BLACKBOX: A New Approach to the Application of Theorem Proving to
Problem Solving

Henry Kautz
AT&T Laboratories
kautz@research.att.com

It has often been observed that the classical Al plan-
ning problem (that is, planning with complete and cer-
tain information) is a form of logical deduction. Be-
cause early attempts to use general theorem provers to
solve planning problems proved impractical, research
became focused on specialized planning algorithms.
Sometimes the relationship to inference was explic-
itly acknowledged: for example, the STRIPS system
(Fikes and Nilsson 1971) was originally described as a
way to to make theorem-proving practical. In other
work the relationship to deduction was developed af-
ter the fact. For example, Chapman’s (1985) work on
TWEAK clarified the logic behind one variety of non-
linear planning.

The belief that planning required specialized deduc-
tive algorithms was challenged by our work on plan-
ning as propositional satisfiability testing (Kautz and
Selman 1992, 1996). SATPLAN showed that a general
propositional theorem prover could indeed be compet-
itive with some of the best specialized planning sys-
tems. The success of SATPLAN can be attributed to
two factors:

e The use of a logical representation that has good
computational properties. Both the fact that SAT-
PLAN uses propositional logic instead of first-order
logic, and the particular conventions we suggested
for representing time and actions, are significant.
Differently declarative representations that are se-
mantically equivalent can still have quite distinct
computational profiles. (For this reason we be-
lieve that the search for epistemologically satisfac-
tory representations (McCarthy and Hayes 1969)
should go hand-in-hand with the study of practical
reasoning algorithms, rather than being carried out
as a separate activity.)

e The use of powerful new general reasoning algo-
rithms such as Walksat (Selman, Kautz, and Cohen
1994). Many researchers in different areas of com-
puter science are creating faster SAT engines every

Bart Selman
Cornell University
selman@cs.cornell.edu

year. Furthermore, these researchers have settled on
common representations that allow algorithms and
code to be freely shared and fine-tuned. As a result,
at any point in time the best general SAT engines
tend to be faster (in terms of raw inferences per sec-
ond) than the best specialized planning engines. Tn
principle, of course, these same improvements could
be applied to the specialized engines; but by the time
that is done, there will be a new crop of general sys-
tems.

An approach that shares a number of features with
with the SATPLAN strategy is the Graphlan system,
developed independently by Blum and Furst (1995).
Graphplan broke previous records in terms of raw plan-
ning speed, and has become a popular planning frame-
work. Comparisons to SATPLAN show that neither
algorithm is strictly superior. For example, SATPLAN
is faster on a complex logistics domain, they are com-
parable on the blocks world, and on several other do-
mains Graphplan is faster.

Graphplan bears an important similarity to SAT-
PLAN: both systems work in two phases, first creating
a propositional structure (in Graphplan, a plan graph,
in SATPLAN, a CNF wff) and then searching that
structure. The propositional structure corresponds to
a fixed plan length, and the search reveals whether a
plan of that length exists. Furthermore, we showed in
Kautz and Selman (1996) that the plan graph has a
direct translation to CNF, and that the form of the re-
sulting formula is very close to the original conventions
for SATPLAN. We hypothesize that the differences in
performance of the two system can be explained by
the fact that Graphplan uses a better algorithm for
wnstantiating the propositional structure, while SAT-
PLAN uses more powerful search algorithms.

SATPLAN fully instantiates a complete problem in-
stance before passing it to a simplifier and a solver.
By contrast, Graphplan interleaves plan graph instan-
tiation and simplification. This can often be a big



win. Furthermore, the simplification algorithm used by
Graphplan is more powerful than the unit-propagation
simplifier the original SATPLAN employed. By study-
ing the details of Graphplan, we determined that it
is employing a (limited application of) negative binary
propagation. This rule is:

given: {-pV ¢}, {pVvrvsv..}
infer: {-gVvrvsv..}

These observations have led us to create a new sys-
tem that combines the best features of Graphplan and
SATPLAN. This system, called blackbox, works in
three phases:

1. A planning problem (specified in a standard STRIPS
notation) is converted to a plan graph;

2. The plan graph is converted to a CNF wff;

3. The wif is solved by any of a variety of fast SAT
engines.

(The earlier MEDIC system of Ernst, Millstein, and
Weld (1997) also converts STRIPS notation into CNF,
but does not use the plan graph intermediate form.
Further, the SAT engines included in blackbox are
more powerful than those in the original MEDIC dis-
tribution.)

