Exploiting Variable Dependency in Local Search
Henry Kautz, David McAllester, and Bart Selman

AT&T Laboratories
180 Park Avenue
Florham Park, NJ 07932

{kautz, dmac, selman }@research.att.com

http://www.research.att.com/{kautz, dmac, selman}

Abstract

Stochastic search has recently been shown to be
successful for solving large boolean satisfiability
problems. However, systematic methods tend
to be more effective in problem domains with
a large number of dependent variables: that is,
variables whose truth values are directly deter-
mined by a smaller set of independent variables.
In systematic search, truth values can be effi-
ciently propagated from the independent to the
dependent variables by unit propagation. Such
propagation is more expensive in traditional
stochastic procedures. In this paper we pro-
pose a mechanism for effectively dealing with
dependent variables in stochastic search. We
also provide empirical data showing the proce-
dure outperforms the best previous stochastic
and systematic search procedures on large for-
mulas with a high ratio of dependent to inde-
pendent variables.

1 Introduction

Recent years have seen significant progress in our ability
to solve large propositional satisfiability problems. Ran-
domly generated problem instances have proven to be a
useful tool for testing and developing algorithms. In ad-
dition, however, researchers have now began to develop
and solve propositional encodings of interesting, real-
world problems.
considered a few years ago, because they were thought
to be far too large to be handled by any method. How-
ever, between 1991 and 1996 the size of hard satisfia-
bility problems that could be feasibly solved grew from
ones involving less than 100 variables to ones involving
over 10,000 variables. Now SAT algorithms are being
applied to such problems as constraint-based planning
(Blum and Furst 1995; Kautz and Selman 1996), prob-
lems in finite algebra (Fujita et al. 1993), verification of
hardware and software, scheduling (Crawford and Baker

Such encodings were not even being

1994), circuit synthesis and diagnosis (Larrabee 1992),
and many other domains, including natural language
processing and machine learning. In fact, one can ar-
gue that the value of research on propositional reasoning
ultimately depends on our ability to find suitable SAT
encodings of real-world problems.

Propositional encodings of problems from other do-
mains turn out to have distinct computational properties
from random-CNF instances. Encoded problems con-
tain structure that arises both from the semantics of the
source problem domain, as well as from the particular
conventions used to encode the problem. Algorithms
that take advantage of the kinds of structure that ap-
pear in a particular class of encoded problems can often
offer a higher level of performance.

Some of the structure in a problem instances is re-
vealed in its syntactic form. In particular, one can ex-
tract many of the dependencies between variables. SAT
encodings of real-world problems often contain large
numbers of variables whose values are constrained to be
a simple Boolean function of other variables. We call
these dependent variables. Variables whose values can
not be easily determined to be a simple function of other
variables are called independent. For a given SAT prob-
lem there may be many different ways to classify the
variables as dependent and independent. But for most
SAT encodings there is a natural division between de-
pendent and independent variables, which is expressed
by conventions for encoding definitions.

A search algorithm for SAT testing can greatly re-
duce its search space by indentifying and effectively han-
dling defined variables. Since an assignment to the inde-
pendent variables determines a truth value for each de-
pendent variable, the number of assignments that need
be considered by even an exhaustive search is at most
27 where n is the number of independent variables. Tt
is fairly straightforward to take advantage of variable
dependencies in systematic search, such as the Davis-
Putnam procedure (Davis et al. 1962). In systematic
search methods, basic dependencies are propagated in



linear time using unit propagation. Branching on defined
variables can be avoided by using a variable-ordering
heuristic that places the independent variables ahead
of the dependent ones. Further improvements can be
made through the use of even more sophisticated heuris-
tics based on detecting and propagating definitions (Silva
1995).

By contrast, it appears to be more difficult to establish
that identification of defined variables improves stochas-
tic search. Local search procedures for satisfiability (Sel-
man et al. 1992, Gu 1992) take longer to propagate de-
pendencies. A rough rule of thumb is that about O(n?)
steps are required for the values of the dependent vari-
ables to become aligned with independent variables. Al-
though there is no complete theoretical explanation for
this observation, there is an intuition that it comes from
the time required to propagate dependencies through
Horn clauses involved in the definitions. It 1s known that
stochastic search solves sets of Horn clauses in expected

O(n?) time (Papadimitriou 1991; 1993).)

