
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1
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Abstract— Nature-inspired computation is receiving increasing
attention. Various Ising machine (IM) implementations have
recently been proven to be effective in solving numerous combina-
torial optimization problems including maximum cut, low density
parity check (LDPC) decoding, and Boolean satisfiability (SAT)
problems. In this paper, a novel method is presented to solve SAT
or MAX-SAT problems with a CMOS circuit implementation.
The technique solves a SAT problem by mapping the SAT
variables onto quantized capacitor voltages generated by an array
of nodes that interact through a network of coupling units. The
nodal interaction is achieved through coupling currents produced
by the coupling units, which charge or discharge capacitor volt-
ages, implementing a gradient descent along the SAT problem’s
cost function to minimize the number of unsatisfied clauses. The
system also incorporates a unique low-complexity perturbation
scheme to avoid settling in local minima, greatly enhancing the
performance of the system. The simulation results demonstrate
that the proposed SKI-SAT is a high-performance and low-energy
alternative that surpasses existing software-based SAT solvers by
significant margins, achieving more than 10 times faster solution
and over 300 times less power.

Index Terms— Combinatorial optimization problems, Ising
machine, Boolean satisfiability, SAT, CMOS, nature-based com-
puting.

I. INTRODUCTION

DIGITAL computers revolutionized the world by automat-
ing complex tasks, enabling instant communication, and

providing unmatched performance for data processing and
artificial intelligence applications. However, recent years have
seen an incredible surge in energy-intensive applications for
cryptocurrency and neural network training. In digital systems
information is represented and processed in one of the two
discrete states while analog computers process and store
information as analog values such as voltages or currents with
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inherently higher resolution enabling time and power-efficient
solutions for certain problems. The drawback associated with
analog computers is their lack of versatility, but they can
outperform digital computers in certain specific functions.
Although widespread use of analog computers for general
purpose computing is unlikely, analog computers can be a
favorable option for specific applications.

In recent years, a subset of analog computation models,
known as nature-inspired computation, has garnered attention
for providing new avenues to solve NP-hard and NP-complete
problems. Since analytical solutions don’t typically exist for
these problems, digital computers are often required to rely
on rather inefficient trial-and-error methods. An Ising machine
is an emerging nature-inspired computation model that maps
a problem into an energy space. The system naturally cre-
ates a gradient descent to the Hamiltonian function based
on its energy, allowing Ising machines to progress toward
the optimal solution with the help of random perturbations.
The system is, however, likely to settle into a sub-optimal
solution without a perturbation scheme [1]. The efficiency
of Ising machines in solving quadratic unconstrained binary
optimization (QUBO) problems has been demonstrated to be
almost a million times faster than conventional simulated
annealing [1] owing to the trivial mapping of QUBO to
Ising formula. However, functions containing higher-order
polynomials cannot be directly mapped to the quadratic Ising
machines and therefore require preprocessing. The work in [2]
demonstrates a methodology that first transforms a 3-SAT
problem into a QUBO format, which is then decomposed
into sub-problems and mapped onto a ring oscillator-based
49-spin Ising machine. However, the auxiliary spin overhead
created during the conversion of third-order terms in SAT
cost function to quadratic terms in QUBO severely limits
the size of 3-SAT problems that can be solved on a specific
size QUBO solver (e.g., a 49-spin QUBO hardware in [2]
is able to solve a 3-SAT problem with up to 20 literals
and 91 clauses only by decomposing into sub-Hamiltonians).
Therefore, supporting larger problems with more vari-
ables becomes increasingly challenging and time consuming.
Hizzani et al. [3] report on a memristor based system that
employs a Hopfield Neural Network, which eliminates the
need for order reduction for third-order polynomials present
in a 3-SAT problem. This makes the design intrinsically
compatible with polynomial unconstrained binary optimization
(PUBO) problems, particularly those involving SAT. How-
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ever, the hardware implementation of this work imposes
significant physical design constraints due to the quadrati-
cally growing word lines. This indicates that scalability for
larger problems remains a challenging issue. Furthermore,
Elmitwalli et al. [4] demonstrate how a QuBRIM system [1],
originally designed to solve MaxCUT problems, can be altered
to address higher-order combinatorial optimization problems,
including SAT and the Traveling Salesman Problem, particu-
larly for LDPC decoding, without the need for order reduction
through multi-body interactions. However, the proposed sys-
tem’s limitation lies in the nodal interactions being constrained
by the linearity of the DAC units and dynamic range for
programmable resistance, which reduces the accuracy of the
solution to a certain degree.

The proposed Salim-Köse-Ignjatovic SAT hardware solver
(SKI-SAT) offers a scheme that is not restricted by polynomial
terms, as it inherently supports polynomial terms of any
order. Additionally, the coupling precision limitations of the
previous studies are no longer a concern for SKI-SAT, thanks
to the binary nature of its coupling. Finally, SKI-SAT is easily
scalable and cost-efficient thanks to the compact footprint,
which is compatible with standard CMOS processes and can
accommodate hundreds or even thousands of clauses.

II. BACKGROUND

Solving a SAT problem can be described as answering the
question of whether a boolean (i.e., logic) function evaluates
true for at least one combination of the input variables.
Despite the simple definition, SAT solvers have widespread
applications in computer science, including electronic design
automation, hardware verification [5], and cryptanalysis [6],
making them a focal point of research. SAT is formally an
NP-complete problem, which means that it is highly likely
that its general solution requires worst-case exponential time.
Modern SAT solvers use branching heuristics and dynamic
programming to guide their search through the exponential
space of possible solutions. Although such techniques are
often successful in practice, there remain many problems that
resist solution. Continuous advancements in algorithms and
hardware have been improving SAT solver performance each
year. However, the inherent computational complexity of these
problems often leads to lengthy solution times, constrained by
the limits of exponential-time algorithms in a search space as
broad as 2N combinations for an N variable function. In recent
years, various Ising machine implementations have emerged to
solve QUBO problems, such as MaxCUT problems. However,
not all NP optimization problems can be effectively expressed
in QUBO form; many include cubic or even higher-order
terms. These problems with higher-order terms require addi-
tional hardware, potentially reducing the effectiveness of an
Ising machine when attempting to map such problems to its
architecture.

