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Abstract

SATPLAN is currently one of the fastest planning sys-
tems for domain-independent planning. In nearly all
practical applications, however, there exists an abun-
dance of domain-specific knowledge that can be used
to improve the performance of a planning system. This
knowledge is traditionally encoded as procedures or
rules that are tied to the details of the planning en-
gine. We present a way to encode domain knowledge
in a purely declarative, algorithm independent manner.
We demonstrate that the same heuristic knowledge can
be used by completely different search engines, one sys-
tematic, the other using greedy local search. This ap-
proach greatly enhances the power of SATPLAN: so-
lution times for some problems are reduced from days
to seconds.

Introduction

Planning is a notoriously hard combinatorial search
problem. In Kautz and Selman (1996) we considered
domain-independent, state-space planning as a com-
putational challenge. This style of planning is a core
problem in AI; similar computational issues arise in
many other models, such as reactive planning, plan-
ning with uncertainty and utilities, planning with met-
ric time, and so on. We showed how planning problems
could be converted into large propositional satisfiabil-
ity problems, and then solved using highly-optimized
search procedures. In particular, we showed that Walk-
sat (Selman et al. 1994) could be used to solve certain
hard planning problems that were beyond the capabil-
ities of previous specialized planning systems.

The SATPLAN system operates by converting a
planning problem into a set of axiom schemas. These
schemas are instantiated for plans of a fixed given
length. The instantiated formulas are solved by a SAT
engine, and the plan can be read off of the satisfying
model. If no model is found, the length parameter is
incremented and the problem is re-instantiated, until it
can be proven to be consistent.

The benchmark planning testbed used in both our
early paper and this one is described in Table 1. There
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problem | soln length | soln size | configurations
log.a 11 54 1010
log.b 13 47 108
log.c 13 63 1010
log.d 14 74 1016
bw.a 6 12 10°
bw.b 9 18 10°
bw.c 14 28 1013
bw.d 18 36 10%°

Table 1: Planning benchmark testbed. For logistics
problems, the solution length is optimal, and the num-
ber of actions per solution is the smallest that has been
found using any search procedure so far. For the blocks
world (one arm), the solution length and sizes are opti-
mal (each time step includes a pickup/putdown pair).

are a series of problems from a logistics domain, that
involve moving packages between locations in various
cities by truck and by airplane. Non-conflicting actions
in this domain may occur in parallel, and each action
takes one time step. For example, the best known solu-
tion to the problem logistics.a contains 54 actions, but
they are parallelized in such a manner that they can be
executed over a span of 11 time steps. The largest lo-
gistics problem solved in our 1996 paper involved 10'°
possible configurations of packages and vehicles. In this
paper we have solved a much harder instance involving
10'® configurations. (This corresponds to a logistics
problem with 9 packages, 5 trucks, 2 airplanes, and 15
locations.)

Note that the state-space of the SAT encoding of
these instances is much larger than the number of
configurations. For example, the largest problems in
this paper contain about 2,000 Boolean variables, for
a state-space of size 22000, It has been interesting to
discover that we can efficiently search this “exploded”
state-space. We also worked on a series of traditional
blocks world problems involving up to 19 blocks and
10*° configurations.

Figure 1 summarizes the main results from that pa-
per. It compares the performance of the highly-efficient
Graphplan system of Blum and Furst (1995) with the



SATPLAN approach. The problems “rocket.a” and
“rocket.b” are simpler versions of our logistics prob-
lems. The graph refers to the time required to search
an instantiated data structure for a solution: in the case
of Graphplan, a graph, and in the case of SATPLAN,
a CNF formula. Times to instantiate and pre-process
the problems for SATPLAN ranged from 42 seconds
(log.a) to 271 seconds (log.d). Because Graphplan does
not separate out the instantiation and search times, we
subtracted the SATPLAN instantiation times from the
Graphplan numbers. (The Graphplan implementation
in fact included a more efficient instantiation routine
than did SATPLAN.)

