BLACKBOX: A New Approach to the Application of Theorem Proving to Problem Solving

Henry Kautz

AT&T Laboratories kautz@research.att.com

Bart Selman

Cornell University selman@cs.cornell.edu

It has often been observed that the classical AI planning problem (that is, planning with complete and certain information) is a form of logical deduction. Because early attempts to use general theorem provers to solve planning problems proved impractical, research became focused on specialized planning algorithms. Sometimes the relationship to inference was explicitly acknowledged: for example, the STRIPS system (Fikes and Nilsson 1971) was originally described as a way to to make theorem-proving practical. In other work the relationship to deduction was developed after the fact. For example, Chapman's (1985) work on TWEAK clarified the logic behind one variety of nonlinear planning.

The belief that planning required specialized deductive algorithms was challenged by our work on planning as propositional satisfiability testing (Kautz and Selman 1992, 1996). SATPLAN showed that a general propositional theorem prover could indeed be competitive with some of the best specialized planning systems. The success of SATPLAN can be attributed to two factors:

- The use of a logical representation that has good computational properties. Both the fact that SAT-PLAN uses propositional logic instead of first-order logic, and the particular conventions we suggested for representing time and actions, are significant. Differently declarative representations that are semantically equivalent can still have quite distinct computational profiles. (For this reason we believe that the search for epistemologically satisfactory representations (McCarthy and Hayes 1969) should go hand-in-hand with the study of practical reasoning algorithms, rather than being carried out as a separate activity.)
- The use of powerful new general reasoning algorithms such as Walksat (Selman, Kautz, and Cohen 1994). Many researchers in different areas of computer science are creating faster SAT engines every

year. Furthermore, these researchers have settled on common representations that allow algorithms and code to be freely shared and fine-tuned. As a result, at any point in time the best general SAT engines tend to be faster (in terms of raw inferences per second) than the best specialized planning engines. In principle, of course, these same improvements could be applied to the specialized engines; but by the time that is done, there will be a new crop of general systems.

An approach that shares a number of features with with the SATPLAN strategy is the Graphlan system, developed independently by Blum and Furst (1995). Graphplan broke previous records in terms of raw planning speed, and has become a popular planning framework. Comparisons to SATPLAN show that neither algorithm is strictly superior. For example, SATPLAN is faster on a complex logistics domain, they are comparable on the blocks world, and on several other domains Graphplan is faster.

Graphplan bears an important similarity to SAT-PLAN: both systems work in two phases, first creating a propositional structure (in Graphplan, a plan graph, in SATPLAN, a CNF wff) and then searching that structure. The propositional structure corresponds to a fixed plan length, and the search reveals whether a plan of that length exists. Furthermore, we showed in Kautz and Selman (1996) that the plan graph has a direct translation to CNF, and that the form of the resulting formula is very close to the original conventions for SATPLAN. We hypothesize that the differences in performance of the two system can be explained by the fact that Graphplan uses a better algorithm for instantiating the propositional structure, while SAT-PLAN uses more powerful search algorithms.

SATPLAN fully instantiates a complete problem instance before passing it to a simplifier and a solver. By contrast, Graphplan *interleaves* plan graph instantiation and simplification. This can often be a big

win. Furthermore, the simplification algorithm used by Graphplan is more powerful than the unit-propagation simplifier the original SATPLAN employed. By studying the details of Graphplan, we determined that it is employing a (limited application of) negative binary propagation. This rule is:

given:
$$\{\neg p \lor \neg q\}, \{p \lor r \lor s \lor \ldots\}$$
 infer: $\{\neg q \lor r \lor s \lor \ldots\}$

These observations have led us to create a new system that combines the best features of Graphplan and SATPLAN. This system, called **blackbox**, works in three phases:

- 1. A planning problem (specified in a standard STRIPS notation) is converted to a plan graph;
- 2. The plan graph is converted to a CNF wff;
- 3. The wff is solved by any of a variety of fast SAT engines.

(The earlier MEDIC system of Ernst, Millstein, and Weld (1997) also converts STRIPS notation into CNF, but does not use the plan graph intermediate form. Further, the SAT engines included in blackbox are more powerful than those in the original MEDIC distribution.)