The contribution of this paper is to describe a method
for improving local search for problems with defined vari-
ables. We will describe the architecture of the Dagsat
system, 1n which search concentrates only on the inde-
pendent variables, and a fast mechanism handles depen-
dent variables. Dagsat can be viewed as a generalization
of previous local search algorithms for clausal satisfiabil-
ity. There have been some previous work on generalizing
these algorithms, particularly that by Sebastiani (1994)
on non-clausal GSAT. Qur approach differs from Sebas-
tiani’s in at least two key aspects:

e The structures Dagsat handles are strictly more gen-
eral than non-clausal propositional logic. Any non-
clausal formula can be handled by Dagsat without
an increase in size, but converting from Dagsat’s
format to non-clausal CNF (over the same set of
independent variables) can lead to an exponential
blowup. Another way of stating this is that non-
clausal formulas are the special case where each de-
fined variables is only used a single time.

e As we will describe below, Dagsat is able to restrict
its search space by only selecting variables to flip
that contribute to the falsehood of the formula under
consideration.

Finally, we will also present empirical evidence that
Dagsat efficiently solves large, hard problems containing
a high ratio of dependent to independent variables. Qur
initial benchmarks include encodings of protocol verfica-
tion and circuit synthesis problems, as well as a set of
randomly-generated structured problems.

2 Boolean Dags

We are concerned with the problem of determining sat-
isfiability for Boolean formulas represented as directed
acyclic graphs (dags). More formally, we take a defini-
tion be an expression of the form # = F where I is either
a conjunction or disjunction of literals (where a literal is
either a Boolean variable or the negation of a Boolean
variable). For example, © = (yV =z V w) defines 2 to be
the disjunction of y, =z, and w. We define a Boolean dag
to be a nonempty finite sequence of definitions with the
property that for each definition # = F in the sequence,
x does not appear in F or in any prior definition. This
last constraint ensures that definitions are well founded
— no variable is defined in terms of itself. Variables
appearing on the left hand of definitions are called the
defined variables and all other variables are called the
wndependent variables. Note that if we are given a truth
assignment to the indepent variables then a truth as-
signment for all defined variables can be computed by
“executing” the definitions in the order given. The last
variable defined in the dag will be called the root variable
of the dag. A truth assignment to the independent vari-
ables satisfies a given Boolean dag if the corresponding
computed value of the root variable is true. A Boolean
dag is satisfiable if it is satisfied by some truth assign-
ment to the independent variables.

A Boolean dag represents a Boolean expression in-
volving only the independent variables. This expression
can be derived by starting with the root variable and it-
eratively replacing defined variables by their definition.
However, the written length of this Boolean expression
can be exponentially longer than the dag. Consider the
sequence of definitions #1 = (yo V o), 11 = (2o A Yo),

v & = (8n—1 VUn-1), Yn = (&n—1 Ayn—1). This dag
has only two independent variables and is satisfied when
they are both true. However, the dag represents a for-
mula with binary operations and uniform depth n — the
written length of this formula is O(2") even though the
size of the dag is O(n). Exponential explosions in the
written length of the represented formula is common in
practice. Hence any file format for representing Boolean
dags should be based on sequences of definitions rather
than textual representations of highly nested Boolean
expressions.

Our implementation uses a standard file format for
CNF SAT problems to represent Boolean dags. We take
the representation of the definition 2 = (y1 A ... A yn)
to be the following sequence of clauses.

xV-oy V... Vay,, —zVy, ... zVy,
Similarly, we take the representation of x = (y1 V ... V
yn) to be the following.