The chart compares Graphplan with four variations
of SATPLAN. The “ntab” variations employ an im-
plementation (Crawford and Auton 1993) of the clas-
sic Davis-Putnam-Loveland systematic search proce-
dure, while the “Walksat” variations use stochastic lo-
cal search. (Our specific version of local search is based
on the GSAT / Walksat algorithm (Selman et al. 1992;
1994).) The “STRIPS” variations used SAT encodings
automatically generated from a STRIPS-style problem
specification: the code to do this was based on a mod-
ified version of the Graphplan implementation. The
“STATE” variations use a hand-crafted “state-based”
encoding, as described in Kautz and Selman (1996).

We see that in this domain the SATPLAN approaches
dominate. Best performance is obtained with stochas-
tic local search and state-based encodings. Two caveats
are in order. First, in other domains Graphplan or other
planning systems can outpeform SATPLAN; indeed,
Graphplan is comparable with SATPLAN on the blocks
world instances from the testbed. Second, the state-
based encodings are quite different from STRIPS, and
are not currently automatically generated from STRIPS
operators. However, we have argued that state-based
axioms are a natural and convenient way to specify
many planning domains: there is no need to insist that
STRIPS-notation is “primary”. Furthermore, this pa-
per will show that the general approach of specifying
a problem domain by a set of axiomatic constraints on
changes between states makes it straightforward to in-
corporate many different kinds of heuristic knowledge.

Given the computational difficulty of the planning
problem, one might wonder why it has ever been pos-
sible to deploy traditional planning systems in real ap-
plications. The reason is that practical systems mini-
mize search by using techniques such as domain-specific
control rules (Bacchus and Kabanza 1995, Carbonell
et al. 1992, Penberthy 1992, Sacerdoti 1977, Slaney
and Thiebaux 1996, Veloso 1992, and Weld 1994),
“compiled” reactive plans (Agre and Chapman 1987,
Williams and Nayak 1997), and heuristics based on tem-
poral and resource constraints (Vere 1985, Muscettola
1994). However, scaling remains problematic in many
interesting domains.

All these techniques involve incorporating more do-
main specific knowledge into the planner. The natural
question arises: can the power of knowledge also be

incorporated into the planning as satisfiability frame-
work, without sacrificing its elegance or generality?

Domain dependent planning

SATPLAN’s use of efficient propositional representa-
tions and search engines dramatically increased the size
of problems that could be solved. One path to fur-
ther improvement is to apply newer, faster satisfiability
testing procedures, and indeed we will briefly mention
some promising preliminary experiments with the satz
system of Li and Anbulagan (1997). The other ap-
proach, which is the focus of this paper, 1s to encode
more knowledge in the problem representations.

There several kinds of knowledge that could be added
to a problem representation. First, there is knowledge
about the domain itself. For instance, a fact about the
logistics domain is that “a truck is only in one loca-
tion”. Second, there is knowledge about good plans, for
example, “do not return a package to a location from
which it has been removed”. Any plan violating this
constraint is obviously suboptimal. Third, one could
encode explicit control knowledge about search, such
as “plan air routes before land routes”.

Such information is traditionally incorporated in the
planning algorithm itself or in a special programming
language interpreted by the planner. Instead, we pro-
pose expressing domain knowledge as additional declar-
ative axioms. Thus, a problem instance will be rep-
resented as the union of three sets of axioms: those
for operators, those for the initial and goal states, and
those for additional domain knowledge, which we will
call “heuristic axioms”. Domain information simply
functions as a constraint on the search and solution
spaces, and is independent of any search engine strat-
egy. It is important to note that domain knowledge has
exactly the same status as any of the other problem
constraints. In particular, the domain knowledge is not
a “meta-constraint” on the search algorithm, as is, for
instance, the “cut” operator in logic programming. (Re-
lated to our approach is that of Bacchus and Kabanza
(1995), who also declaratively specify heuristic axioms
for a planning system. It differs in that they used a
detailed modal temporal logic specification to tightly
control the PRODIGY planning system, whereas we use
propositional axioms to assist, but not replace, search.)

