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Abstract

We are investigating how sensors can improve a portable
reminder system (PEAT) that helps individuals accom-
plish their daily routines. PEAT is designed for individ-
uals who have difficulty remembering when to perform
activities because of cognitive impairments from strokes
or other brain injuries. These impairments can cause a
significantly reduced quality of life for afflicted individ-
uals and their caregivers. PEAT provides assistance by
planning a schedule of activities for a user, and by cue-
ing the user when activities should begin or end. One
limitation of PEAT is that it requires the user to manually
indicate when an activity starts or stops, which causes
unnecessary cues for a user who needs only occasional
reminders. By incorporating feedback from reliable sen-
sors, the software can automatically infer which activity
the user is performing. With this information, we expect
that PEAT will be able to cue the user more effectively,
by not cueing the user when sensors indicate that activ-
ities have already started or stopped, and by providing
compliance cues that remind the user when steps of an
activity have been forgotten. We present a description of
the system, implemented scenarios, and a discussion of
potential benefits and pitfalls with this approach.

Introduction
Impaired cognitive function presents a significant chal-
lenge for many elderly persons. Common failures in-
clude failing to start an activity, stalling after an ac-
tivity, forgetting a required component, or performing
the activity incorrectly. Although everyone experiences
occasional lapses, when these lapses become chronic
then activities of daily living (ADLs) become infeasi-
ble without regular assistance from a caregiver. This
presents a significant burden to the patient, the care-
giver, and the health-care system.

PEAT (the Planning and Execution Assistant and
Trainer) is a cognitive orthosis which runs on a cell
phone and helps compensate for executive function im-
pairment. Executive functions refer to cognitive abili-
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ties that are required for goal-directed behavior. Peo-
ple rely on executive functions for planning and car-
rying out daily activities, staying on track by inhibit-
ing distractions, adjusting to novel situations and re-
covering from performance errors (Levinson 1995a).
Many individuals with mild cognitive impairment can
still function independently, given appropriate external
cues. The role played by a caregiver or PEAT is to com-
pensate for the user’s impaired executive function by
monitoring the user’s behavior and providing reminders
when required to ensure that activities are performed
correctly. We can think of the performance of activities
as a two level system, with a set of low-level reactive be-
haviors capable of complex environmental interaction
through sensory motor coordination, and with a high-
level deliberative supervisor that recognizes behaviors,
enforces constraints, and intervenes when appropriate.

In previous work, the primary focus of PEAT has
been on scheduling and enforcing temporal constraints
between activities (Levinson 1997). PEAT’s perception
of what activity the user is performing is limited to self-
reports where the user indicates the current activity on
the GUI. The purpose of this work is to explore how
PEAT can incorporate sensors to automatically infer the
current activity and thus provide more appropriate cues.

Augmenting PEAT with sensors provides several po-
tential benefits to the user. First is a reduction in ir-
relevant cues for starting and stopping activities when
an activity classifier can infer the user’s current activity.
Second, the sensors permit therapy compliance cueing
where PEAT can remind a user to use an object as part a
task (for example, to use a cane while getting the news-
paper). Third, PEAT can cue the user when they are
stalled or perseverating in a task. Fourth, PEAT can as-
sist with performance errors such as going to the wrong
location or picking up the wrong object. Finally, there
is the possibility for therapeutic monitoring, where logs
from PEAT can be used to infer how often the user
used the cane while walking, or how much time the user
spent outside.

To the best of our knowledge, this is the first portable
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Figure 1: Several technologies are integrated in this project. (a) PEAT runs on a cell phone. PEAT cues the user using
dialog boxes. (b) A wearable RFID reader is used to detect handled objects. (c) A pressure mat detects that someone
is at a known location. The sensors transmit data through wireless interfaces.

reminder system to “close the loop” by using sensors to
detect what the user is doing instead of forcing the user
to directly respond to the device. Moreover, we demon-
strate that these improvements are feasible in real-time
with the limited computation and memory available on
a cell phone. The following sections provide a more
detailed description of PEAT and our progress on this
project, along with some implemented scenarios. We
conclude with a discussion of both related work and
open issues.