A SAT problem is typically presented in conjunctive normal
form (CNF), where the CNF of a Boolean function contains a
conjunction of clauses. When each clause consists of logical
disconjunction of exactly k literals, a SAT problem is typically
termed as k-SAT problem. For example, in a 3-SAT problem
(i.e., k = 3), the literals in each of the NC clauses may take

any one of the N variables or their complements, as shown in
Eq. (1).

ℓm,k ∈ {X1, X2, . . . , X N , X1, X2, . . . , X N },

where 1 ≤ m ≤ NC , 1 ≤ k ≤ 3 (1)

3-variable clauses are created by a disjunction of any three
literals as shown in Eq. (2)

Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) (2)

The CNF form F of a 3-SAT problem can then be written
as shown in Eq. (3)

F(X1, X2, . . . , X N ) = C1 ∧ C2 ∧ . . . ∧ CNC (3)

A generalization of the SAT problem described above is
the Maximum Satisfiability problem (or MAX-SAT problem).
Unlike a SAT problem which asks whether there is at least
one assignment of all variables X i , 1 ≤ i ≤ N that renders all
clauses C j , 1 ≤ j ≤ NC true, a MAX-SAT problem asks for
an assignment of variables X i that maximizes the number of
clauses that are made true with that assignment.

III. THEORETICAL ANALYSIS, SYSTEM DESIGN, AND
CIRCUIT LEVEL IMPLEMENTATION

A. Theoretical Analysis

To construct the SKI-SAT solver machine, which refers
to a CMOS circuit topology that minimizes the number of
unsatisfied clauses in F from Eq. (3), first an appropriate
penalty or cost function is derived. For this purpose, a negation
of the CNF form is considered, as shown in Eq. (4), where
the satisfiability of the CNF form F is converted to the
dissatisfiability of a logical Boolean function F .

F(X1, X2, . . . , X N ) = C1 ∨ C2 ∨ . . . ∨ CNC (4)

The negated CNF form F is then converted into a penalty
or cost function H by replacing the logical OR and AND
operations in F with addition and multiplication operations,
respectively. Additionally, complemented variables Xk are
replaced with (1 − Xk). By way of example, Eq. (5) shows
the conversion of F containing 3 clauses and 6 variables into
the corresponding penalty function H .

F = (X1 ∨ X2 ∨ X5) ∧ (X3 ∨ X4 ∨ X5) ∧ (X6 ∨ X4 ∨ X2)

negation
−−−−→

F = (X1 ∧ X2 ∧ X5) ∨ (X3 ∧ X4 ∧ X5) ∨ (X6 ∧ X4 ∧ X2)

convert to cost
−−−−−−−−→

H = X1 X2 X5 + X3 X4 X5 + X6 X4 X2

= (1 − X1)X2(1 − X5) + X3 X4(1 − X5)

+ X6(1 − X4)(1 − X2) (5)

The next step in constructing the SKI-SAT circuit topology
that minimizes penalty function H is to derive a gradient
vector of H within the Hamming space {0, 1}

N spanned by
variables Xk, 1 ≥ k ≥ N , as shown in Eq. (6).

∇ H =

[ ∂ H
∂ X1

∂ H
∂ X2

. . .
∂ H
∂ X N

]T
(6)
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Following example in Eq. (5), the gradient of H becomes:

∇ H =


−X2(1 − X5)

(1 − X1)(1 − X5) − X6(1 − X4)

X4(1 − X5)

X3(1 − X5) − X6(1 − X2)

−(1 − X1)X2 − X3 X4
(1 − X4)(1 − X2)

 (7)

Alternatively, partial derivatives of the cost function may be
expressed in the following form:

∇ H =



−X2 X5
X1 X5 − X6 X4

X4 X5
X3 X5 − X6 X2

−X1 X2 − X3 X4
X4 X2

 (8)

Since all variables in Eq. (8) are logical (i.e., taking values
0 or 1), the multiplicative terms can be replaced with AND
logic gates as shown in the following Eq. (9):

∇ H =



−X2 ∧ X5
X1 ∧ X5 − X6 ∧ X4

X4 ∧ X5
X3 ∧ X5 − X6 ∧ X2

−X1 ∧ X2 − X3 ∧ X4
X4 ∧ X2

 (9)

Or alternatively, with NOR gates as shown in Eq. (10).

∇ H =



−X2 ∨ X5

X1 ∨ X5 − X6 ∨ X4

X4 ∨ X5

X3 ∨ X5 − X6 ∨ X2

−X1 ∨ X2 − X3 ∨ X4
X4 ∨ X2


(10)

An N-dimensional real vector v⃗ is defined, which resides
in a unit hypercube �N , meaning that for each element vi of
v⃗, vi ∈ [0, 1]. In addition, a surjective function f : �N −→

{0, 1}
N is defined, such that the real vector v⃗ is mapped onto

a Hamming vector X, following the mapping rule in Eq. (11).

X = f (v⃗) s.t. X i =

{
0, if vi < 0.5
1, if vi ≥ 0.5

, 1 ≤ i ≤ N

(11)

By following the construction rule d
dt v⃗ = −α∇ H , a set

of differential equations (12) that govern the operation of
SKI-SAT circuit is defined. Eq. (12) describes the gradient
decent capability of SKI-SAT in minimizing the penalty func-
tion H .

dvi

dt
= −α

∂ H
∂ X i

, 1 ≤ i ≤ N (12)

Following the example of SAT problem with 3 clauses
and 6 variables defined in Eq. (5), the corresponding set of
differential equations is shown in Eq. (13).

dv1

dt
= −α

∂ H
∂ X1

= +αX2 ∨ X5

dv2

dt
= −α

∂ H
∂ X2

= −αX1 ∨ X5 + αX6 ∨ X4

dv3

dt
= −α

∂ H
∂ X3

= −αX4 ∨ X5

dv4

dt
= −α

∂ H
∂ X4

= −αX3 ∨ X5 + αX6 ∨ X2

dv5

dt
= −α

∂ H
∂ X5

= +αX1 ∨ X2 + αX3 ∨ X4

dv6

dt
= −α

∂ H
∂ X6

= −αX4 ∨ X2 (13)

The gradient descent nature of the system described by
Eqs. (12) and (13), and its ability to minimize the cost function
H (i.e., enforcing the number of dissatisfied clauses Ci in
F to be non-increasing over time) can be demonstrated by
calculating the rate of change of H as

d H
dt

=

N∑
i=1

∂ H
∂ X i

d X i

dt
= −

1
α

N∑
i=1

dvi

dt
d X i

dt
≤ 0 (14)

Since the rate of change of real variables vi and their cor-
responding logic variables X i are of the same polarity, the
summation term to the right of Eq. (14) is non-negative. The
resulting rate of change of H is therefore non-positive (i.e.,
cost function H is non-increasing over time).