—zV-y1 V... V=Y, Vy, ... xVyy



We take the SAT representation of Boolean dag to be
the sequence of these clausal representations of the defi-
nitions in the dag followed by a unit clause stating that
the root variable must be true. Note that there is a one
to one correspondence between the assignments satisfy-
ing a given Boolean dag and the assignments satisfying
its SAT representation. In particular, the SAT repre-
sentation is satisfiable if and only if the Boolean dag
is satisfiable. It should also be clear that any Boolean
dag can be easily recovered from its SAT representation.
Given the SAT representation of Boolean dags we can
use the standard file formats for CNF SAT problems
as a file format for Boolean dags. This allows standard
tools for CNF SAT problems, such as existing systematic
solvers, to be used directly on Boolean dags. Our imple-
mentation also allows an arbitrary CNF SAT problem
to be interpreted as a Boolean dag — we heuristically
find “definitions” in the SAT problem and then define
the root variable to be the conjunction of all the clauses
which are not parts of the heuristically recovered defini-
tions. Of course, this heuristic recovery is done in such
a way that a given dag is guaranteed to be uniquely re-
covered from its SAT representation.

3 The Walksat Architecture

The Walksat (or WSAT) architecture defines a class of
local search procedures for (CNF) Boolean satisfiability.
At each point in time we have a particular complete truth
assignment to the Boolean variables. In the Walksat ar-
chitecture we select a violated clause; select a variable
occuring 1n that clause; and then flip the value of the
selected variable. Different procedures within this archi-
tecture use different heuristics for selecting clauses and
variables. In most applications it seems best to select
the violated clause at random and then select a literal
in noisy manner with a bias favoring choices leading to
a lower number of violated clauses. The number of vi-
olated clauses is used as the cost (or energy) function
guiding the stochastic search.

The Walksat architecture seems to be uniformly su-
perior to the earlier GSAT architecture which used the
same cost function but flipped variables not occuring in
violated clauses (Selman et al. 1994). The Walksat ar-
chitecture can be viewed as a definition of a local search
space with locally irreversable moves — if a given vari-
able occurs in only one violated clause, and flipping that
variable does not lead to new violated clauses, then the
flip cannot be immediately undone. However, for any
solvable problem there is always a path to a solution
— for any violated clause there exists a choice of lit-
eral which reduces the Hamming distance to the nearest
solution by one. Tt is also interesting to note that, al-
though the Walksat moves are irreversable, there always

remains a path to a global optimum in any MAXSAT
problem — if we are not at a global optimum then there
is a violated clause which is satisfied in the nearest (in
Hamming distance) global optimum. So there always
exists a local move that reduces the Hamming distance
to the nearest global optimum in a MAXSAT problem.
The irreversibility of the local moves implies that the set
of states (truth assignments) reachable from the current
point can become smaller, but never larger, as the search
progresses. Although there is guaranteed to always be
an accessible solution, the set of accessible states can
“ratchet down” so that the search space becomes smaller
over time.

4 Boolean Dags as Clause Sets

The first step in generalizing the Walksat architecture is
defining an appropriate cost function to guide the local
search. In the Walksat architecture the cost function is
the number of violated clauses. But consider the SAT
representation of a given Boolean dag. All clauses in the
SAT representation are parts of definitions except the fi-
nal unit clause which expresses the constraint that root
variable must be true. If we take an arbitrary truth as-
signment to the independent variables, then compute a
value for each defined variable according to its definition,
all clauses become satisfied except possibly the final unit
clause. This means that for any truth assignment to the
independent variables the number of violated clauses can
be driven down to one simply by computing the appror-
iate value for the defined variables. Clearly the number
of violated clauses in the SAT representation is not a
good cost function.

To define a more useful cost function we first rewrite
the dag into a certain normal form. First, we force the
root of the dag to be a conjuction — if the root is a
disjunction then we construct a new root which is de-
fined to be a conjunction with a single argument which
is the original root. Next we expand argument of the
root which are themselves conjunctions. For example,
letting r be the root variable, we replace

2= A AY), o = ARALL)

by

2= (A AY), o PE(CARALAYR AL

(note that 2 may be used elsewhere). By repeatedly ap-
plying this and other transformations we can, in linear
time, put the dag in a form where the root is a conjunc-
tion of “top level clauses” each of which is a disjunction
of at least two literals. If a unit disjunction appears as
a top level constraint, then the dag can be simplified by
replacing all occurances of the variable involved by the



appropriate truth value and promoting the definition of
that variable, if it has one, to a top level constriant. We
call this “root normal form”.