This paper builds on the observations of Ernst, Mill-
stein, and Weld (1997) concerning the effect of domain-
specific axioms on our original blocks-world testbed.
They noted that including state-invariant axioms made
the problems larger before simplification (as described
below), but smaller and easier to solve after simplifica-
tion.

The logical status of heuristics

The straightforward, logical representation of heuris-
tic knowledge we have adopted allows us to determine
the logical relationship between that knowledge and the
original problem statement. It allows us to distinguish



Invariant: A truck is at only one location
at(truck,locl, i) Aloel # loc2 D
—at(truck,loc2, i)

Optimality: Do not return a package to a
location
at(pkg,loc, i) A —at(pkg,loc,i+ 1) Ai< j D
—at(pky,loc, j)

Simplifying: Once a truck is loaded, it should
immediately move
—in(pkg, truck, ) A in(pkg, truck,i+ 1)A
at(truck,loc,i+ 1) D
—at(truck,loc, i+ 2)

Table 2: Example axiomatic form of logistics heuristics.

between heuristics that add entirely new constraints,
and those that simply make ezplicit information that is
implicit in other parts of the problem. In fact, the cat-
egories defined by the logical relationship of the heuris-
tics to the rest of the problem instance creates a natural
classification of kinds of heuristics. Consider the follow-
ing four classes:

1. Heuristics entailed by the operator axioms alone are
those for conflicts and derived effects. For example,
any two simultaneous fly actions for the same air-
plane conflict. For “pure” STRIPS operators, con-
flicts can be easily derived, by simply comparing the
precondition and delete lists of operators. When de-
rived predicates and auxiliary axioms are included,
however, determining action conflicts can become
NP-complete. In such cases it can be helpful to add
heuristic axioms that make the conflicts explicit.

2. Heuristics entailed by the operator and initial state
axioms together include state invariants. For exam-
ple, the typical STRIPS formulation of the opera-
tor for moving a vehicle from one location to an-
other, drive(truck, origin, dest), does not entail that
a truck is always at a single location. However, if in
the initial state every truck is at exactly one loca-
tion, the operator will propagate that invariant to all
future states.

3. Heuristics entailed by the operators and initial state
axioms, together with the plan length n are a kind of
optimality condition. Assuming that the given plan
length is the minimum needed to solve the problem,
then the fact that the plan contains no redundant or
unnecessary steps logically follows. Optimality condi-
tions can be hard to infer: as hard, in fact, as solving
the problem instance, since the full set of optimality
conditions would rule out all actions not in a solution.
However, although difficult to automatically derive,
at least some of the “obvious” optimality conditions
are easy for a person to encode. The heuristic we
noted earlier, “do not return a package to a location
from which it has been removed”, 1s such an obvious

condition.

4. Finally, new constraints on problem instance that are

not entailed by any of the previous axioms are simpli-
fying assumptions. Since they are not entailed, they
must actually rule out some of the valid solutions
to the problem; thus, they introduce incompleteness
into the heart of the planning system. However, com-
putational considerations already make virtually all
planners incomplete in practice, and in many cases
one can prove the “lost” solutions never transform a
solvable instance into an inconsistent one. In the lo-
gistics domain, the heuristic “once a truck is loaded,
it should immediately move” is such a “safe” simpli-
fying assumption, because any solution that violates
it can be made into one that satisfies it by delaying
load actions.

Examples of the axiomatic forms of some the heuris-
tics used in the experiments described below appear in
Table 2.

How can one can go about developing heuristics for a
problem domain? The traditional approach, and the
one followed in this paper, is to simply employ in-
trospection to capture both “obvious” inferences that
are hard to deduce mechanically (McAllester 1991) and
simplifying assumptions that follow from abstracting
the essence of the domain. It is clearly a matter of de-
bate whether the introspective approach is feasible in
the long run. The common complaint is that manually-
created heuristics are hard to maintain as a complex
system evolves over time. However, in previous work
such heuristics are encoded either as procedures or as
statements in a meta-language that directly controls the
operation of a planning algorithm. By contrast, in our
approach the heuristic axioms refer only to constraints
on states and plans — not how plans are found. Thus,
they may prove to be no harder to write or maintain
than any other part of the domain specification.