The constant α in Eq. (12) could be chosen to be equal
to Ire f /C , where Ire f is the reference/constant current and
C is a capacitance value. Rearranging Eq. (12) produces a
set of equations that describe the current values into a set of
capacitors Ci as

ICi = C
dvi

dt
= −Ire f

∂ H
∂ X i

, 1 ≤ i ≤ N (15)

where voltage vi on a capacitor Ci represents its state, which
can range from 0V to Vdd or a normalized range from 0 to 1.
The corresponding logical variable X i is produced at the
output of a comparator circuit which compares vi against a
threshold Vth which is typically Vdd/2 - or normalized to 0.5,
as previously described in Eq. (11). As an example, a SKI-SAT
circuit solving a 3-SAT problem with 6 variables in 3 clauses
defined in Eq. (5) can be described as

IC1 = −Ire f
∂ H
∂ X1

= +Ire f X2 ∨ X5

IC2 = −Ire f
∂ H
∂ X2

= −Ire f X1 ∨ X5 + Ire f X6 ∨ X4

IC3 = −Ire f
∂ H
∂ X3

= −Ire f X4 ∨ X5

IC4 = −Ire f
∂ H
∂ X4

= −Ire f X3 ∨ X5 + Ire f X6 ∨ X2

IC5 = −Ire f
∂ H
∂ X5

= +Ire f X1 ∨ X2 + Ire f X3 ∨ X4

IC6 = −Ire f
∂ H
∂ X6

= −Ire f X4 ∨ X2 (16)

B. System Design and Circuit Level Implementation

In order to construct the system governed by the described
differential equations in Section III-A, certain circuit topolo-
gies and their objectives are presented in this section. The
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Fig. 1. Example CMOS circuit for a computational node in SKI-SAT. The
reset voltage VC M is typically chosen to be equal or close to threshold Vth
of the comparator.

Fig. 2. SKI-SAT top-level architecture with dimensions given for 50 literals
and 218 clauses.

SKI-SAT circuit topology consists of N nodes for an N -
variable function. Each node comprises a capacitor with
voltage vi across its terminals, an input to supply charging or
discharging current to the nodal capacitor, and a comparator.
The comparator compares the capacitor voltage vi against
a threshold voltage Vth , which could be set in the middle
between the power rails. This comparison produces a binary
output variable X i , which can be 0V or Vdd , along with its
complement X i . Additionally, a reset switch is placed between
VC M and the nodal capacitor, allowing the nodal variables
to be initialized to the middle rail before the system begins
operation. An example schematic of the SKI-SAT node is
shown in Fig. 1 where the comparator is implemented as a
simple inverter.

Moreover, the two outputs (X i and X i ) from this compu-
tational node are connected to a programmable Variables-to-
Clauses (V2C) array containing N × NC units, as shown in the
top-level circuit architecture of Fig. 2. A detailed discussion
about the physical design is found in Section III-C.

The V2C array provides digital outputs to clause formation
and coupling control signal generation array (CFCCS) of size
1× NC to form clauses and generate control signals associated
with these clauses. Each unit cell in the V2C array contains
memory elements to store the polarity bit as well as an address
applied to the input of a digital address decoder. If the variable
X i or its complement X i is present in the C j clause of the
CNF form F , cell at the (i, j) location in the V2C array is
activated to connect the variable to the clause C j . Depending
on the polarity bit stored in the memory cell of the V2C
unit, either variable X i or its complement X i is selected to
be connected to the CFCCS array. The selection between a
variable X i or its complement X i could be achieved through
a digital multiplexer (MUX) which is controlled by the polarity
bit. The V2C unit further includes a set of output buffers that
connect the variable selected through the polarity selection
MUX to one of the k readout lines. k is the number of literals
in the clause C j that run through all rows of the j th column and
are connected to the inputs of j th CFCCS unit. The CFCCS
array is preferably located at the periphery of the V2C array
as illustrated in Fig. 2.

The output buffer in the V2C unit can be implemented with
a total of k 3-state inverter-based buffers with their inputs
connected to the output of the polarity selection MUX and
with output-enable (OE) ports connected to outputs of the
address decoder. The digital address decoder located within
the V2C cell converts the address stored in the memory of the
V2C unit into at least k control signals connected to the OE
ports of the output buffer such that at most one of the 3-state
inverter-based buffers is enabled at the time. Conversely, if a
literal is not present in a clause, none of the OE ports are
activated and the variable present at the input of the V2C cell
remains disconnected from a clause. Fig. 3 shows an example
circuit of the V2C unit corresponding to a clause with three
literals. The unit contains 3 memory elements e.g., latches with
access switches. One of the memory elements is dedicated to
storing the polarity selection bit Ds , as well as the 2-bit address
bits D0 and D1 for readout line selection, as shown in the
schematic. A 2-to-4 address decoder is used to either connect
the variable or its complement to one of the three readout
lines L1, L2, and L3, or allow the unit and its corresponding
variable to remain unconnected to any clause in the CFCCS
array.

The CFCCS array contains NC units and each unit has a
total of k inputs. These inputs are connected to the k readout
lines of the corresponding j th column in the V2C array. Each
unit in the CFCCS array contains a total of k NOR logic gates,
with one NOR gate for each literal in clause C j . Every NOR
gate has k −1 inputs, which are connected to the inputs of the
CFCCS unit. A k−1 input NOR gate corresponding to the mth

literal in clause C j takes all literals at its inputs except the
mth literal. In other words, the inputs to a k − 1 input NOR
gate corresponding to the mth literal are connected to all the
readout lines from the j th column in the V2C array, except
the readout line corresponding to the mth literal.

