DBN) that encompasses both
coarse-level and fine-level ADL recognition. Advantages of
the proposed approach include robust segmentation of ob-
jects, view-independent tracking and representation of ob-
jects and persons in 3D space, efficient handling of occlu-
sion, and the recognition of human activity at both a coarse
and fine level of detail.

1 Introduction and Research Motivation

Computer-based recognition of human activities in daily
living (ADLs) has gained increasing interest from computer
science and medical researchers as the portion of the elder
population in society grows. We have built the Laboratory
for Assisted Cognition Environments (LACE) to prototype
human activity recognition systems that employ a variety
sensors. In this paper, we address the task of recognizing
ADLs in next-generation smart homes, and present our on-
going research on assisted cognition for daily living.
Our system uses multiple cameras and a wearable RFID
reader. The cameras provide multi-scale and multi-view
synchronized data, which enables robust visual recognition
in the face of occlusions and both large and small scale
motions. A short-range RFID reader, Intel Research Seat-
tle’s “iBracelet”, remotely transmits time-stamped RFID
signals to the vision system’s computer. Multiple RFID
tags are attached to various objects including furniture, ap-
pliances, and utensils around the smart homes. Although
we currently use commercial-quality cameras and a high-
end frame buffer to integrate the video feeds, the decreasing
cost of video cameras and the increasing power of multicore

personal computers will make it feasible in about two years
to deploy our proposed system with inexpensive wireless
camcorders and an ordinary laptop computer.
Previous approaches to recognizing ADLs have depended
upon users wearing sensors (RFID and/or accelerometers)
or using a single camera vision system. Recently, [4] em-
ployed a combination of vision and RFID. The system was
able to learn object appearance models using RFID tag in-
formation instead of manual labeling. The system is, how-
ever, limited by a single camera view, which entails view
dependency of the performance. The system also did not at-
tempt to model or learn the motion information involved in
the ADL. We propose a multi-sensor based activity recog-
nition system that uses multiple cameras and RFID readers
in a richer way.
Understanding human activity can be approached from dif-
ferent levels of detail: for example, a body transition across
a room at a coarse level, versus the hand motions manipu-
lating objects at a detailed level. Our multi-camera based
vision system covers various indoor areas with different
viewing resolutions from different perspectives. RFID tags
and reader(s) pinpoint the nearby objects which are han-
dled by the user. Advantages of such a synergistic integra-
tion of vision and RFID include robust segmentation of ob-
jects, view-independent tracking and representation of ob-
jects and persons in 3D space, efficient handling of occlu-
sion, efficient learning of object appearance models without
human intervention, and the recognition of human activity
at both a coarse and fine level.

2 System Architecture Overview

Fig. 1 shows the overall system architecture. Light gray
modules compose the basic single-view system, while the
bright (yellow) modules compose the multi-view function-
ality. Dark gray modules can work either in single or multi-
view modes, but more cameras can increase the overall
accuracy. In the single-view mode, a planar homography
mapping generates a virtual top-down view of the ground
plane overlayed with a warped foreground image. In multi-
view mode, the foreground image is created by warping and
blending all the camera views. Using multiple views not
only increases robustness, but also supports simple and ac-
curate estimation of view-invariant features such as object
size.
Currently, four cameras are used for synchronized views,



Figure 1: The overall system architecture of the Multi-scale
multi-perspective vision system.

Figure 2: An example session of the ADL experiment in
which a person performs the “Drink water” activity.

as shown in Fig. 2 , which are foreground-segmented and
combined to form a planar-homography map for 3D lo-
calization of persons. The homography map is to gener-
ate a perspective-independent virtual top-down view for the
(coarse) track-level analysis, whereas the view switching
for unoccluded views of people is used for the (fine) body-
level analysis. Fig. 3 shows an example of the homography
mapping from the two wide-FOV cameras and an example
of the foreground segmentation from the two narrow-FOV
cameras. The narrow views are overlaid with a virtual grid
to compute scene statistics such as pixel counts in each grid
cell. Both the track and body-level analysis can be used for
the activity analysis depending on analysis task.

In Fig. 1, dynamic contextual control with optional user in-
volvement is incorporated with activity analysis, and pro-
vides constraints to other processing modules as feedback.
The top-down feedback flows in the system are marked as
red arrows in Fig. 1.