A different (complementary) approach is to automat-
ically generate heuristics. There has been a great deal
of work on the problem of heuristic generation, includ-
ing that on explanation-based learning (Minton 1988,
Kambhampati et al. 1996), static analysis of opera-
tor schemas (Smith 1989, Etzioni 1993), problem ab-
straction (Knoblock 1994), and operator-graph analy-
sis (Smith and Peot 1996). All of this work has aimed
at producing explicit search control rules: for example,
rules that would state when to prefer one operator ap-
plication over another, or when to cut off a branch of
recursive search. In our framework, however, we instead
wish to generate constraints on admissible plans and se-
quences of events, in order to reduce and simplify the
search space. It would be interesting to investigate how
to modify techniques such as EBL so that the output
is a set of such constraints.

There 1s also a relationship between heuristic gener-
ation and what has been called “theory compilation”
(Selman and Kautz 1996). For example, one could fix
the operators and the goal state, generate a number of



consequences, and add them back to the original the-
ory. In the worse case, the compiled theory is exponen-
tially large, but the general approach can be efficient
in practice (Williams and Nayak 1997). Another area
that investigates potentially useful techniques is that
of simplification of search problems by the discovery of
“symmetries”. For example, Joslin and Roy (1997) add
“symmetry breaking predicates” to a theory based on
the discovery of symmetries in operator schema; in our
vocabulary, this would be a case of a “safe simplifying
assumption”.

Finally, any system that automatically generates
heuristics must amortize the cost of that generation
over some set of problem instances. Heuristics such
as type (1) above could be generated by analysis of the
operators alone, and thus amortized over all problem
instances in that domain. Heuristics based on both the
operators and some information about the specific prob-
lem instance, such as types (2) and (3), could only be
amortized over a subset of the domain.

Experiments

We designed a series of experiments to test the feasi-
bility of specifying declarative domain knowledge. It is
not obvious that it would work: the heuristics might
simply blow up the size of the problem with redundant
axioms, and simply make the problem harder to solve.

The first series of experiments were based on the
blocks world, where there is a single arm and no paral-
lel actions. The number of “move” actions (a move is
equivalent to a pickup and putdown pair) in the optimal
solutions ranged from 6 to 19. We created three versions
of each problem instance: The first included axioms for
the move operator only. These instances are labeled
bw.a, bw.b, bw.c, and bw.d. The second added axioms
for state invariants of the predicate “on”; for example,
that at most one block could be on another. These ex-
amples are labeled “bw.a.state”, etc. The third version
also included optimality heuristics, namely: never more
a block twice in a row; once a block is moved onto a
block (not the table) it stays there; and never move
a block more than twice. These examples are labeled
“bw.a.opt”, etc. Because there is only a single predi-
cate “on” and no parallel actions, there is no need for
the class of heuristics for conflicts and derived effects.
The blocks world problems that appear in Kautz and
Selman (1996) are the “state” versions of this paper.
These experiments expand on the ones performed in
Ernst et al. (1997), which considered only the “move”
and “state” versions.

Each version of each problem was instantiated, sim-
plified by unit propagation, and then solved by the
“ntab” implementation of the Davis-Putnam-Loveland
procedure (Crawford and Auton 1993), and by Walk-
sat. The number of time steps was set to the smallest
(optimal) value. Because Walksat is a randomized pro-
cedure, we took the the average timings for 100 runs
with different random seeds. (Simplification by unit

propagation can be done in linear time, and for prob-
lems of this size takes less than one second with a good
C implementation; for convenience we used a simple
shell-script that required about 20 seconds.) All times
are on a 200 Mhz SGI Challenge.