Blackbox currently includes the local-search SAT
solver Walksat and the systematic SAT solver satz (Li
and Anbulagan 1997), as well as the original Graph-
plan engine (that searches the plan graph instead of
the CNF form). In order to have robust coverage over
a variety of domains, the system can employ a schedule
of different solvers. For example, it can run Graphplan
for 30 seconds, then Walksat for 2 minutes, and if still
no solution is found, satz for 5 minutes.

The blackbox system actually introduces new SAT
technology as well, namely the use of randomized com-
plete search methods. As shown in Gomes, Selman, and
Kautz (1998), systematic solvers in combinatorial do-
mains often exhibit a “heavy tail” behavior, whereby
they get often “stuck” on particular instances. Adding
a small amount of randomization to the search heuris-
tic and rapidly restarting the algorithm after a fixed
number of backtracks can dramatically decrease the
average solution time. We applied this randomiza-
tion/restart technique to the version of satz used by
blackbox.

The use of the Graphplan front-end and this new
randomized /restart solver leads to a very high level of
performance. Of particular note is the fact that it can
solve the largest, hardest logistics problems we have
constructed, directly from the STRIPS-style problem
description, in about 6 minutes. One such problem

(“logistics.d” from Kautz and Selman 1998) contains
10'% states, and its solution involves 105 actions over
14 time steps. By comparison, Graphplan alone takes
about 40 minutes to solver a smaller problem (logis-
tics.b) that has 10° states, and cannot handle the larger
problem.

It is important to note that the success of SATPLAN
on the logistics domain as reported in Kautz and Sel-
man (1996) involved a different kind of propositional
encoding, called a “state-based encoding”, that incor-
porated general domain knowledge (Kautz and Selman
1998) which can be hard to derive from the STRIPS in-
put. The state-based encodings were created by hand.
Our experiments with blackbox are the first to show
that this domain can be solved when encodings are
automatically generated from the STRIPS-style input.

Blackbox is an evolving system. The newest imple-
mentation of blackbox accepts the PDDL input lan-
guage (McDermott et al. 1998), and can be down-
loaded from http://www.research.att.com/ kautz. Fu-
ture versions will include other SAT engines and both
general and planning-specific simplification routines.
One open research question our future work will ad-
dress is whether there are more powerful simplification
algorithms than negative binary propagation that are
generally cost-efficient across all planning domains.

One other promising extension we hope to have
available soon 1s to allow for search control knowledge
stated in a generic declarative form. The need for a
mechanism for declarative search control has long ad-
vocated by John McCarthy, but so far it has been hard
to make concrete. The idea is to be able to add heuris-
tic control to a general theorem prover or search engine
without having to modify the search control mecha-
nisms of the search procedure itself. Examples of such
control rules are “Do not unload a package right after
it has been loaded on a truck or a plane,” or “Do not
move a package after it has reached its final destina-
tion.” Recent experiments with the SATPLAN sys-
tem, where both the domain operators and the control
knowledge are encoded by hand as logical axioms, has
show that such statements can dramatically improve
performance (Kautz and Selman 1998). Our future re-
lease of blackbox will allow such control knowledge to
be easily expressed in (an extension of) PDDL.

References

Blum, A. and Furst, M.L. (1995). TFast planning
through planning graph analysis. Proc. [JCAI-95,
Montreal, Canada.

Chapman, D. (1985). Planning for conjunctive goals.
TR AI-TR-802, M.I.'T. AT Lab.



Ernst, M.D., Millstein, T.D., and Weld, D.S. (1997).
Automatic SAT-compilation of planning problems.
Proc. IJCAI-97, Nagoya, Japan.

Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 5(2): 189-
208.

Gomes, C.P., Selman, B., and Kautz, H. (1998).
Boosting Combinatorial Search Through Random-
ization. Proc. AAAI-98, Madison, WI.

Li, Chu Min and Anbulagan (1997). Heuristics based
on unit propagation for satisfiability problems. Proc.

IJCAI-97, Nagoya, Japan.

Kautz, H. and Selman, B. (1992). Planning as Satis-
fiability. Proc. ECAI-92, Vienna, Austria, 359-363.

Kautz, H. and Selman, B. (1996). Pushing the enve-
lope: planning, propositional logic, and stochastic

search. Proc. AAAI-1996, Portand, OR.

McCarthy, J. and Hayes, P. (1969). Some philosoph-
ical problems from the standpoint of artificial intel-
ligence. In Machine Intelligence 4, D. Michie, ed.,
Ellis Horwood, Chichester, England, page 463ff.

McDermott, D.; et al. (1998). PDDIL — The Planning
Domain Definition Language. Draft.

Selman, B., Kautz, H., and Cohen, B. (1994). Noise
Strategies for Local Search. Proc. AAAI-9j, Seattle,
WA/ 337-343.