Technologies
The PEAT software is sold by Attention Control Sys-
tems and runs on Windows Mobile platforms, including
cell phones (Figure 1). The intended users are people
with impaired executive functions who have difficulty
remembering when and how to perform daily activities.
Primarily, PEAT provides assistance by maintaining a
schedule of a user’s activities and automatically cue-
ing the user when activities need to be started, resumed,
or completed. A distinctive aspect of PEAT is the use
of reactive planning to adjust a user’s schedule when
an activity takes an unexpected amount of time, or the
user updates the calendar. PEAT monitors activity du-
rations and warns the user about approaching deadlines
and scheduling conflicts.

PEAT represents an instance of an activity as a task.
Each task has temporal properties such as a start time
and expected duration. As the user progresses through
their day and updates the status of the current task,
PEAT reactively updates the day’s schedule, and ad-
vises the user when tasks should start or stop, when
conflicts arise, or when decisions must be made.

A federally-funded, three-year randomized con-
trolled trial to evaluate PEAT’s efficacy with 100 sub-
jects has recently been completed (Fisch et al. 2007),
and a similar study is beginning at the University of

Maastricht in the Netherlands. Preliminary results show
that PEAT provides benefits over a traditional therapy of
pen and paper schedules.

In order to provide effective cues to users with cogni-
tive limitations, the original version of PEAT provides
all cues in modal dialog boxes that simplify the user in-
terface by requiring the user to respond before permit-
ting any further interaction with the device. However,
this is the only manner in which PEAT is able to track
the user’s activities. Thus, to benefit from PEAT, the
user is forced to respond to two cues for every sched-
uled activity to inform PEAT of progress. This cueing
may be reassuring to some users (PEAT is managing the
schedule), but may be annoying to users who make only
occasional mistakes (the cost of responding to unneces-
sary cues outweighs the perceived benefit from when
PEAT catches an error). Moreover, the user’s executive
function could deteriorate through excessive reliance on
reminders from PEAT. Reducing the number of unnec-
essary cues that PEAT generates could reduce the risk
of learned dependency.

We are extending PEAT with sensors in order to au-
tomatically detect when a user is performing an activ-
ity. The sensors provide input to activity classifiers that
infer which activity the user is currently attempting to
perform. A variety of sensors are currently available,
including RFID, pressure mats, and GPS. Each sensor
has distinct characteristics with respect to availability,
coverage and error rates. We are focusing on sensors
with a low false positive error rate. The sensor cover-
age is effectively disjoint for GPS signals (which are
only available outdoors) and pressure mats (which are
intended for indoor use). Hence, although multiple sen-
sors are available, they may not all be available simulta-
neously or for a single activity. The absence of a sensor
observation can be managed by the introduction of a
missing observation symbol into the sensor stream. The
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GPS has two symbols for missing observations, one to
handle the case when GPS is turned off, and one for
when GPS is turned on but no signal is being received.

We have implemented interfaces to PEAT for several
sensors. The RFID reader is a prototype developed by
Intel Research Seattle and has a bracelet form-factor.
The RFID reader scans RFID tags and then transmits
the identifiers in real time through a wireless ZigBee
network. RFID tags are placed on several objects in
the environment, and whenever the bracelet is within a
few inches of a tag, the reader is able to scan the tag’s
unique identifier. The pressure mats come from Trossen
Robotics and are connected to PEAT through a Blue-
tooth network. The pressure mats provide strong evi-
dence that someone is working in a certain area. The
iPaq cell phone running PEAT has on-board GPS capa-
bilities. The GPS provides a secondary source of loca-
tion information.

Theory
PEAT compensates for a user’s impaired executive
function by monitoring the execution of user activities
and intervening when required to enforce constraints
on sequences and deadlines. Previously, PEAT em-
phasized managing constraints and generating effective
cues. PEAT’s perception of the user’s behavior was lim-
ited to self-reports.

The introduction of sensors necessitates some
changes to PEAT. The structure of the modified PEAT
system can be represented by the tuple

<X, AC, CM,CG>

consisting of a state vector X and separate modules
for activity classification, constraint management, and
a cue generation. The state contains the latest sensor
readings, the current attempted activity, and the activity
schedule. By incorporating sensors into the platform,
the new activity classification module provides the per-
ception, while the constraint manager compares the ac-
tivity that the user is attempting to perform with the ac-
tivity’s constraints. When errors are detected, a cue is
generated based on the user’s cueing preferences. Note
that the activity classifier does not need to detect errors
in the performance of a task, nor does it need to generate
appropriate cues, as these functions are provided by the
constraint manager and the cue generator respectively.
This provides a clear separation of concerns between
the modules.