The results are summarized in Table 3. First, let us
consider the size of the problems. We see that before
the formulas were simplified (“orig. no. vars/clauses”),
adding the heuristic axioms increased the number of
variables by about 10%, and increased the number of
clauses by 300% — 600%. For example, bw.d contained
62,734 clauses, but bw.d.opt contained 388,755 clauses.
However, simplification by unit propagation made the
heuristic instances significantly smaller in the number
of distinct variables. For the simplified versions of bw.d,
the number of variables dropped from 7,132 (no heuris-
tics) to 6,325 (state), and dramatically to 2,174 (opt).
The final number of clauses was highest for the “state”
versions, and smallest for the “opt” versions.

Turning to the timings, we see that our stochastic al-
gorithm Walksat was fastest on the “state” version, ex-
cept for bw.b, where the “opt” version was slightly eas-
ier to solve. On the other hand, the “opt” versions were
significantly easier to solve for the systematic algorithm
ntab, except for bw.c, where “state” was slightly better,
and bw.d, where for Walksat only “state” was compara-
ble. Problems bw.c and bw.d could not be solved in less
than 48 hours by either routine without the addition of
the heuristic axioms.

These results demonstrated that the general ap-
proach was sound, and could extend the SATPLAN ap-
proach to planning to classes of larger and harder prob-
lems. They also suggested that decreasing the num-
ber of variables after simplification was more impor-
tant than decreasing the number of clauses, and that
the point of diminishing returns from the addition of
axioms would be sooner reached for stochastic search
than for systematic search.

The second series of experiments were based on the
logistics domain mentioned earlier. The first three in-
stances also appeared in Kautz and Selman (1996), but
for this paper we also created a much harder instance,
logistics.d. As described in our earlier paper, our ax-
lomatization is “state based” in that it represents in-
variants on states and between pairs of adjacent states,
but does not explicitly represent the action operators.
The actions in a plan can be derived in linear time from
a satisfying model of the problem instance. Because
there are no operators represented, there can be no ad-
ditional axioms for conflict heuristics. Similarly, there
can be no additional state invariant heuristics, because
such invariants are already part of the representation.
Therefore we studied the effect of optimality heuristics
and simplifying assumptions in this domain.

There were a number of questions we wished to in-
vestigate:

e Are simplifying assumptions and optimality condi-
tions useful heuristics for stochastic search? In the
blocks world, the optimality heuristics helped sys-



wif orig no. | orig no. | final no. | final no. | walksat | ntab
vars | clauses vars clauses time | time
bw.a 804 5118 534 3060 1.84 | 0.26
bw.a.state 973 14582 459 4710 0.03 | 0.23
bw.a.opt 946 16391 294 2448 0.55 | 0.12
bw.b 1635 11091 1235 7457 13.08 | 5.13
bw.b.state 1865 35971 1087 13845 2.22 | 0.66
bw.b.opt 1876 42230 564 5759 0.75 | 0.38
bw.c 4258 30986 3526 22535
bw.c.state 4723 | 126866 3016 50621 3.84 | 16.5
bw.c.opt 4738 | 155741 1225 17082 77 | 25.7
bw.d 8282 62734 7132 47098
bw.d.state 9023 | 311862 6325 132257 688
bw.d.opt 9042 | 388755 2174 40384 643 | 2651

Table 3: Effect of heuristic axioms on blocks world problems. Times in seconds. No entry means procedure failed to

solve problem after more than 48 hours.

tematic search, but not stochastic search. Further-
more, because stochastic search is particularly good
on under-constrained problems, simplifying assump-
tions might hurt Walksat rather than help.

e Would the overall positive impact of the additional
axioms be greater on systematic or stochastic meth-
ods?

e Is problem size in terms of number of variables the
more important factor, as in the blocks world? Would
the optimal level of heuristics again differ for the two
algorithms?

The question of the impact of the heuristics on system-
atic versus stochastic search was particularly intriguing,
because there are intuitive grounds for either answer.
One could argue that because the additional axioms en-
able more unit propagations during search, and system-
atic methods handle unit propagation more efficiently,
the heuristics would be more beneficial to systematic
search. Alternatively, one could argue that the addi-
tional axioms would shorten chains of unit propagation,
and therefore be more helpful to stochastic algorithms,
which handle long chains more slowly.