Each NOR gate in the j th column produces a digital
output Z j,m (where 1 ≤ m ≤ k) which is connected to
Clause-to-Coupling-Current (C2CC) array of size N × Nc.
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Fig. 3. Example unit element of the Variables-to-Clauses N × NC array for
a 3-SAT implementation.

Fig. 4. The CFCCS unit with clause perturbation logic and perturbation
signal P , satisfiability signal T j and early termination signal ET S.

Each unit in the CFCCS array contains additional logic that
receives outputs from the NOR gates to calculate satisfiability
signal T j of clause C j . The logic producing satisfiability signal
T j can be configured so that T j is equal to logic one if C j is
satisfied (or evaluates as TRUE) or T j = 0, otherwise. For
example, in the case of a clause with 3 literals (k = 3),
the satisfiability signal T j of clause C j may be formed by
applying a 2-input NAND gate on the outputs from any
of the two NOR gates in the j th CFCCS unit as shown
in Fig. 4.

The SKI-SAT circuit described is further supplied with a
perturbation circuit that perturbs the clause formation and
coupling control signal generation logic in the CFCCS array.
The CFCCS units are also supplied with additional logic gates
(gates I4 to I7) that monitor the satisfiability signal T j and a
perturbation control signal P shared among all CFCCS units.
An example CFCCS unit employing clause-perturbation logic
is shown in Fig. 4.

To achieve perturbations in SKI-SAT, which allows for
escaping local minima in the penalty function, each time
a pulse in P is detected by the CFCCS units, all CFCSS
units whose satisfiability signals T j indicate that clause C j
is TRUE (or satisfied) generate logic zero on all of their

output lines Z j,m . As a result, all satisfied clauses during
the pulse duration in P do not contribute to the coupling
currents. Therefore, these clauses do not affect the changes
in nodal states vi . In the absence of a pulse in P , all CFCCS
units regardless of the value of their satisfiability signal T j
contribute to the coupling currents. The pulse stream P is
generated so that the start of each pulse (i.e., the rising edge
of the pulse) is random in time, while the duration of the pulse
is fixed. In addition, the pulse stream P is generated such
that the average pulse rate (i.e., number of pulses per second)
diminishes over the annealing time. Further details about the
perturbation mechanism deployed in SKI-SAT as well as a
comparison to other perturbation methods are provided in
Section IV-C.

The CFCCS units further incorporate logic gates to form
an early termination signal (ET S) which serves as a trigger
signal to sample the machine’s current state of variables and
store it as a solution found by the machine, as illustrated in
Fig. 4. To achieve this, each CFCSS unit contains a PMOS
transistor driven by the clause satisfiability signal T j which
together with the PMOS transistors from all CFCCS units and
the shared NMOS transistor loading the ETS readout line form
an NC -input NAND gate. The ETS signal is then inverted to
create ET S.

Outputs from all AND gates (a total of k outputs) in the
j th CFCCS unit are connected to corresponding j th column
of the Clause-to-Coupling-Current (C2CC) array containing
N × Nc coupling units. For example, if clause C j has three
literals (k = 3), the j th CFCCS unit produces three output
signals Z j,m where 1 ≤ m ≤ 3 that are sent to the coupling
units in the j th column of the C2CC array. A coupling unit at
(i, j) location within the C2CC array corresponds to i th node
and j th clause. The coupling units are provided with an output
supplying either a positive or negative reference current Ire f
or zero current depending on the polarity bit stored in the unit
as well as the control signal supplied by the corresponding
CFCCS units. Outputs from all coupling units in one row of
the C2CC array are connected together for current summing
and connected to the input of the node corresponding to that
row, as illustrated in Fig. 2. In addition, each coupling unit in
the C2CC array contains memory elements to store polarity
bit as well as an address for digital multiplexer. For example,
if the variable X i is present in the C j clause as the mth

literal, coupling unit at the (i, j) location in the C2CC array is
configured through its MUX to receive control signal on Z j,m
and its polarity bit is set to logic 1. In this configuration, each
time the control signal Z j,m is logic 1, the coupling unit at
location (i, j) provides a positive reference current Ire f at its
output. Otherwise, when Z j,m = 0 is received by the coupling
unit (i, j), its output current is set to zero. Likewise, in the
case when a complemented variable X i is the mth literal in
clause C j , the polarity bit stored in the coupling unit (i, j) is
set to zero and each time Z j,m = 1 is received, the coupling
unit provides a negative reference current (−Ire f ) at its output.
Otherwise, when Z j,m = 0 is received, the coupling unit
produces no current at its output. The outputs from all coupling
units in the i th row of the C2CC array are connected together
to the input of the i th node.
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Fig. 5. Clause to the coupling current (C2CC) unit for a 3-literal SAT solver
implementation.

An example schematic of the C2CC unit for 3-SAT imple-
mentation is shown in Fig. 5. In this circuit, three memory
elements retain information about the polarity of Ds and
address bits for the selection of one of the inputs Z j,m supplied
by the corresponding CFCCS unit in the j th column. The
address bits are utilized for selection through the multiplexer
I7. Depending on the polarity of Ds , either the NAND gate
I8 or I9 will be activated to pull down either P H I P or
P H I P , respectively, if Z j is set to high. When the polarity is
positive (indicating Ds is high), transistors M9 and M8 are
turned on, while M7 and M10 are turned off. This setup
connects the current source M11 to the output, leading to a
positive current at the output of the coupling unit. Conversely,
if the polarity is negative, M9 and M8 will turn off, and
M7 and M10 will turn on, thereby connecting the current
sink M12 producing a negative current at the output. In the
case where Z j is set to low, the switches M7 and M8 are
engaged and connect the current source M11 and current sink
M12 to virtual ground VC M , while switches M9 and M10 are
turned off leaving the output floating. It should be noted that
switches M7 and M8 are not required for the operation of the
coupling unit (i.e., they provide an auxiliary feature), however,
employing these switches improves the linearity and settling
speed of the current sources.