A dag in root normal form can be viewed as a sequence
of definitions plus a set of top level clauses. Any truth
assignment to the independent variables induces a truth
assignment on all variables. We can now construct a
generalization of Walksat. Each truth assignment is de-
termined by the truth of the independent variables. For
each truth assignment we can count the number of vio-
lated top level clauses and use this as the cost function
in guiding the stochastic search. We can now repeatedly
select a violated top level clause and then heuristically
select an independent variable implicitly appearing in the
violated clause — we say that x appears implicitly in an
expression F if it either appears in F (in the normal
sense) or there exists a variable y appearing in F with
definition y = E’ and z appears implicitly in E’. This
set of local moves is similar to Walksat’s in that moves
can be locally irreversable and yet from any assignement
there exists a sequence of local moves leading to a so-
lution. In the full Dagsat archicture the set of possible
local moves is restricted even further.

Whenever an independent variable is flipped the de-
pendent variables are updated so that each dependent
variable has the truth value given by its definition. The
update of the truth values can be done incrementally.
We say that a variable undergoes a net change during
an update if the truth value after the update is different
from the truth value before the update. We say that a
variable y with defimition y = E requires consideration
if some variable appearing (explicitly) in E undergoes a
net change during the update. One can use a priority
queue (a heap) to process the variables requiring consid-
eration in the order in which their definitions appear in
the dag. This way we only visit variables requiring con-
sideration, ¢.e., those whose definitions involve variables
undergoing a net change. Furthermore, each variable re-
quiring consideration is only visited once. If we assume
that definitions have a bounded number of arguments
(say two) then the time required for this update opera-
tion is nlog n where n is the number of variables requir-
ing consideration (each heap operation can take O(logn)
time).

5 The Dagsat Architecture

The Dagsat architecture is defined by the set of local
moves allowed from a given truth assignment. In this
section we define the architecture by defining the more
restricted set of allowed moves mentioned in the previous
section.

Restricted moves, and various other concepts, are
most easily described by assuming the dag is in posi-

tive normal form. Intuitively, we achieve positive normal
form by using de Morgan’s law to push negations to the
leaves of the dag. More formally, in a positive normal
form dag the top level constraints are all disjunctions of
defined variables and each definition is of one of the fol-
lowing forms where each y; must be a defined variable
and z must be an independent variable.

= (A AY), 2= V... V), 2=z, 2=z

We now describe how to put any Boolean dag into pos-
itive normal form in linear time. For each variable z
we introduce two new variables ' and x’ representing x
and its negation respectively. For any literal L we let =L
be the opposite literal. For example, =(—z) is the literal
2. We define I’ by the condition L’ is =’ if L is x and
L' is " if L is —z. For any literal L we have that L’ is
a variable. If z is an independent variable then we add
the definitions z/ = z and 2z’ = —z. Now each definition
of the form # = (L1 A ... A Ly,) in the original dag is
replaced by the two definitions 2’ = (L) A... A L) and
2" =((-L1) V...V (—Ly)"). An analogous transforma-
tion is used for disjunctive definitions. Finally, each top
level clause Ly V...V Ly is replaced by Li V...V L.

Conversion to positive normal form greatly simplifies
the discussion of Dagsat algorithms and heuristics. How-
ever, more complex versions of all such algorithms and
heuristics can be constructed for arbitrary dags. Conver-
sion to positive normal form is not necessary in practice
and the algorithms generally run more efficiently on the
original dag which generally involves only half as many
variables. But for the sake of clarity, we now only con-
sider dags which have been converted to positive normal
form.

As indicated in the previous section, the Dagsat ar-
chitecture allows even fewer local moves than those de-
scribed in the previous section. However, the Dagsat
architecture preserves the property that from any as-
signment there 1s a local move reducing the Hamming
distance to the nearest solution (as measured on the in-
depenent variables). As before, a local move is made
by first selecting a violated top level clause. In a pos-
itive normal form dag this clause is always of the form
y1 V...V y, where each y; is a defined variable which
is false under the current truth asignment. One then
selects a source of falsehood for some y;. If y is defined
by y = (21 A ... A x;) then a source of falsehood for y is
selected by selecting a source of falsehood for some cur-
rently false x;. If y 1s a currently false variable defined
by y = (z1V...Va;) then each z; must be currently false
and we select a source of falsehood for y by selecting a
source of falsehood for some x;. Finally, if y is defined
by y = L where L is a literal involving the independent
variable z then z is the unique source of falsehood for y.
In general the sources of falsehood for a currently false



variable y will be a proper subset of the variables that
appear implicitly in the definition of y. Thus, restricting
the allowed local moves to sources of falsehood reduces
the number of allowed local moves. It is interesting to
note that the set of allowed local moves could be equiv-
alently defined simply as the set of sources of falsehood
for the root where the root variable is defined as the
conjunction of the top level clauses.