We began this set of experiments by writing down
four sets of heuristics. We then performed a few prelim-
inary experiments to see which set of heuristics, taken
alone, usually provided the greatest improvement in so-
lution time. We then ordered the heuristics from most
useful to least useful. Finally, we made each set prop-
erly include all the previous (more useful) heuristics.
The result gives five versions of each problem instance,
labeled “none” (no extra axioms), h1, h2, h3, and h4.
Each version is a strict superset of the clauses in the
previous version.

The axioms that first appear in each set are:

h1l (optimality condition): Once a package leaves
a location, it never returns to that location.

h2 (simplifying assumption): A package is never
in any city other than its origin or destination cities.

(This is not an optimality condition because it rules
out solutions where packages are transferred between
airplanes in an intermediate city.)

h3 (simplifying assumption): Once a vehicle is
loaded, 1t should immediately move.

h4 (optimality condition): A package never leaves
its destination city.

Again the problems were instantiated, simplified, and
solved by both Walksat and ntab. Figures 2-5 summa-
rize the results of the experiments. Copies of the data
and the formulas themselves are available from the au-
thors.

We first consider the size of the formulas. Figures 2
and 3 plot the number of variables and the number of
clauses after simplification against the heuristic version
for each of the problems log.a, log.b, and log.c. The
data for log.d follows the same general curve, but is not
plotted because it would too greatly compress the scale
of the Y-axis. The values for log.d are each about twice
that of the corresponding values for log.c.

Only the simplifying assumption h2 decreased the
number of variables. This is because it rules out all
propositions that represent a package being at a loca-
tion that is not in the origin or destination cities. Con-
sidering the number of clauses after simplification, we
see that hl increased the size of the formula by about
30%, but when h2 is added, the formula is about 30%
smaller than the original one. Increasing the heuristic
set to h3 and h4 caused a gradual increase in the num-
ber of clauses. Thus, h2 represents a point at which
both the number of variables and the number of clauses
1s minimized.

Figure 4 is based on the timings from Walksat. The
Y-axis is normalized to represent multiples of the mini-
mal solution time for the problem instance across vari-
ants. For example, log.c.none required 6 times as much
time to solve as log.c.h2. For log.a, log.c, and log.d the
h2 variants were fastest to solve, and for log.b the h3



variant was fastest. We see that the greatest decrease in
solution time came from the addition of hl; recall that
h1 increased the number of clauses and did not decrease
the number of variables. There was a further slight de-
crease at h2, where the problem size was minimized.
However, the decrease at h1l over “none” indicates that
problem size was not the only factor involved in mak-
ing the problems easier to solve. Set h2 was the point
of diminishing returns for Walksat. There was a slight
increase at h3, and either a slight increase or decrease
at h4.

The timings for systematic search in Figure 5 are
more dramatic. Here the normalized solution times are
plotted on a log scale. None of the problems could be
solved without the additional axioms, nor could any
version of log.d. For the smallest problem, log.a, the
fastest time was realized at h4, but log.b and log.c were
solved most quickly at h2. Again the most important
heuristic was the optimality condition hl, because it
made unsolvable problems solvable. However, the sim-
plifying assumption h2 was also important, particularly
for log.b, where it reduced the solution time by a factor
of 38,000. (In absolute terms, from about 39 hours to
about 3 seconds.)

Let us now consider the questions we raised ear-
lier. First, it is clear that simplifying assumptions as
well as optimality conditions can enhance the power
of stochastic search as well as systematic search. We
saw a 6-fold improvement for Walksat on the largest,
hardest problem instances. At least on this benchmark
set, the worry that reducing the number of solutions
would make the problems harder for local search was
unfounded.

Second, the greatest impact of the additional axioms
was again for the systematic search engine. We saw that
for ntab problems that could not be solved in two days
could then be solved in a few seconds. As described
below, our future work will examine why this is the
case. As we have mentioned, our current hypothesis is
the additional axioms greatly increase the number of
unit propagations at each branch-point.