2.1 Appearance-Based Segmentation and Tracking

ADLs may involve multiple objects moving simultane-
ously, which can create challenges for a vision system —
for example, changing background and object occlusion.
We adopt a dynamic background model using K-means
clustering [1]. Background model is updated with a cer-
tain memory decay factor to incorporate the changes in the
background, and foreground-background segmentation is
achieved at each pixel.
The smart home environment may include multiple per-
sons, each of whom may disappear and reappear across
non-overlapped camera views. It is important to robustly
locate individual persons and re-identify each person across
views. We employ a probabilistic appearance model (PAM)
that represents people’s color appearance in terms of Gaus-
sian mixture models [2]. The parameters of the mixture
model are learned using expectation-maximization (EM)
when an individual first appears in a video frame. The
tracking system can re-identify people who leave and later
reappear using a color-histogram comparison.

2.2 Feature-based Body Parts Detection

Using the segmented multiple foreground regions of the
input video frames, we detect human body parts such as
face, shoulder, and hands. Haar-wavelet based human fea-
ture detectors [3] are trained for specific textural patterns
associated with frontal face, profile face, and upper body
silhouette. Skin tone is effective to segment non-textural or
highly deformable body parts such as hands, but skin tone
depends on illumination conditions. In order to robustly
detect proper skin tone, we use the detected face area as a
bootstrapped prior. That is, the trained human feature de-
tectors are jointly used to bootstrap the proper region of face
and for skin color sampling from the face.

2.3 Multiple View Scene Modeling

Contrary to single camera systems, our multi-camera sys-
tem provides view-independent recognition of ADLs. Our
vision system is composed of two wide field-of-view (FOV)
cameras and two narrow FOV cameras, all synchronized.
The two wide FOV cameras monitor the whole testbed
and provide person locations in the 3D space based on
a calibration-free homography mapping. The two narrow
FOV cameras focus on more detailed human activities of
interest (e.g., cooking activities at the kitchen countertop
area in our experiments).

3 RFID for Learning Temporal
Segmentation of Salient Motions

Properly parsing the temporal sequence of feature streams
for activity recognition is still an open research question.
Traditional approaches are based on manual segmentation
or on moving window of fixed duration. Such approaches
are not very effective for natural activities that may vary in
duration.



Figure 3: Homography projection of the two wide-FOV
scenes in Fig. 2, and foreground segmentation of narrow-
FOV with a RFID label from a different sequence (grid
overlaid for scene statistics).

We are using RFID sensing for segmenting and label-
ing ADL training data. Intel Research Seattle developed
and supplied our lab with an RFID reader in the form of
bracelet. It has detection range of about 10–15 centime-
ters. As the person’s hand approaches to an RFID tagged
object, the iBracelet detects the tag and transmits the time-
stamped ID information by a wireless link to the PC-based
activity recognition system. In our current configuration,
the ID transmission is repeated every second until the per-
son’s hand leaves the object.
The combination of vision and RFID was pioneered by Wu
et al. [4] to train object appearance models without labori-
ous manual labeling efforts. The RFID labels were used
only to infer object use. A single detailed-view camera
was used in their system, and no tracking of objects or hu-
man body was considered. Our work expands upon their
approach by incorporating human body model and object
models, and building a DBN that models the interaction of
the person and objects. RFID sensing in our system serves
for learning temporal segmentation of salient motions as
well as object appearance learning.

4 Activity Recognition Modeling

Activities in daily living occur in certain contexts. Such
contexts may include a short-range history of preceding ac-
tivities, as well as a global and long-range information such
as an individual’s health conditions, the time of day, the
time since the last instance of a regularly repeated activity
occurred (e.g., toileting), etc. Activities may be observed at
a coarse level, such as moving across multiple rooms dur-
ing a day, as well as at a fine level, such as detailed cooking
behavior in a kitchen. Our goal is to encompass both levels
of analysis by developing an integrated hierarchical activity
model. More specifically, our initial experiments include
the six coarse-level activity classes described in Table 2.
Note that each of the six coarse-level activities is composed
of a series of fine-level unit actions. Activity classes 1 and
2 are monitored by the two wide FOV cameras covering the
entire space, while activities 3 through 6 are monitored by
the two narrow FOV cameras monitoring the kitchen area.

Table 1: Activity class descriptions.

1. Walk around (WA) 2. Sit and watch TV (ST)
Enter the scene Bring remote control
Walk Sit on couch

Turn on / watch TV

3. Prepare utensil (PU) 6. Store utensil (SU)
Open / close cupboard Open / close cupboard
Bring utensil Return utensil
(dish, cup, bowl) Return flatware

Bring flatware Open / close drawer
(spoon, knife, and fork)

Open / close drawer

4. Prepare cereal (PC) 5. Drink water (DW)
Open cupboard Open refrigerator
Bring a cereal box Bring water jar
Pour cereal in the bowl Pour water in a cup
Pour milk in the bowl Drink water in the cup
Eat cereal with spoon

 

source destination motion 

Agent 

Target 

Figure 4: Unit Action Model.

