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Abstract

Continuous-time Bayesian networks (CTBNs) (Nodelman,
Shelton, & Koller 2002; 2003), are an elegant modeling lan-
guage for structured stochastic processes that evolve over
continuous time. The CTBN framework is based on homoge-
neous Markov processes, and defines two distributions with
respect to each local variable in the system, given its parents:
an exponential distribution overwhenthe variable transitions,
and a multinomial overwhat is the next value. In this paper,
we present two extensions to the framework that make it more
useful in modeling practical applications. The first extension
models arbitrary transition time distributions using Erlang-
Coxian approximations, while maintaining tractable learning.
We show how the censored data problem arises in learning
the distribution, and present a solution based on expectation-
maximization initialized by the Kaplan-Meier estimate. The
second extension is a general method for reasoning about
negative evidence, by introducing updates that assert no ob-
servable events occur over an interval of time. Such updates
were not defined in the original CTBN framework, and we
show show that their inclusion can significantly improve the
accuracy of filtering and prediction. We illustrate and evalu-
ate these extensions in two real-world domains, email use and
GPS traces of a person traveling about a city.

Introduction
Many problems in artificial intelligence involve reasoning
about complex stochastic systems that evolve over time.
Dynamic Bayesian networks (DBNs) (Dean & Kanazawa
1989) are a popular approach, which provided a factored
representation of discrete-time processes. Unfortunately,
DBNs use a discrete temporal representation, which is awk-
ward and computationally expensive when the absolute time
of events is important and observations occur irregularly. In
such a case the granularity of each DBN time slice must
correspond to the smallest possible interval between obser-
vations. For example, if observations are usually separated
by hours but occasionally by a second, then a DBN update
must be performed every second, unless the absolute time of
the observations is to be ignored.

Continous-time Markov chains provide a way of describ-
ing discrete-state systems that evolve according to exponen-
tial time distributions, and are widely used in operations re-
search, astronomy, and biology. The most common form,
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called a homogenous Markov process, is represented by a
matrix that is quadratic in the size of the state space. A
homogenous Markov process can be projected to any real-
valued future time point with a single matrix exponential op-
eration, so updates by projection and conditioning on obser-
vations are similarly efficient.

Nodelman et al. [2002] introduced continuous time
Bayesian networks(CTBNs), which are afactored repre-
sentation of continuous-time Markov chains. As with other
graphical representations, CTBN can provide a compact rep-
resentation of a domain by making explicit many of the
conditional independence relationships between variables.
Also like other factored representations such as Bayesian
networks or DBN’s, the small size of the representation is
no guarantee that exact inference is tractable. Indeed, the
only known exact inference method for CTBNs is compila-
tion to an explicit homogenous Markov process. Nodelman
et al.present an approximate inference method based on the
clique tree inference algorithm. Space precludes description
of our own particle filtering approximation algorithm.

Beyond issues of worst-case complexity (which affect
all probabilistic representations), CTBN’s have two signif-
icant limitations: First, CTBNs are limited to modeling pro-
cesses with exponential time distributions, but other distri-
butions frequently occur in practice. Second, the only up-
date method in the original formulation of CTBNs is based
on the value of a variable at a single point in time. How-
ever, in many systems sensors operate continuously, report-
ing only when a change occurs. For example, a motion de-
tector is silent until it senses activity and a phone rings only
when an incoming call is present. When modeling these
systems it is essential to reason about evidence of the form
“variableX stayed at valuex for the entire interval[t1, t2].”
Because of the continuous nature of time, such interval up-
dates arenot equivalent to a finite series of point-based up-
dates. This second limitation is an example of the general
negative evidence problem that arises in modeling any dy-
namic system: that is, how to efficiently incorporate obser-
vations of the myriad possible events that didnot occur.

In this paper, we resolve these limitations, presenting two
extensions to the CTBN framework.

• We show how to model arbitrary transition time distribu-
tions using Erlang-Coxian approximations, while main-
taining tractable learning. We show how the censored data
problem arises in learning time distributions, and present



a solution based on expectation-maximization initialized
by the Kaplan-Meier estimate.