Blackbox currently includes the local-search SAT solver Walksat and the systematic SAT solver satz (Li and Anbulagan 1997), as well as the original Graphplan engine (that searches the plan graph instead of the CNF form). In order to have robust coverage over a variety of domains, the system can employ a *schedule* of different solvers. For example, it can run Graphplan for 30 seconds, then Walksat for 2 minutes, and if still no solution is found, satz for 5 minutes.

The blackbox system actually introduces new SAT technology as well, namely the use of randomized complete search methods. As shown in Gomes, Selman, and Kautz (1998), systematic solvers in combinatorial domains often exhibit a "heavy tail" behavior, whereby they get often "stuck" on particular instances. Adding a small amount of randomization to the search heuristic and rapidly restarting the algorithm after a fixed number of backtracks can dramatically decrease the average solution time. We applied this randomization/restart technique to the version of satz used by blackbox.

The use of the Graphplan front-end and this new randomized/restart solver leads to a very high level of performance. Of particular note is the fact that it can solve the largest, hardest logistics problems we have constructed, directly from the STRIPS-style problem description, in about 6 minutes. One such problem ("logistics.d" from Kautz and Selman 1998) contains 10^{16} states, and its solution involves 105 actions over 14 time steps. By comparison, Graphplan alone takes about 40 minutes to solver a smaller problem (logistics.b) that has 10^9 states, and cannot handle the larger problem.

It is important to note that the success of SATPLAN on the logistics domain as reported in Kautz and Selman (1996) involved a different kind of propositional encoding, called a "state-based encoding", that incorporated general domain knowledge (Kautz and Selman 1998) which can be hard to derive from the STRIPS input. The state-based encodings were created by hand. Our experiments with blackbox are the first to show that this domain can be solved when encodings are automatically generated from the STRIPS-style input.

Blackbox is an evolving system. The newest implementation of blackbox accepts the PDDL input language (McDermott et al. 1998), and can be downloaded from http://www.research.att.com/ kautz. Future versions will include other SAT engines and both general and planning-specific simplification routines. One open research question our future work will address is whether there are more powerful simplification algorithms than negative binary propagation that are generally cost-efficient across all planning domains.

One other promising extension we hope to have available soon is to allow for search control knowledge stated in a generic declarative form. The need for a mechanism for declarative search control has long advocated by John McCarthy, but so far it has been hard to make concrete. The idea is to be able to add heuristic control to a general theorem prover or search engine without having to modify the search control mechanisms of the search procedure itself. Examples of such control rules are "Do not unload a package right after it has been loaded on a truck or a plane," or "Do not move a package after it has reached its final destination." Recent experiments with the SATPLAN system, where both the domain operators and the control knowledge are encoded by hand as logical axioms, has show that such statements can dramatically improve performance (Kautz and Selman 1998). Our future release of blackbox will allow such control knowledge to be easily expressed in (an extension of) PDDL.

References

Blum, A. and Furst, M.L. (1995). Fast planning through planning graph analysis. *Proc. IJCAI-95*, Montreal, Canada.

Chapman, D. (1985). Planning for conjunctive goals. TR AI-TR-802, M.I.T. AI Lab.

- Ernst, M.D., Millstein, T.D., and Weld, D.S. (1997). Automatic SAT-compilation of planning problems. *Proc. IJCAI-97*, Nagoya, Japan.
- Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. *Artificial Intelligence* 5(2): 189-208.
- Gomes, C.P., Selman, B., and Kautz, H. (1998). Boosting Combinatorial Search Through Randomization. *Proc. AAAI-98*, Madison, WI.
- Li, Chu Min and Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems. *Proc. IJCAI-97*, Nagoya, Japan.
- Kautz, H. and Selman, B. (1992). Planning as Satisfiability. *Proc. ECAI-92*, Vienna, Austria, 359–363.
- Kautz, H. and Selman, B. (1996). Pushing the envelope: planning, propositional logic, and stochastic search. *Proc. AAAI-1996*, Portand, OR.
- McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the standpoint of artificial intelligence. In *Machine Intelligence* 4, D. Michie, ed., Ellis Horwood, Chichester, England, page 463ff.
- McDermott, D., et al. (1998). PDDL The Planning Domain Definition Language. Draft.
- Selman, B., Kautz, H., and Cohen, B. (1994). Noise Strategies for Local Search. Proc. AAAI-94, Seattle, WA, 337–343.