Note that for each violated top level constraint some
source of flasehood for that constraint must have the
opposite value in the nearest solution (under Hamming
distance). So, as in Walksat, there always exists a local
move that reduces the Hamming distance to the nearest
solution.

6 The Virtual Clause Heuristic

A heuristic within the Dagsat architecture is a method
of selecting a local move. We have experimented with a
variety of heuristics and one we call “vclause” has turned
out to be the most successful on the problems we tried.
A given Boolean dag defines a set of “virtual clauses”
on the independent variables. This is the set of clauses
that would be derived by converting the dag to a CNF
formula by repeatedly distributing disjunctions over con-
junctions in the expression represented by the dag. In
general there can be exponentially many virtual clauses.
However, it is possible to efficiently compute a single
violated virtual clause. The vclause heuristic selects a
local move by first constructing a violated virtual clause
and then selecting a variable in that clause using some
standard Walksat heuristic. Various choices of the pos-
sible Walksat heuristic leads to variations on the vclause
heuristic. For example, the vclause-G heuristic uses the
G Walksat heuristics to select a literal from the con-
structed violated clause. Our most successful heuristic
was vclause-tabu which uses the tabu Walksat heuris-
tic. In the tabu Walksat heuristic a variable is called
tabu if it has been flipped within the last £ moves where
t is the “tenure” parameter of the heuristic. The tabu
heuristic selects, from among the nontabu literals in the
(virtual) clause, the literal that minimizes the cost of the
next assignment (ties are broken by randomly selecting
a member of the set best choices). If all literals are tabu
then a literal is selected at random. All effective Walksat
heuristics measure the change in the number of violated
clauses that would occur for each possible choice of lit-
eral from the clause. In our implementation this is done
by actually flipping each variable in the virtual clause
and measuring the change in the number of violated top
level clauses.

To construct a violated virtual clause on the indepen-
dent variables we first randomly select a violated top
level clause y; V...V y,. For each y; we then construct

a clause from the expansion of the formula represented
by y; and return the union of these clauses. If y 1s de-
fined by y = (1 A ... Axp) then to construct a violated
clause from the expansion of y we select a currently false
x; at random and recursively construct a violated vir-
tual clause from the expansion of z;. If y is defined by
y = (21 V...V x,) then to construct a violated clause
from the expansion of y we recursively construct a vio-
lated clause from the expansion of each x;, and return
the union of the clauses constructed in this way. If y 1s
defined by y = L where L is a literal involving an in-
dependent variable, then we return the singleton clause
containing L.

7 Conspiracy Numbers

Most of the properties of Boolean dags described in
the previous sections can be computed directly from the
single root variable of the dag without treating the root
as a special case. For example, the local moves can be
defined as the set of sources of falsehood of the root
A virtual clause can be computed from the
root variable by simply treating the root as a defined
conjunction. But the cost function is defined, essentially,
to be the number of false children of the root. This treats
the root as a special case. Conspiracy numbers give a
cost function which does not treat the root variable as a
special case. Conspiracy numbers were first introduced
as a measure of confidence in the min/max value of nodes
in game search trees. They have been used effectively in
“solving” a variety of simple games.

variable.