Third, both algorithms were usually optimal on the
variations of the problems that minimized both the
number of variables and the number of clauses. How-
ever, problem size was not the only or most important
factor in determining the difficulty of solution. This is
notable in the hl versions, which were strictly larger
than the versions without any heuristic axioms, but
were much easier to solve.

For both algorithms the point of diminishing returns
was reached at h2. This may have been because few
optimally-short plans would violate h3, and so it had
little impact. It also appears that h4 follows with a
fairly short proof from h1 and h2. Tt is an open question
whether there are other natural heuristics that are more
powerful than h2.

Conclusions and Future Work

This paper is a preliminary report on a promising
new method of enhancing the planning as satisfiabil-
ity framework with domain-dependent knowledge. We
have shown that it is easy to encode such knowledge
in a purely declarative manner that is completely in-
dependent of the kind of algorithm used to search the
space. The approach appears to be the key to the next
order of magnitude scaling of state-space planning al-
gorithms. Problems that could not be solved in days
could be solved in seconds with the additional axiomatic
knowledge.

Our framework makes clear the logical status of dif-
ferent kinds of heuristics, and in particular distinguishes
invariants, optimality conditions, and simplifying as-
sumptions. The role of the optimality conditions de-
serves further discussion. We observed that setting the
length of the plan to the minimum value that keeps it
consistent places a global optimality condition on the
problem. This global optimality condition logically en-
tails many local rules about the construction of the so-
lution: for example, that the solution not contain such
locally inefficient actions such as moving a block twice
in a row. However, it can be quite hard to deduce all
the relevant local optimality conditions for a particular
problem. The optimality heuristics we have described
simply make ezxplicit some of these local rules. Thus,
less needs to be deduced by combinatorial search. In
other words, it can be easier to satisfy a global con-
straint with the “advice” given by a subset of the local
consequences of that constraint.

Finally, we have seen that on the hardest problems
we examined local search continues to outperform sys-
tematic search, just as in Kautz and Selman (1996).
However, the use of heuristic axioms does make sys-
tematic methods more competitive. Figure 6 presents
the overall best solution times for any version of each of
the logistics problems for three search engines: Walk-
sat, ntab, and satz, a new systematic search engine by
Li and Anbulagan (1997). Satz is the first systematic
engine we have found that can solve log.d, although it
1s 100,000 times slower than Walksat on that problem.

There are many avenues for future exploration. One
task is to see exactly how the shape of the search
space is changed by different kinds of heuristics. Frank,
Cheeseman, and Stutz (to appear) present a detailed
picture of the search space for random 3SAT. We would
like to create such an analysis of the space generated
by a range of planning domains under different sets of
heuristics.

Another task is experiment with different search en-
gines in our broadened planning as satisfiability model.
We are beginning experiments with a new SAT en-
gine combining features of stochastic and systematic
search that is particularly good at solving planning
problems. Third, we will be comparing the manually-
created heuristic axioms used here with those that can
be automatically generated, either by exact compilation
(Williams and Nayak 1997) or approximate compilation



(Selman and Kautz 1996).

Finally, we are beginning to experiment with SAT-
PLAN for richer planning models, such as ones involv-
ing causal plans (Kautz, McAllester, and Selman 1996),
metric and qualitative temporal constraints, and soft
constraints. The basic principle behind all our work 1is
to view planning as efficient combinatorial search. We
believe that many of the lessons we have learned about
state-space planning apply to more general models.
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Fig. 1. Comparison of search times on original logistics problems.

%]
[}
o)
T
E —eo—log.a
e —l—log.b
(]
5 —&—log.c
o)
=
5
c

500 : : : ‘

none hl h2 h3 h4

Fig 2. Number of variables in logistics formulas after simplification.
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Fig. 3. Number of clauses in logistics formulas after simplification.
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Fig. 4: Solution times for walksat on logistics with different sets of heuristics.
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