Although specific circuit parameters are not provided in
this work, the following design guidelines have been consid-
ered. The V2C and CFCCS units consist entirely of standard
cell library instances that are chosen with appropriate drive
strength to drive their respective loads with acceptable delays.
For the C2CC units and nodes, careful consideration is given to
ensure that kT/C noise remains negligible and does not affect
variable assignments throughout the annealing period. Further-
more, the current sources in the C2CC units are designed to
remain in saturation, with a target of limiting current variation
due to mismatch to a maximum of 5% standard deviation.

C. Physical Design of the System

The physical layout of a circuit requires meticulous atten-
tion to detail to minimize parasitic passive elements, such
as stray capacitance and resistances, to achieve the desired
performance goals. Additionally, the design aims to create
a compact and smart footprint for individual cells detailed
in Section III-B, ensuring they can be easily connected to
neighboring cells without requiring additional routing and
spacing. This approach facilitates the scalability of the overall
architecture. With these considerations, the following units
are designed: a V2C unit measuring 5 µm by 11.4 µm,
a CFCCS unit measuring 5 µm by 15 µm, and a C2CC
unit with dimensions of 5 µm by 10.2 µm. Together, the
V2C, CFCCS, and C2CC units form a column per clause,
with a width of 5 µm and a height equal to the number
of variables multiplied by the combined heights of the V2C
and C2CC units, plus the height of one CFCCS unit. This
configuration forms a matrix structure, with number of clause
determining the width along the X-axis, while the height of the
matrix is governed by the number of variables. For example,
a SKI-SAT solver with 50 nodes and 218 clauses would have
a width of NC · 5 µm, resulting in 1.09 mm. The height
would be N · (11.4 + 10.2) µm + 15 µm, equaling 1.095 mm.
Additionally, a SKI-SAT computational node is designed with
dimensions of 85 µm × 10.2 µm, with the nodes aligned to
match the height of the C2CC units. The physical architecture
and dimensions detailed here are visualized by the Fig. 2.
Furthermore, Eq. (17) can be used to approximate the area
requirements of a SKI-SAT solver containing N variables and
NC clauses:

A(N , NC ) = N · Anode

+ (N × NC ) · (AV 2C + AC2CC )

+ NC · AC FCC S (17)

For instance, a 50 variable and 218 clauses would occupy
an area of 1.2369 mm2. The perturbation signal gen-
erating circuit proposed in [7] takes up an additional
0.0013 mm2 bringing the total active area for a complete
system to 1.2382 mm2 excluding the auxiliary units for
programming and communicating with the circuit.

Furthermore, a physical implementation of SKI-SAT in
CMOS will introduce certain nonidealities. Two primary chal-
lenges that could limit the system’s performance as it scales to
hundreds or even thousands of variables are expected. The first
is the propagation delay within the closed loop of the signal
traveling from the nodes to the V2C, then to the CFCCS and
C2CC, and finally back to the nodes. This delay will grow with
a greater number of nodes and clauses. In order to address the
growing propagation delay, the overall speed of the system can
be slowed down proportionally by reducing coupling current
Ire f or increasing nodal capacitance such that the propagation
delay continues to remain negligible. So with the penalty of
increasing the annealing period (i.e. the solution time), the
delay problem should be alleviated. The second problem we
expect to deal with at larger scale is the mismatch between
current mirrors in the C2CC units and threshold variation of
nodal comparators. The latter can be readily addressed by
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auto-zeroing methods. The former will require a calibration
scheme that reduces the mismatch variations to an acceptable
level that does not impede the solution’s success rate.

IV. SIMULATION RESULTS AND DISCUSSION

This section presents the simulations performed on the
proposed system and compares its performance to related
work. The performance of the proposed design is evaluated
both at the circuit and behavioral levels: the former ensures
the circuit’s integrity, while the latter offers insights into the
statistical performance of the system at larger scales.

A. Circuit-Level Simulation

The circuits described in the previous section are imple-
mented in the Cadence Virtuoso environment using the TSMC
65nm process design kit. To reduce netlist size and simulation
complexity, ideal components are used for the memory units
(i.e., the memory latches in V2C unit of Fig. 3 and C2CC unit
of Fig. 5 are replaced with DC voltage sources). Since memory
does not affect system performance and is merely required for
programmability (i.e., it is accessed only once to program the
SAT problem onto the hardware), using ideal components does
not compromise the reliability of the simulations. A uniform
random 3-SAT Boolean function consisting of 50 literals
and 218 clauses is chosen from the SATLIB [8] to evaluate
the performance of the SKI-SAT circuit solver. SATLIB [8],
a widely adopted benchmark, is utilized in this paper due to
its incorporation of hard randomly generated formulas; such
formulas arise when the ratio of clauses to variables is at a
certain critical ratio [9]. In the following step, a circuit with
50 nodes, 50 by 218 units of V2C and C2CC, and 218 units of
CFCCS is instantiated and programmed using a SKILL code
to implement the function.

The circuit is initialized by resetting the nodal capacitors
at each node to the common mode voltage, which is half
the power supply – 0.6V for this process. The top strip in
Fig. 6 illustrates the potential difference across the nodal
capacitors, starting from the middle rail and progressively
diverging toward either the ground or power supply levels,
with the exception of a few variables, which remains in the
vicinity of the middle rail while being slightly higher or lower
than the comparator’s approximate threshold of 0.6V.

This behavior is expected and commonly observed in sim-
ulations, as some variables may cease charging or discharging
once the system reaches a stable equilibrium. The middle strip
of Fig. 6 depicts the quantized outputs of the nodal capacitors,
which correspond to the digital values of the literals. Finally,
the bottom strip shows the number of false clauses gradually
decreasing, eventually reaching zero, indicating that the func-
tion is satisfied with the final combination of ‘1’s and ‘0’s
present at the nodal outputs.