• We present a general method for reasoning about negative
evidence, by introducing updates that assert no observable
events occur over an interval of time. We demonstrate
that interval evidence updates can significantly improve
the accuracy of filtering and prediction.

We illustrate and evaluate these extensions in two real-world
domains. The first is a model of person’s use of email,
which can be used to predict when the person will reply to
an incoming message. The second models the pattern of
person’s movements through a city using various modes of
transportation. The model is trained on a log of GPS (global
positioning system) data, and can be used to predict the time
it takes for a user to reach locations of interest, etc.

Continuous-Time Bayesian Nets (CTBNs)
In this section, we summarize certain key notions about
continuous time Bayesian networks (CTBNs) presented
in (Nodelman, Shelton, & Koller 2002). A CTBN represents
a stochastic process over a structured state space consisting
of assignments to a set of local variables. CTBNs describe
the dynamics of the temporal evolution of this structured
state space in terms of the dependencies among the evolu-
tion of the local variables as follows.

Homogeneous Markov Process
Let X be a state variable with finite domainVal(X) =
{x1, . . . , xn} whose value changes continuously over time.
We may define the dynamics of this system in terms of aho-
mogeneous Markov process, X(t), by defining itsintensity
matrix (IM) as follows:
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specify how long the system will remain in a state, and the
other elements specify the probability of transitioning be-
tween states.

Specifically, the probability density function for the time
spent in a statexi is f(t) = qx

i e−qx
i t, with correspond-

ing distribution functionF (t) = 1 − e−qx
i t. When the

X leaves statexi, it will transition to xj with probability
qx
ij/qx

i . We can project a initial probability distribution de-
scribed by a vectorP 0

X to a future pointt by computing
PX(t) = P 0

Xexpm(~Qxt). The functionexpm(.) refers to
matrix exponentiation, and is the mathematical operation
that considers all possibletrajectoriesof X through its state
space up to timet.

Subsystems of Markov ProcessesA subsystemS de-
scribes the behavior of the process over a subset of the full
space,i.e. V al(S) ⊂ V al(X). The intensity matrix ofS,
QS , can be formed by considering only those entries from
QX that correspond to states inS. Since in general a subsys-
tem is not closed, we can form queries about when the sys-
tem the will enter or exit the subsystem, and the amount of

time spent there. This last quantity, called theholding time,
has the distributionF (t) = 1−P 0

Sexpm(QSt)~e, whereP 0
S

is the entrance distribution and~e is a column vector of ones.

Continuous Time Bayesian Networks
The joint dynamics of several local variables is captured in
the notion of theconditional Markov process, which forms
the basic building block of the CTBN framework. A con-
ditional Markov processY is an inhomogeneousMarkov
process whose IM varies as a function of the values of a
set of conditioning variables~V , referred to as the parents
of Y . For each instantitation of values~v to ~V the vari-
ableY is governed by an an intensity matrixQ

Y |~v . The
full set of matrices forY is called itsconditional intensity
matrix (CIM) Q

Y |~V
. A CTBN is then formed by compos-

ing together these local conditional processes. A graphical
structure encoding the dependencies between the variables
in the system, together with an initial distribution over this
state space, and the local CIMs for each variable completely
specify the CTBN.

The semantics of CTBNs can be understood in two terms.
The first is based on viewing the entire system as a com-
posite IM describing a homogeneous Markov process over
the joint entire state space via anamalgamationoperation
which combines all the local CIM to produce the Joint Inten-
sity Matrix. The evolution of the CTBN is then completely
specified by this Joint Intensity Matrix. The other is based
on agenerativeperspective where the CTBN is viewed as
defining a generative model over a set of events which cor-
respond to variables in the system taking on certain values
at specific times.

Erlang-Coxian CTBNs (EC-CTBNs)
Because CTBNs rely on well-behaved exponential distribu-
tions for modeling temporal distributions, they submit to
easy analytic treatment. Unfortunately, many real-world dis-
tributions can not be modeled accurately with exponentials,
thus we seek a representation which combines the benefits
of CTBNs with greater expressive power.