4.1 The Coarse Activity Model

Some of the activity classes (i.e., coarse-level activities 1
and 2) in Table 2 have very different characteristics from
other activity classes (activities 3 through 6) in term of
available salient features, mainly due to the different per-
spectives provided by the distributed cameras with different
FOVs. The camera handover between the different cam-
eras in Fig. 1 is achieved by incorporating a data-driven
bottom-up process and a knowledge-driven top-down pro-
cess. The bottom-up process is achieved by low-level visual
procedures such as background subtraction and foreground
objects tracking, while the top-down process is achieved
by activity recognition using the graphical model. More
specifically, multi-view switching and multi-stage switching
as shown in Fig. 1 are controlled by top-down feedback.

4.2 The Unit Action Model

We model human activity as a composition of intentional
unit actions, each of which is represented by a tuple com-
posed of {agent, motion, target, source, destination} as
shown in Fig. 4. The unit action model asserts that a mean-
ingful atomic chuck of action may be identified by delin-
eating the interaction between an agent and a target object
associated with a certain source and destination. For exam-
ple, a hand (an agent) may carry (a motion) a bowl (a target)
from the cupboard (a source) to the table (a destination) in
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Figure 5: Hierarchical composition of dynamic Bayesian
networks for recognizing ADLs. (Subscript denotes time.)

Figure 6: A participant’s five epoches of RFID labels

order to “get a bowl”. Moving a bowl from cupboard to ta-
ble changes the states of the cupboard and the table. Such
state changes can be detected by the scene statistics such as
the ratio of detected foreground regions at specific locations
to the entire field of view. Each of the oval and square nodes
in Fig. 4 is parameter that needs to be filled with an inferred
value. The parameters in the various unit actions that make
up a coarse activity may be tied together. For example, “get
a bowl” and “spoon cereal from bowl to mouth” may both
be a unit actions in the “make breakfast” activity, where the
object parameter of the first unit action is tied to the source
parameter for the second unit action.
We are developing graphical models for recognizing ADL
by incorporating such interdependency of the multiple
nodes in Fig. 4. We incorporate the observations from scene
statistics (Si), object statistics (Oi), and RFID labels (Ri)
to build a hierarchical classifier for ADL as shown in Fig. 5.
The coarse level activity (A1

j ) is composed of a sequence of
detailed unit activities (A2

j ) that handle objects (Ti).

5 Experiments

We are currently investigating the six activity classes oc-
curring in the smart home testbed as shown in Fig. 2. K
persons (K = 5) participated twice in the experiments in
separate sessions to conduct the activities from 1 through 6
in a sequential manner, which defines an epoch. E epochs
(i.e., repetitions) (E = 5 for now) total per activity class
per participant in each session are collected. Participants
are free to choose different sequences of the fine-level ac-
tions in each of the 6 coarse-level activity classes. Fig. 2
shows an example session of the ADL experiment in which
a person performs a kitchen activity (i.e., “Drink water”.)
The person wears the RFID reader on his right wrist, which

Table 2: Activity recognition using only RFID (RFID)
or scene statistics (SS), respectively. (Superscript denotes
standard deviation from leave-one-out cross-validation.)

RFID WA ST PU PC DW SU
WA .70.22 .30.22

ST .86.09 .14.09

PU .88.08 .02.04 .10.07

PC .02.04 .88.11 .04.05 .06.05

DW .02.04 .12.16 .78.16 .08.11

SU .02.04 .90.04

mean .83
SS WA ST PU PC DW SU
WA .90.07 .08.04 .02.04

ST .06.09 .78.13 .16.13

PU .02.04 .90.07 .08.07

PC .06.05 .52.08 .12.08 .30.07

DW .02.04 .38.24 .48.25 .12.08

SU .24.18 .76.18

mean .72

detects the nearby objects’ RFID labels in a sequential man-
ner as shown in Fig. 6.
Table 2 shows the confusion matrix of activity recognition
using RFID and scene statistics sequences, respectively.
The cells of low accuracy with large standard deviation are
complementary between the two confusion matrices as fol-
lows; certain activities (e.g., walk around) are better recog-
nized with evidence from scene statistics, while other activ-
ities (e.g., prepare cereal and drink water) are better recog-
nized with the evidence from RFID sequences.

6 Conclusion

We have presented our ongoing research on hierarchical
recognition of activities in daily living. Our approach uses a
distributed multi-view vision system and RFID reader/tags
for view independence and robustness in obtaining evi-
dences which include scene statistics, object statistics, and
RFID labels. We showed that different types of evidences
better indicate different activities such as walking around
vs. preparing cereal. We are currently developing more
robust algorithms for multi-object tracking to obtain better
object statistics, and intend to investigate diverse and more
efficient graphical models.
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