The conspiracy number of a defined variable is a kind
of generalized “violation count” for that variable. The
conspiracy number of a variable defined to be a con-
junction of other variables is always at least as large as
the number of false children. So the conspiracy num-
ber of the root variable is always at least as large as
the number of violated top level constraints. But if one
particular top level constraint is itself very difficult to
satisfy then this makes the root variable even more dif-
ficult to satisfy since all top level constraints must be
satisfied. More generally, the conspiracy number of any
variable that is currently true is 0. If y is defined by
y = (#1 A ... A zy) then the conspiracy number of y is
sum of the conspiracy numbers of the z; (which equals
the sum of the conspiracy numbers of the x; which are
currently false). Tf y is defined by y = (21 V ...V 2,)
then the conspiracy number of y is the minimum of the
conspiracy numbers of the variables x;. If y is currently
false and defined by y = L where L is a literal involving
an independent variable then the conspiracy number of y
is 1. When a variable is flipped the conspiracy numbers
can be incrementally updated in much the same way as
the truth valuesin O(nlogn) time where n is the number



formulas DAGSAT WALKSAT NTAB

id. | ind.var | dep.var | top.cls. || time flips | time flips | time | bcktr. | u.prop.
strucl 25 475 400 || 0.02 44 0.3 35x103 0.1 194 | 12x103
struc2 50 450 850 8.3 13,903 | 16.5 2x10° 0.6 990 | 47x103
struc3 50 950 850 1.5 1,649 | 16.9 4x10° 7.9 10,289 | 0.9x10°
strucd 75 1425 1000 1.7 1,833 | 23.1 5x 108 41 | 36,542 4x10°
struch 100 1900 1500 4.9 4,336 | 105 | 23x10° — — —
struc6 100 7900 1000 1.9 559 — — — — —
pipe 98 2695 47 0.4 599 5.5 | 0.5x10° — — —
add 121 352 242 68 | 0.1x10° 0.1 1927 — — —

Table 1: Results of on a range problem instances.

of variables requiring examanination (as in the method
of updating truth values).

Although the conspiracy number of the root seems like
the right cost function, in most problems we tried this
conspiracy number was almost always equal to the num-
ber of false children of the root, i.e., the number of vi-
olated top level constraints. Those problems where the
conspiracy numbers were significantly larger than the
number of top level violations, and hence where conspir-
acy numbers might have provided more guidance, proved
to be too difficult to solve using the methods we tried.
It remains to be seen whether conspiracy numbers can
be used to effectively in local search.

8 Empirical Evaluation

In Table 1, we present an empirical evaluation of Dagsat.
The “struc” instances are randomly generated struc-
tured SAT problems. They consist of a ground layer of
independent variables, followed by layers of definitions.
The first instance, “strucl”, consists of 25 independent
variables, followed by 19 layers of definitions, each con-
taining 25 defined variables. Each definition is either an
“and” or an “or” node (with equal probability), with two
children from any of the variables in the layers below. Fi-
nally, the top level clauses each contain 5 variables, cho-
sen from any of the variables. We chose this particular
structure because it is similar to the structure observed
in SAT encodings of state-based planning problems.

We compared the performance of Dagsat against
Walksat and a highly optimized implementation of the
Davis-Putnam Procedure called “NTAB” (Crawford and
Auton 1993; 1996). The parameters of both Dagsat and
Walksat were tuned by hand. Dagsat used the vclause-
tabu heuristic, with a tabu length of 3, and up to 100,000
flips per run. Walksat used a noise level of 20%, and up
to 50,000,000 flips per run. The success rate (chance
that a single run would solve the problem) was 95% for
Dagsat and 90% for Walksat.

We see that problems struct1 to struct6 grow increas-
ingly harder. On the harder instances Dagsat clearly

outperforms the other algorithms both in terms of abso-
lute time and the number of flips (or backtracks). (All
experiments were run on a 200Mhz R10000 SGI Chal-
lenge. Instances and code are available from the au-
thors.) An hypen in the table indicates the method was
run for over an hour without success.

It is interesting to note how the dependencies affect
the performance of Dagsat and Walksat. The number of
flips Dagsat performs appears to be roughly quadratic in
the number of independent variables. By contrast, the
number of flips Walksat requires is closer to quadratic in
the total number of variables. We also see that NTAB
does very large numbers of unit propagation, an indica-
tion of the high number of dependent variables.

The next problem instance, “pipe”, is an encoding of a
protocol verification problem. Dagsat still dominates the
other methods: Walksat still does well in terms of abso-
lute time, even though 1t requires a much larger number
of flips. Finally, “add” is an encoding of a circuit synthe-
sis problem. Walksat clearly outperforms Dagsat on this
instance. This problem has a much lower ratio of defined
to independent variables, which may explain why Dagsat
cannot take much advantage of the problem’s structure.
Note that NTAB is also unable to uncover the structure
in this instance.