Our solution is to usephase-type (PH) distribu-
tions (Neuts 1981), which also obey the Markov property
and hence maintain analytical tractability. Phase-type distri-
butions have been widely used to closely approximate gen-
eral distributions and hence provide great expressiveness.
Specifically, we employ theErlang-Coxian(EC) distribu-
tion, which has the attractive property that it is described by
a small number of free parameters which are easily com-
puted in closed form.

Phase-Type Distributions
An nth-order PH distribution is specified in terms of the ab-
sorption time of a corresponding Markov chain consisting
of n states (phases), where thei-th phase has an exponen-
tially distributed holding time with rateλi. To fully spec-
ify this process one must dictate theentrance distribution,
~τ = [p01 . . . p0n], wherep0i denotes the probability that the
chain starts in phasei, and ann × n infinitesimal genera-
tor matrix, ~T , whose entries,pij , encode the probability of
transitioning from phasei to phasej. The cumulative dis-
tribution function isF (t) = 1 − ~τexpm(T t)~e. The i-th



Figure 1: Markov chain for an Erlang-Coxian distribution

component of the chain’sexit distribution, ~u = ~T · ~e, is
the probability that the final absorbing state is reached by
transitioning from the chain’si-th phase.

For many years, researchers have devised methods for ap-
proximating an arbitrary distribution,G, with a phase-type
distribution PH. We make the common assumption that
PH is a good match toG when its firstk moments equal
those ofG. Thus we wish to find values for~τ and ~T such
that the firstk moments match. Note that this search space is
very large, since we must find values forΘ(n2) parameters,
when considering PH-distributions of ordern.

Recently, (Osogami & Harchol-Balter 2003b; 2003a)
published an efficient and elegant approximation method.
Their approach is efficient because it restricts the search
to the space ofErlang-Coxian(EC) distributions — distri-
butions whose Markov chain consists ofn − 2 phase Er-
lang distribution followed by a two-phase Coxian+ distri-
bution as specified in Figure 1. Note that the ratesλ are
the same for all Erlang phases, and that the only way to
exit the chain is via the first phase of the Erlang distribu-
tion or one of the two Coxian phases. The EC distribution is
therefore completely described by just six free parameters,
(n, p, λ, λC1, λC2, pC), which can be calculated in closed
form given the first three moments of any distributionG.

Generalized Markov Processes
Let X be a random variable governed by a Markov process
whose transition intensities may vary over time (i.e., nonho-
mogenous). We can modelX(t) with ageneralized Markov
process, X̂, which is a homogeneous Markov process over
an extended state space. We construct the generalized pro-
cess by approximating each holding-time distribution of the
original process with an EC-distribution. Each atomic tran-
sition of the original processX(t) is then represented by a
subsystemof X̂.

As a first step, letGxi
denote the distribution over hold-

ing times for each valuexi ∈ Val(X) in the original pro-
cess. We now approximate eachGxi with an EC distribution
represented by a chain with phasesSxi = {xi

1, · · · , xi
Ni
},

generator matrix~T xi
and exit distribution~uxi

. The (homo-
geneous) generalized Markov process forX is defined as a
Markov process over̂X, whereVal(X̂) =

⋃n
i=1 Sxi

. The
number of states in this new process isNX̂ = |V al(X̂)| =∑n

i Ni. The dynamics of the generalized process are gov-
erned by~QX̂ , anNX̂ × NX̂ matrix, called thegeneralized
intensity matrix(GIM), which is computed by amalgamat-
ing the Markov chains~T xi and weighting the transitions be-
tween these subsystems by the exit distributions from the

respective chains.
In other words,~QX̂ containsn subsystems — one for

each possible valuexi ∈ Val(X). We call these original
values ofX, thebase valuesof the generalized Markov pro-
cessX̂. By construction, the GIM has semantics such that
(X̂ = xi

k) =⇒ (X = xi), wherexi
k is thekth state in the

underlying Markov chain forX = xi.
The GIM can now be queried in the same way that a sim-

ple intensity matrix can,e.g., in order to determine the dis-
tribution over the states in time. Given an initial distribution
P̂0, the new distribution over the states of̂X is given by
P̂t = P̂0expm(~QX̂t). Note that this posterior distribution is
over all the states of the extended process. The probability
of a particular base valuePt(X = xi) =

∑Ni

j=1 P̂t[xi
j ].