State Vector
The state vector contains multiple types of information.
It contains the most recent observations from each sen-
sor. For example, the last object touched was the coffee
mug and the last location was the kitchen. It contains

the CurrentActivity as estimated by the activity clas-
sification module. It also contains the current schedule
of activities.

Activity Classification
Activity classification (AC) using RFID sensors can be
quite accurate (Patterson et al. 2005). Moreover, posi-
tioning sensors such as GPS or pressure mats provide a
valuable independent source of information, when they
are available.

Given observation streams from sensors, activi-
ties can be classified with a hidden Markov model
(HMM) (Rabiner 1989). In a simple HMM for activ-
ity recognition, there is one state per activity, and each
activity has some probability of generating the current
sensor observations. Formally, given a set of activities
A and a set of observations O, the probability of having
performed activity at at time t after seeing the observa-
tion ot only requires knowing the probability distribu-
tion over the activities at the previous time step.

P (at|o1,...,t) ∝

P (ot|at)
∑

at−1∈A

P (at|at−1)P (at−1|o1,...,t−1)

At each time-step, the best estimate of the current activ-
ity is updated in the state vector. The estimate is qualita-
tive, either indicating that the activity classifier is con-
fident that the activity is currently being attempted or
indicating that the current activity is ambiguous when
the classifier is not confident.

CurrentActivity ∈ A ∪ {Ambiguous}
The classification is ambiguous when the probability of
the most likely activity is falls below a threshold.

Although an HMM is commonly used with the
Viterbi algorithm to find the most likely sequence of
states to explain a sequence of observations, PEAT
needs to know what the user is currently attempting.
This classification must be provided online and in real
time for timely and effective interventions. Hence,
HMM filtering is used instead of the Viterbi algorithm.
Since the observation and activity sequences do not
have to be stored, the filtering algorithm requires only a
constant amount of memory.

The constraint manager also primes the activity clas-
sifier to expect certain activities based on the user’s
schedule. Priming resets the internal HMM model with
a new probability distribution over the plausible activ-
ities at the next time step, but it does not change the
CurrentActivity in the state vector until new obser-
vations are received. Priming is useful for combining
the knowledge from the user’s schedule that only a few
activities are likely to occur with the capability for rec-
ognizing unlikely activities given sufficient evidence.
Priming also allows the activity classification to be ro-
bust to arbitrary reorderings of expected activities.
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We further have developed the Interleaved HMM
(IHMM) (Bai, Modayil, and Kautz 2008) as a better
variant of an HMM for the classification of interleaved
activities. The IHMM augments the state representa-
tion in a simple HMM (one state per activity) with a
richer HMM state representation that stores the last ob-
servation seen in each activity (one state for each ob-
servation symbol for each activity). When activities are
interleaved, the IHMM can better predict the next ob-
servation based on the last observation for the new ac-
tivity. The IHMM has a very large state space, but an
effective approximation reduces the portion of the state
space considered at each time step to be comparable to
that used for the simpler HMM. The introduction of ex-
plicit representations for the interleaving of activities
improves the accuracy for both the Viterbi algorithm
and the filtering algorithms.

Constraint Management
The constraint manager (CM) relies on the
CurrentActivity in the state vector, along with
the current schedule of activities. Even though a user
may be attempting to perform an activity, the user
may not be performing the activity properly. The
CM examines the state vector to determine when an
activity’s constraints are violated and how to respond.

PEAT represents flexible time constraints between
activities. Each activity has an earliest start time, latest
stop time, minimum duration and an expected duration.
The CM manages the schedule of activities and informs
the user when significant changes must be made.

Groups of activities may be collected to form rou-
tines, and routines can be hierarchical. The use of hi-
erarchical routines simplifies the user interface, but all
planning and constraint satisfaction occurs with a flat
representation. The components of a routine may be
unordered, ordered sequences, or disjoint choices.

In addition to the above temporal constraints, the
activity descriptions have been extended to include
sensor-based constraints for preconditions, invariants,
and termination conditions. At each time step, the con-
straints of activities are compared with the data in the
state vector. We list examples of these constraints for
some activities below.
• Activity:GetNewspaper, Preconditions: touch cane
• Activity:MakeCereal, Invariants: location kitchen
• Activity:GetNewspaper, Termination: touch mailbox
These constraints are currently used for updating the
state of the system and for cue generation.