Although SKI-SAT is designed to decrease the number
of unsatisfied clauses over time through its gradient decent
nature, perturbations are needed to escape local minima in
search for a variable assignment that maximizes the number
of satisfied clauses. The particular perturbation scheme used
in SKI-SAT introduces a “don’t care” state, during which the

Fig. 6. A circuit-level simulation of SKI-SAT finding a solution for
uf50-218/05. The top strip illustrates the evolution of nodal capacitor voltages,
with most converging to either power rail. The middle strip displays the
corresponding digitized literal values derived from these voltages. The bottom
strip depicts the cost function plummeting to global minima indicating that
the current variable assignment satisfies the function.

currents from satisfied clauses are disconnected from nodal
capacitors. Temporarily disconnecting the satisfied clauses
from contributing to the charging currents effectively allows
the system to enforce an assignment of variables that would
satisfy the remaining unsatisfied clauses with disregard to the
already satisfied clauses, which might push the system to a
higher energy state. The bottom strip in Fig. 6 shows that the
number of unsatisfied clauses does not decrease monotonically,
but occasionally increases to a higher energy level during the
“don’t care” phases. This behavior is critical to maintain a
robust solver that avoids getting stuck at local minima, which
is a common issue for all stochastic solvers.

For this particular function, the system reaches the global
minimum within 15 ns, consuming an average current of
24.23 mA during the 50 ns annealing period from a 1.2 V
supply, resulting in 29.07 mW power demand, exclud-
ing the memory elements and perturbation unit. When the
pseudo-random number generator circuit described in [7] is
used to generate the perturbation signal P , the total active
power requirement increases to 30.21 mW. The breakdown of
contributions from the major blocks is illustrated in Fig. 7. The
majority of energy consumption occurs before the machine
settles into a local or global minimum. During this period,
variables rapidly change values to satisfy more clauses. The
machine reaches the global minimum around 13 ns, marked by
the most significant switching activity observed in Fig. 6. After
this, the current consumption of the nodes and V2C becomes
insignificant, as literals no longer change values, eliminating
the need for current drawn by the inverters within the nodes
and V2C units. Meanwhile, the C2CC continuously supplies
current to the nodal capacitors to maintain the found solution.
The ETS shown in Fig. 4 can flag the solution is found and
halt the system before the annealing period is over which
further enhances the power efficiency by removing the need
for replenishing the nodal capacitors.
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Fig. 7. Break down of power ratings of individual blocks while solving the
uf50-218/05.

Fig. 8. SATLIB instance uf20-91/014 settling into a correct assignment.
During the first 10 nanoseconds of the simulation, the system exhibits
rapid switching activity as it searches for the global minimum. Random
perturbations, which occasionally interrupt the gradient descent, prevent the
cost function from decreasing monotonically.

A similar experiment is run on the SATLIB [8] instance
uf20-91/014 for the purposes of investigating the probabilistic
characteristics of the SKI-SAT on a commonly used bench-
mark item. Fig. 8 shows the 20 variables diverging and
eventually settling into one of the global minima, thereby find-
ing a satisfying assignment. For brevity, the initialization phase
during the first 10 ns is omitted. Stochastic solvers inherently
possess a probabilistic chance of solving a given function,
and SKI-SAT is not an exception. To analyze the statistical
properties of such solvers, it is necessary to perform a large
number of runs. Circuit simulations, however, are notoriously
computationally expensive and call for realistic simplifications.
With this in mind, circuit simulations are only carried out
on SAT problems with a smaller number of variables and
a smaller number of runs. The obtained statistical results
are used to verify the validity of the SKI-SAT behavioral
model developed in MATLAB, which is then used to estimate
SKI-SAT performance for large scale SAT problems.

Fig. 9 demonstrates five successful evaluations and five
unsuccessful evaluations out of ten iterations with differ-

Fig. 9. Penalty function over time for a 20-variable 3-SAT instance
(uf20-91/014) as solved by SKI-SAT solver for 10 iterations resulting in 50%
success rate. Top trace: 5 iterations resulting in a successful evaluation - i.e.,
global minimum corresponding to zero unsatisfied clauses is found. Bottom
trace: 5 unsuccessful iterations where the machine remains in the vicinity of
local minima.

ent perturbation sequences for the uf20-91/014, resulting
in a success rate of 0.5 for SKI-SAT for this particular
function.

Furthermore, simulations show that the absence of per-
turbations causes the solver to become stuck in a local
minimum due to the greedy gradient descent even when the
transient noise is included in simulations. This observation
highlights the importance of random perturbations to system
performance. In addition, including the transient noise in
simulations do not change the success rate, demonstrating
the proposed circuit’s resilience against inherently present
electronic noise. Further, certain instances from SATLIB are
quite trivial such that the correct solution is found rapidly
without any perturbation. However, such instances are rare and
unlikely to exist for instances with larger energy landscapes
that contain far more literals and clauses.

B. High-Level Model

The SKI-SAT behavioral model is implemented in
MATLAB as a fixed-step solver with discrete states. The fixed
time step of 1t = 20 ps is chosen for this experiment. This
value is empirically determined to balance numerical stability
and computational efficiency. It ensures that the cost function
during gradient descent (i.e., the number of unsatisfied clauses)
remains stable and monotonically non-increasing, addressing
potential numerical instability associated with the Forward
Euler method [10]. Additionally, the chosen time step is not
excessively small, avoiding prohibitively high simulation costs.
In each time step, discrete voltage values on nodal capacitors
are incremented or decremented by an integer multiple of
1V . Assuming the nodal capacitance value of 200 fF and
a reference current of 10 µA (i.e., current produced by the
current source M11 and current sink M12 of the C2CC unit
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Fig. 10. Solution histogram for 1,000 iterations of SKI-SAT MATLAB model
solving uf20-91/014 with 45.1% success rate.

in Fig. 5), the voltage increment 1V is determined as

1V =
Iref × 1t

C
= 1 mV (18)

The MATLAB script starts with fetching the Boolean func-
tion and initializes two sets of variables for the analog voltage
values across the nodal capacitors and digitized outputs of the
literals. In this model, the capacitor voltages are initialized to
mid-rail value of Vdd/2 with additional random component to
account for kT/C noise present in the circuit. Additionally,
a random perturbation sequence is generated, clocked at a
period of 320 ps, meaning the perturbation may change state
every 16 simulation steps, establishing a realistic clocking
speed. The code keeps track of how many clauses remain
unsatisfied at each step and records the first step where all
clauses are satisfied while simulating a system where the
capacitor voltages are updated based on the satisfaction of
clauses at every step. The model utilizes discrete voltage
increments and decrements to simulate analog behavior. The
literal values are updated by comparing the voltage values
against the threshold. The system is in greedy mode when
there is no perturbation and tries to diminish the number of
unsatisfied clauses. On the other hand, the perturbation stops
the greedy behavior and lets some of the satisfied clauses break
by aborting the inputs from satisfied clauses. The perturbation
increases the likelihood of the system eventually descending
into global minima. Running the uf20-91/014 for 1,000 repeats
with the described behavioral model reveals the success rate
of 45.1%, as shown in Fig. 10, which is fairly consistent with
the 50% success rate obtained through circuit simulations.