The EC-CTBN Model
We can compose generalized Markov processes in the same
manner as we did for conditional Markov processes above.
Let Y (t) be a generalized Markov process whose dynamics
are conditioned on a set of other variablesV that themselves
evolve as generalized Markov processes. Then ageneralized
conditional intensity matrix(GCIM) for Y is a set of gener-
alized intensity matrices, one for each instantiation ofbase
valuesto the conditioning variablesVi ∈ V. GCIMs enable
us to model the local dependence of one variable on a set of
other variables, in the same way that CIMs did for CTBNs.

We now define EC-CTBNs. LetX = {X1, . . . , Xk}
be a set of discrete random variables. AnErlang-Coxian
continuous-time Bayesian network(EC-CTBN) is a triple
〈P 0

X ,G,Q〉. P 0
X is a factored probability distribution over

the initial values of theXi. G is a directed graph with whose
nodes areX , andPar(Xi) denotes the parents ofXi in G.
Q is a set of generalized conditional intensity matrices con-
taining ~Q

Xi|Par(Xi) for eachXi ∈ X .

The global semantics of the EC-CTBN are understood in
terms of the amalgamation operation over the GCIMs, which
define the EC-CTBN. The Joint Intensity Matrix defined by
this operation represents aHomogeneousMarkov Process
over the extended state space that includes the states cor-
responding to the phases of the various EC-chains. How-
ever, the evolution of the probability distributions over the
extended state space, when projected onto the correspond-
ing base values, reflect the different distributions over the
holding times of the variables in their base states.

Learning EC-CTBNs
Maximum likelihood estimation (MLE) of CTBN parame-
ters is efficient due to the special nature of the exponen-
tial distribution. As described in (Nodelman, Shelton, &
Koller 2003), the parameters for a variableX can be cal-
culated from two sets of simple statistics:T [x|~v], the total
amount of timeX spent in statex, conditioned on its par-
ent variables taking on the value~v; andM [x, x′|~v], the total
number of timesX transitioned fromx to x′ for each pair of
states. Then the MLE parameters of the model are given by
q̂
x|~v = M [x|~v]/T [x|~v] and q̂

xx′|~v = M [x, x′|~v]/T [x|~v],
whereM [x|~v] =

∑
x′ M [x, x′|~v].

Extending the expressive power of CTBNs to handle gen-
eral non-exponential time distributions using hidden state is



Figure 2: Interval (i) counts towardT [X = 0 | Y = 0]; (ii)
is a censored interval associated withT [X=1 | Y =0]; (iii)
counts towardT [X=1 | Y=1].

challenging due to the infinitely-large space of possible tra-
jectories of the hidden variable. In the special case of EC
distributions, these trajectories are captured by the Markov
chain described in closed form by the six parameters de-
scribed above. Thus, at first glance, the problem of learn-
ing EC-CTBNs might appear to be solved, because the six
parameters can be estimated from the first three moments of
the data.

However, a problem arises with this simple approach, be-
cause the time that a variable spends in a state may be gov-
erned by more than one instantiation of its parents. Con-
sider the example of two Boolean variablesX andY , where
Y = Par(X). SupposeX switches to the value 1 while
Y is 0. After a whileY switches to 1 andX remains un-
changed, as shown in Figure 2. The problem is how to
account for the measurement of the interval (ii). It can-
not be directly counted inT [X = 1 |Y = 0], because it
ends whenY switched, not becauseX switched. Nor can
the union of intervals (ii) and (iii) be directly counted to-
ward T [X = 1 | Y = 0]. Furthermore, discarding measure-
ments of this form could lead to an arbitrarily-poor learned
model, since the observationdoestell us that our estimate
of q̂X=1|Y =0 should beconstrainedto account for the fact
that in this caseX did not switch beforeY . Intuitively, we
should adjust the length of (iii) to be what it would of have
been ifY had not switched first.1

The problem of handling such truncated, orcensored, data
is studied in the field of failure analysis (Crowderet al.
1994). While classic failure analysis has been concerned
with fitting censored data to simple distributions (such as
the normal, exponential, Weibull,etc.), there has been some
work on fitting phase-type distributions of fixed order to
censored data using expectation-maximization (EM) (As-
mussen, Nerman, & Olsson 1996). We generalize this ap-
proach to fit EC distributions of arbitrary order as follows.