9 Conclusions

We have presented a architecture for extending stochas-
tic local search methods to Boolean satisfiability prob-
lems containing definitional structure. This approach
generalizes earlier work on both clausal and nonclausal
satisfiability testing. The method was designed to ad-
dress the problem of the large number of dependent vari-
ables that naturally occur in SAT encodings problems
from other domains.

Finally, we reported on initial experiments with our
implementation, that showed the approach outperforms
state of the art systematic and stochastic algorithms on
problems with a high ratio of defined variables to inde-
pendent variables.



References

Battiti, R., and Protasi, M. (1996). Reactive Search, a
history-based heuristic for MAX-SAT. Technical report,

Dipartimento di Matematica, Univ. of Trento, Italy.

Blum, A. and Furst, M.L. (1995).
planning graph analysis.
Canada.

Crawford, J.M. and Auton, L.D. (1993) Experimental Re-
sults on the Cross-Over Point in Satisfiability Problems.
Proc. AAAI-93, Washington, DC, 21-27. Extended ver-
sion, Artificial Intelligence (1996).

Crawford, J. and Baker, A.B. (1994). Experimental results
on the application of satisfiability algorithms to schedul-
ing problems. Proc. AAAI-9/, Seattle, WA.

Dechter, R. and Rish, I. (1994). Directional resolution: the
Davis-Putnam procedure, revisited.  Proc. KR-94,
Bonn, Germany.

Dubois, O. , Andre, P., Boufkhad, Y., and Carlier, J. (1996).
A-SAT and C-SAT. Dimacs Series in Discrete Mathe-

matics and Theoretical Computer Science. (to appear)

Gent, 1., and Walsh, T. (1993). Towards an understanding
of hill-climbing procedures for SAT. Proc. AAAI-93,
28-33.

Fast planning through
Proc. TJCAI-95, Montreal,

Gu, J. (1992) Efficient local search for very large-scale satis-
fiability problems. Sigart Bulletin 3(1), 8-12.

Kautz, H. and Selman, B. (1992) Planning as Satisfiability.
Proc. FECAI-92, Vienna, Austria, 1992, 359-363.

Kautz, H. and Selman, B. (1996) Pushing the envelope:
planning, propositional logic, and stochastic search.

Proc. AAAI-96, Portland, OR, 1996.

Kautz, H., McAllester, D., and Selman, B. (1996). Encoding
Plans in Propositional Logic. In preparation.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Op-
timization by simulated annealing. Science, 220 (1983)
671-680.

Mazure, B., Sais, L., and Gregoire, E. (1996). Bootsing
Complete Techniques Thanks to Local Search Methods.
Proc. Math € Al-96.

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P.
(1992) Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems. Ar-
tificial Intelligence, (58)1-3, 1992, 161-205.

Papadimitriou, C.H. (1991). On selecting a satisfying truth
assignment. Proc. of 32th Conference on the Founda-
tions of Computer Science, 1991, 163— 169.

Papadimitriou, C.H. (1993).
Addison Wesley, 1993.
Sebastiani, R. (1994). Applying GSAT to Non-Clausal For-

mulas (Research Note). Journal of Artificial Intelligence
Research (JAIR), 1, 309-314.

Sebastiani, R. (1996). Personal communication.

Selman, B. , Kautz, H., and Cohen, B. (1994). Noise Strate-
gies for Local Search. Proc. AAAI-94, Seattle, WA,
1994, 337-343.

Selman, B., Levesque, H., and Mitchell, D. (1992). A New

Method For Solving Hard Satisfiability Problems. Proc.
AAAI-92, San Jose, CA, 1992, 440-446.

Computational Complexity.

Silva, J.P.M. (1995). Search Algorithms for Satisfiability
Problems in Combinatorial Switching Circuits. Ph.D.
Thesis, Univ. of Michigan.

Trick, M. and Johnson, D. (Eds.) (1993) Proc. DIMACS
Challenge on Satisfiability Testing. Piscataway, NJ,
1993. (DIMACS Series on Discr. Math.)