C. Perturbations in SKI-SAT

A key feature of the SKI-SAT is related to how it escapes
local minima through the utilization of random perturbations.
The primary goal of perturbation is to allow the system
to occasionally choose a random path through the energy
landscape, which does not align with the steepest gradient
descent direction and does not necessarily lead to a reduc-
tion in the number of unsatisfied clauses. The SKI-SAT
employs an highly-effective and resource-efficient solution to
achieve this through the use of a single and global random

TABLE I
TRUTH TABLE OF CFCCS UNIT SHOWING INPUTS P , L1 , L2 , L3 ,

AND CORRESPONDING OUTPUTS T j , Z j1 , Z j2 , AND Z j3

(or pseudo-random) signal P . As shown in Fig. 4, the CFCCS
units generate coupling signals Z j,m either to change variable
assignments to achieve satisfiability or, if only one variable
satisfies the clause, to maintain its current state. When a pulse
is detected at P , the coupling signals Z j,m for satisfied clauses
cease, allowing only unsatisfied clauses to generate coupling
signals. During this phase, some of the satisfied clauses are
expected to become unsatisfied while previously unsatisfied
clauses will turn into satisfied, which will ultimately assist the
system in finding the global minimum. The truth table for the
CFCCS unit that summarizes the function of the perturbation
signal P is depicted in Table I. The perturbation signal P is
configured such that the perturbation pulse length is constant
(e.g., 320 ps) and the pulse density (i.e., probability of entering
perturbation mode) decays linearly over time.

In order to demonstrate the significance of the perturba-
tions to system performance, various perturbation scenarios
have been considered. A SATLIB instance, specifically
uf50-218/0100, is simulated using the MATLAB model 1,000
times with three different approaches. First, when no per-
turbations are introduced forcing the machine to rely solely
on its gradient descent in search for a global minimum,
the success rate was quite low, with only 2 successful runs
out of 1,000. Second, an alternative perturbation strategy is
implemented, where 8mVRM S Gaussian-distributed noise is
randomly injected into the nodal capacitors. The RMS value
of 8mVRM S for injected noise is determined as optimal to
maximize the success rate in this experiment. This approach
improves the outcome, yielding 5 successful cases with zero
unsatisfied clauses at the end of the annealing periods. Finally,
with SKI-SAT’s own perturbation mechanism, a success rate of
29.3% is achieved. The efficiency of the SKI-SAT perturbation
as compared to the alternative method and the no-perturbation
case is illustrated in Fig. 11.

D. Performance Comparison

A number of selected benchmark instances from SATLIB
are used for comparison between a SAT solving IM [2], a hard-
ware implementation of AmoebaSAT [11], WalkSAT [12],
and SKI-SAT. AmoebaSAT [13] is a bio-inspired algorithm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2025 at 18:45:16 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 11. SKI-SAT perturbation is effective in improving the success rate.

that has been demonstrated to solve SAT problems using
nanoelectromechanical devices. Hara et al. [11] report the
clock frequency and average number of cycles required for
solution over 100 repeats of an FPGA implementation of
AmoebaSAT. The provided information allows the calculation
of the total time to solution (TtS) by multiplying the clock
period by the average number of cycles. Furthermore, the
latest version of the WalkSAT solver, found in the GitLab
repository [14], is executed with the default settings on an
Apple Silicon M1 CPU with 8 GB of RAM. The WalkSAT
algorithm sets a predefined number of steps, known as the
cutoff number, after which it either finds a solution or exits the
iteration and restarts with a new initial assignment. Sweeping
the cutoff parameter shows that the default cutoff setting
provides a good balance. The instances tested for this paper
neither suffer from a low cutoff rate, which leads to a low
success rate, nor from an excessively large limit that causes the
solver to get stuck in a cycle, taking millions of flips to escape
without success. However, it is not guaranteed that WalkSAT
will find a solution in every trial. Therefore, it is necessary
to calculate the TtS in a way that accounts for unsuccessful
cases. The number of repetitions required to solve a function
with a 99% probability given a certain success rate (S R) is
determined as

N99% =

⌈
log10(0.01)

log10 (1−S R)

⌉
(19)

The average time per assignment multiplied by the number of
runs needed to solve an instance with 99% probability is used
to estimate TtS for WalkSAT as shown in [15]. Lastly, the
SKI-SAT behavioral model in MATLAB is employed to solve
the same instances. The simulations assume a 300 ns annealing
period, a 15 µA reference current, and a 320 ps perturbation
clock period, with the probability of entering perturbation
mode decreasing from 90% to 50% during the annealing
period. This model is used to project solution times for
SKI-SAT, taking into account the success rate in the same
manner as for WalkSAT. Table II summarizes the benchmark-
ing results for the four methods.

The SKI-SAT outperforms the advanced WalkSAT, achiev-
ing solution times that are more than 10 times faster.
In addition, a crucial figure of merit to compare different

TABLE II
COMPARISON OF TTS FOR HW AMOEBASAT, WALKSAT, AND

SKI-SAT FOR DIFFERENT BENCHMARKS, IN UNITS OF µS

solvers is the energy to solution (EtS). EtS is determined
by multiplying the time to solution (TtS) with the average
power demand (P) to determine the energy required to solve
a function as

Et S = T t S × P (20)

While WalkSAT solvers executed on von Neumann com-
puting platforms consume energy on the order of Watts,
the SKI-SAT circuit described in Section IV-A consumes
about 14.27 mW (including perturbation sequence generation
logic [7]) while solving the uf20-91/014 3-SAT instance.
Apple’s M1 CPU consumes about 7.5 W of power while
executing the WalkSAT solver for the same instance, indicating
hundreds of times power efficiency improvement. In order to
estimate the power consumption, the powermetrics feature [16]
is used to sample the average power drawn by the CPU
with certain intervals. The idle CPU power is then subtracted
from the CPU power observed while WalkSAT was running.
It should be noted the EtS is slightly better when the CPU
is operated in low power mode, however, this case yields a
curtailed performance in terms of TtS. Consequently, the EtS
figure of merit for SKI-SAT is up to thousands of times better
than that of WalkSAT, offering a high-performance and low-
power hardware alternative.