We record the training dataDX for each variableX as
a set of tuples〈x,~v, t, c〉, wherex is a value ofX, ~v are
instantiations of the parents ofX, t is the length of the inter-
val, andc = 0 if the interval ends with a transition ofX, or
c = 1 (censored) if it ends with a transition of a parent ofX.
We then assign the weight of each censored element inDH

evenly among all the longer non-censored elements (a tech-
nique known as the Kaplan-Meier estimate), and calculate
an initial estimate of the parameters of the best EC approx-

1This problem doesn’t affect CTBNs, because of mathematical
properties specific to the exponential distribution. However, this
immunity fails when the variables can have arbitrary distributions
over holding times. See (Nodelman, Shelton, & Koller 2003).

imation of the weighted, non-censored data using Osogami
& Harchol-Balter’s algorithm. Then, in standard EM fash-
ion, the current EC approximation is used to re-estimate the
values of censored data points, and the process repeats until
convergence. The final result is used to define the general-
ized intensity matrix~QX̂ .

In order to avoid having to re-design the Osogami &
Harchol-Balter procedure to accept as input probability dis-
tributions over possible values for the censored data, one can
employ a Monte-Carlo version of EM, where the expectation
step draws a number of samples for each censored point. In
fact, in the experiments described below we found that EM
converged to same values even if each censored point was
simply replaced by its analytically derived expected value,
which led to a very efficient implementation.

Handling Evidence over Time Intervals
The second major drawback of CTBNs is their inability to
modelinterval evidence, i.e. evidence of the form “Variable
X stayed at valuexi during time interval[t1, t2].” Interval
evidence arises frequently in a variety of practical situations.
For example, a motion detector might report that no one en-
tered a room between 8:30 and 10:00AM. CTBN’s inability
stems from the semantics of homogeneous Markov process
evolution, which is described in terms of the exploration of
thetrajectoriesof variables during a given interval. The pos-
terior distributionPt = P0expm(~Qt) for an intensity matrix
~Q includes the effects of an arbitrary number of transitions
at an arbitrary number of time points in the interval[0, t].
Since this quantification over all trajectories (including those
whereX temporarily shifted away fromxi) is implicit in use
of matrix exponentiation for projection, there appears to be
no way to benefit from such evidence.

However, transforming the state space once again solves
the problem. Indeed, our solution works on both CTBN and
EC-CTBN models. The crux of the issue is the need to mea-
sure the probability mass of the subset of trajectories consis-
tent with the evidence — or equivalently, preventing proba-
bility mass from accumulating in trajectories which violate
the interval evidence. The key insight is that we can en-
force the constraintX = xi,∀t ∈ [t1, t2] by creating and
conditioning on a new variable which records whether the
observed variable,e.g., X, changed state during the interval.

Specifically, letX be a set of discrete random variables
containingX. Let ζ be a new Boolean variable; intuitively,
ζ = 0 will signify that X did not change value anywhere
in a prediction interval, whileζ = 1 indicates that there
was at least one transition. In other words,ζ partitions the
space of all trajectories overX , based on whether or notX
transitioned.

We create a new (augmented) intensity matrix, ~Qζ over
X

⋃
{ζ} as follows. Let~QX be ann × n intensity matrix

for the amalgamated system, and letX be a state variable
for which we expect interval evidence. We define~QX ’s vi-
olation matrix, ~V , to be an × n matrix whose entries,vij

are defined as follows. IfX has different values in statesi
andj of the amalgamated Markov process, thenvij equals

the ijth element of~QX otherwisevij = 0. Intuitively, ~V
records the intensity of all transitions whereX might change



value, violating the evidence. We now define the2n × 2n

augmented intensity matrix,~Qζ :

~Qζ =
[

(~QX − ~V ) ~V
~0 ~QX

]
~Qζ ’s four quadrants correspond to the transitions between

possible values ofζ. In the upper left,ζ remains zero, so
transitions which changeX are disallowed. The upper right
denotes transitions whereX changes value for the first time,
hereζ also changes from zero to one. The bottom left is all
zeros becauseζ cannot transition from one to zero. The bot-
tom right is the original intensity matrix since all transitions
are allowed onceζ = 1.

For example, consider a simple CTBN with two Boolean
nodes,X = {Y, X}, whereY is the parent ofX, andX
is the variable about which we receive interval observations.
Let the joint intensity matrix be:

~QXY =

264 −3 2 1 0
2 −4 0 2
1 0 −2 1
0 1 3 −4

375
Then the augmented intensity matrix is

~Qζ =

2666666664

−3 0 1 0 0 2 0 0
0 −4 0 2 2 0 0 0
1 0 −2 0 0 0 0 1
0 1 0 −4 0 0 3 0
0 0 0 0 −3 2 1 0
0 0 0 0 2 −4 0 2
0 0 0 0 1 0 −2 1
0 0 0 0 0 1 3 −4

3777777775
We can use~Qζ to propagate an initial distributionPt1 which
hasζ = 0. Given the posteriorPt2 , we discard any probabil-
ity mass assigned toζ = 1 and re-normalize. This maintains
the original CTBN semantics, but enforces the fact thatX
didn’t change during the interval.

Note that we need just oneζ variable to handle interval ev-
idence over an arbitrary number of variables;2 in such a case,
the semantics ofζ = 0 is thatnoneof the observed variables
changed during the interval. Furthermore, note that since
our method simply transforms a homogeneous Markov pro-
cess into one with an additional variable, it may be used with
any inference algorithm.

Experiments
Our evaluation addresses two questions. First, does the gen-
erality and expressive power of our extension to EC distri-
butions provide benefits on real problems? Second, does our
method for handling interval evidence matter, or are the ef-
fects of such observations insignificant? To answer these
questions, we chose two domains: email response behavior
and the day-to-day activity of a human navigating between
home, work and other locations as recorded by GPS data.

Our email domain models a email-response sequence with
three variables:U denotes user state and has two values
online andoffline. Variable,S, conditioned onU , denotes
message staleness (intuitively, a measure of how long the

2Note that while different intensity matrices are needed for dif-
ferent sets of evidence, the~Qζ can be generated very quickly.
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Figure 3: EC-CTBN and CTBN approximation overlayed
on email response-time data.

message has remained unanswered) and has four values
{0, 1, 2,≥ 3}which denote the number of times the user has
gone offline without replying to the message. The third vari-
able,E, denotes the email-state and has two valueswaiting
for replyandreplied; E is conditioned on bothU andS.

Given three months worth of the author’s actual email,
we found533 email-response pairs. We represented each of
these examples as a variable-length sequence of events (e.g.,
message arrival, user goes offline, and user replies). We es-
timated values forU at the time of these events based on his
proximal email activity. Then using5-fold cross validation,
we split the data into training sets of433 and test sets of100
message-response episodes.

In order to evaluate EC-CTBN efficacy, we learned a
CTBN and a EC-CTBN for the network mentioned above.
(The learned EC-CTBN had288 states compared to the
CTBN’s 16.) We then queried the two models for the prob-
ability density over reply events in the hold-out set. Fig-
ure 3 shows the EC-CTBN and (traditional) CTBN density
function over these reply-times mapped on top of the actual
frequency distribution for a representative hold-out set. Vi-
sually, it is apparent that the EC-CTBN does a better job of
matching the actual distribution. We confirmed this quanti-
tatively by computing the ratio of the probability densities
predicted by the two models for every reply in the hold-out
set. Averaging the mean over5 runs gave a value of1.38,
i.e. the EC-CTBN was almost forty percent more likely to
predict the correct answer than the ordinary CTBN.

In our second test, we evaluated the effect of our tech-
nique for handling negative evidence in the form of inter-
val observations. Here we compared the learned CTBN
model to an augmented version (described in the previous
Section) of the same CTBN model. We tested on the same
hold-out set as in the last experiment, but incorporated evi-
dence of the form “User was online fromti to tj .” Figure 4
shows that the likelihood of the data under the CTBN aug-
mented with interval evidence is substantially higher than a
CTBN without interval evidence. The latter model predicts
a longer response time, since it erroneously thinks the user
may be offline and hence less responsive. Similar experi-
ments show an augmented EC-CTBN outperforms a stan-
dard EC-CTBNs on the same data.