To further corroborate performance of SKI-SAT, partic-
ularly from a statistical perspective, and enable a broader
comparison with existing published work, SKI-SAT is tested
on 100 instances of uf20, uf50, uf100, and uf150 from
SATLIB [8] with every instance run 1000 times. Fig. 12
shows the median TtS is 1.2 µs for 20 variable instances
and increases to 68.7 µs for 150 variables, shown with corre-
sponding inter-quartile ranges (IQR). Although the observed
TtS growth in this result appears polynomial rather than
exponential, this is contributed to the limited sample size (i.e,
100 instances per batch) and the small problem sizes used
in the experiment. An exponential growth trend is expected
instead, consistent with all known software or hardware based
solvers for SAT problems with the constraint density NC/N
around critical value, as proved by Karp et.al [17] and empir-
ically verified in [9] and [18]. A similar trend is observed in
EtS which starts from single-digit nJ for 20-variable instances
and climbs to µJs for 150-variable instances.

The presented SKI-SAT performance and scalable architec-
ture merits a detailed comparison with existing work in the
literature. Table III offers extensive studies with custom inte-
grated circuit implementations that summarize the hardware
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TABLE III
COMPARISON OF SAT SOLVERS

Fig. 12. Median TtS values shown in the top plot are calculated across
batches of 100 instances from the SATLIB benchmark sets [8], which consist
of problems with 20, 50, 100, and 150 variables. Each of the SAT instance
in a batch with TtS corresponding to the median value is then simulated in
Cadence environment to estimate power and corresponding EtS as shown in
the bottom plot. Due to limited computational resources preventing circuit
simulation of 150-variable problems, the EtS value for 150 variables was
extrapolated using a second-order polynomial fit based on the known data
points at 20, 50, and 100 variables. The shaded area in both plots represent
the interquartile range (25–75%), while the markers denote the median for
each problem size.

and performance specifications. The TtS and EtS values are
derived from the plots and data provided in the referenced
papers, as these metrics were not always explicitly reported.
These values are considered key figures of merit for this
study. For instance, while SKI-SAT consumes more power
per iteration than [3] for 50-variable instances, its significantly
shorter TtS results in a much lower EtS, reflecting the energy
required to reach a solution with 99% probability.

V. CONCLUSION

A new power-efficient hardware-based SAT solver,
SKI-SAT, is proposed in this paper that is capable of solving
problems with more than quadratic terms and optimized for
seamless CMOS implementation. The work demonstrates a

highly scalable architecture that inherently supports third-order
polynomials found in SAT problem’s cost functions. The
circuit implementation validates the architecture as an
effective solution for SAT problems, requiring over 300 times
less power as compared to software-based solvers such as
WalkSAT. Also as compared to WalkSAT, the behavioral
model shows that SKI-SAT achieves, at least 10-fold reduction
in solution time for the selected benchmark instances. Finally,
the key performance metric, energy to solution (EtS), is orders
of magnitude better than that of conventional SAT-solving
algorithms. In conclusion, the proposed SKI-SAT solver
demonstrates significant improvements in solution time
and power efficiency while supporting seamless CMOS
implementation.
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with ATEK Microwave, İstanbul, and held an intern-
ship position with Advanced Micro Devices (AMD),
Rochester, NY, USA. His research interests include
analog and RF integrated circuit design, Ising
machines, and combinatorial optimization problems.

Bart Selman (Member, IEEE) received the Ph.D.
degree from the University of Toronto. He is cur-
rently a Professor of computer science with Cornell
University. He previously was with AT&T Bell
Laboratories. He has (co-)authored over 100 pub-
lications, including six best paper awards. His
papers have appeared in venues spanning Nature,
Science, Proceedings of the National Academy of
Sciences, and a variety of conferences and journals
in AI and computer science. His research inter-
ests include computational sustainability, efficient

reasoning procedures, planning, knowledge representation, and connections
between computer science and statistical physics. He is a fellow of American
Association for Artificial Intelligence and a fellow of American Association
for the Advancement of Science. He has received the Cornell Stephen Miles
Excellence in Teaching Award, the Cornell Outstanding Educator Award, the
NSF Career Award, and the Alfred P. Sloan Research Fellowship.

Henry Kautz (Member, IEEE) received the
A.B. degree from Cornell University and the
Ph.D. degree from the University of Rochester.
From 2018 to 2022, he was the Division Director
for Information and Intelligent Systems (IIS) of the
National Science Foundation. He was the Founding
Director of the Goergen Institute for Data Science,
University of Rochester. He is currently a Professor
of computer science with the University of Virginia,
Charlottesville. His research interests include prac-
tical algorithms for solving worst-case intractable

problems in logical and probabilistic reasoning, pervasive healthcare appli-
cations of AI, and social media analytics. He received the 2018 ACM-AAAI
Allen Newell Award for career contributions that have breadth within com-
puter science and that bridge computer science and other disciplines.

Zeljko Ignjatovic (Member, IEEE) received the
B.S. degree in electrical engineering from the Uni-
versity of Novi Sad, Serbia, in 1999, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Rochester,
Rochester, NY, USA, in 2001 and 2004, respectively.
He is currently an Associate Professor of electrical
and computer engineering with the University of
Rochester. His research interests include analog and
mixed-signal circuit design, development of analog-
to-digital converters, image sensors, CMOS-based

Ising machines, radar and ultrasound imaging techniques, and related signal
processing methods.

Selçuk Köse (Member, IEEE) received the B.S.
degree in electrical and electronics engineering from
Bilkent University, Ankara, Türkiye, in 2006, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Rochester, Rochester, NY,
USA, in 2008 and 2012, respectively.
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