We next consider a different domain: a month’s worth of
GPS trace data, recording an individual’s movement about
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Figure 5: EC-CTBN approximations to travel times for two
trip segments and total time to goal.

a city by foot, car, and bus. Specifically, we used data
from (Liao, Fox, & Kautz 2004) in which raw, time-stamped
GPS data is clustered to findlocations, i.e., coordinates with
large dwell times. Next, a topological movement model is
constructed by defining a graph whose nodes are locations
and whose edges are calledtrip segments. At any point
the user’sactivity is either her current location or the trip
segment on which she is engaged. The raw data is hand
annotated so that every time point is hierarchically labeled
with a GPS coordinate, an activity, and a goal. There are
three goals (home, work, and a friend’s house), six locations,
and fourteen trip segments. We learn a EC-CTBN with two
variables (goal and activity) where activity is conditioned
on goal. Figure 5 shows the distributions learned for travel
times from home to the parking lot and from there to work.
Clearly, an exponential distribution would not capture these
distributions.

Discussion and Conclusions
Continuous time Bayesian networks are a promising new
framework for modeling dynamic processes without com-
mitting to a fixed temporal grain size. We have shown how
to extend CTBNs to approximately model non-exponential
time distributions using Erlang-Coxian approximations. Our
method affords tractable learning, but the problem of cen-
sored data leads us to use expectation-maximization initial-
ized by the Kaplan-Meier estimate. We further showed how
to handle negative evidence in the form of observations that
certain variables did not change value over continuous inter-
vals of time. We demonstrated the effectiveness of these ex-
tensions by showing that they improved predictive accuracy
in two domains: email response behavior and GPS traces of
a person traveling about a city.

In our current and future work we are using EC-CTBNs
to create much more complex models of a user’s work rou-
tines; for example, modeling both low-level activities such
as using email or preparing documents, and high-level pro-
cesses such as preparing for a meeting. These more com-
plex models are hierarchically structured and contain both
continuous-time and discrete-time nodes, further extensions
to the CTBN model we will describe in future papers.

Acknowledgements
This work was supported by NSF grant IIS-0307906, ONR
grant N00014-02-1-0932, and DARPA via SRI grant 03-
000225. Thanks to Pedro Domingos and anonymous re-
viewers for insightful comments.

References
Asmussen, S.; Nerman, O.; and Olsson, M. 1996. Fitting phase-
type distributions via the EM algorithm.Scandinavian Journal of
Statistics23.
Crowder, M.; Kimber, A.; Smith, R.; and Sweeting, T. 1994.
Statistical Analysis of Reliability Data. Chapman & Hall/CRC.
Dean, T., and Kanazawa, K. 1989. A model for reasoning about
persistence and causation.Computational Intelligence5:142–
150.
Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and inferring
transportation routines. InProceedings of the Nineteenth National
Conference on Artificial Intelligence. Best Paper Award.
Neuts, M. F. 1981. Matrix-Geometric Solutions in Stochastic
Models: An Algorithmic Approach. Dover.
Nodelman, U.; Shelton, C.; and Koller, D. 2002. Continuous
time bayesian networks. InProceedings of the Eighteenth In-
ternational Conference on Uncertainty in Artificial Intelligence.,
378–387.
Nodelman, U.; Shelton, C.; and Koller, D. 2003. Learning con-
tinuous time bayesian networks. InProceedings of the Nine-
teenth International Conference on Uncertainty in Artificial In-
telligence., 451–458.
Osogami, T., and Harchol-Balter, M. 2003a. A closed-form so-
lution for mapping general distributions to minimal PH distribu-
tions. InComputer Performance Evaluation / TOOLS, 200–217.
Osogami, T., and Harchol-Balter, M. 2003b. Necessary and suffi-
cient conditions for representing general distributions by coxians.
In Computer Performance Evaluation / TOOLS, 182–199.