At any point in time, the CM only performs inference
over a limited set of tasks (instances of activities). By
comparing the sensor constraints of the tasks to the state
vector, the CM can update the status of each task to one
of pending, active, paused, or complete. If the AC as-
serts that the user is trying to perform an activity whose

preconditions are false, the CM will automatically cue
the user to achieve the preconditions. In this manner,
PEAT helps the user recover from performance errors
during plan execution.

Cue Generator
While it is useful to cue a user, the user may not want
reminders if they start or stop activities manually. The
user may not want repeated reminders about the the
same issue. Perhaps the user does not want to use their
cane that day. Perhaps the user is currently talking on
the phone and should not be interrupted at the current
time.

The purpose of the cue generator is to provide appro-
priate cues based on the user’s current state as measured
by previous interactions and other sensors. In the cur-
rent implementation, cue generation is based purely on
the user’s preferences, but we expect to extend this ca-
pability to account for the user’s cognitive state.

The addition of sensors offers new possibilities for
cueing. One is to provide confirmation when the ac-
tivity classifier detects that the user has started a new
activity, without requiring a user response. The confir-
mation can be as subtle as a vibration, or more blatant
such as an audible tone, a pre-recorded sound segment
or context-specific synthesized speech. This provides
feedback to the user that the system is operating cor-
rectly without requiring the user to respond to PEAT. In
future work, the user may provide feedback to PEAT to
improve the probabilistic activity models.

Module interfaces
The constraint manager provides top-down priming to
the activity classifier with a list of activities that are
likely causes of the next observation. This constrains
the difficulty of activity classification. Even though an
individual may have hundreds of different activities in
a day, PEAT knows that at any point in time only a few
of these activities are likely. However, given sufficient
evidence the AC can overcome the strong prior belief to
correctly infer that a user is performing some unusual
activity.

Conversely, the AC module infers which activity the
user is attempting to perform, and PEAT can use this to
reduce cues to the user. In particular, cues to start an
activity are not required if the state vector indicates that
the user has already started the activity and all precondi-
tions are satisfied. Also, if the AC infers that a user has
moved on to the next activity, then PEAT can change the
status of the previous activity to paused and PEAT does
not need to cue the user to stop the previous activity if
termination conditions are satisfied.

Example Scenarios
Currently we have a preliminary implementation of the
integrated system. The sensors and cell phone commu-
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Figure 2: This is an example of therapy compliance
with a simulated user. On receiving a sensor reading
from the pressure mat at the doorway, PEAT recognized
that the user was getting the newspaper. Although the
activity of getting the newspaper has a precondition of
using the cane, the user had not recently touched the
cane. PEAT generated a cue to use the cane, and then
the user retrieved his cane.

nicate via wireless networks using a laptop base station.
The probabilities for the activity classifier are generated
manually, although they can be learned. For our ini-
tial implementation, we have combined both location
observations and object observations into a single ob-
servation stream for the activity classifier. We have re-
moved the missing-observation sensor readings, so the
activity classifier only performs updates when new sen-
sor data is received. We have implemented and tested
three example scenarios.

The scenarios are based on a sample morning routine
(Figure 2). In the morning routine, there are three activi-
ties (making tea, making cereal, and getting the newspa-
per), two locations (kitchen and doorway), and several
objects (cane, mailbox, tea, mug, spoon, teapot, bowl,
cereal, fridge, milk). Some objects are shared between
activities and two activities shared the same location.

Baseline. In the baseline scenario, the user does not
wear the bracelet, and goes through a morning rou-
tine with PEAT. Because the sensors are not avail-
able, PEAT cues the user at scheduled times when
activities are expected to start or end. This leads to
six cues to the user (one cue each at the beginning
and the end for each of three activities).

Reduced Cueing. The activity classification module
facilitates reduced cueing. In this scenario, the sen-
sors are enabled and PEAT infers which activity the
user is attempting to perform. This step is non-trivial,
since different activities may share objects and loca-

tions. However activity classification is reliable with
adequate sensor data from a restricted set of plausi-
ble activities. The Ambiguous activity class is used
to avoid premature commitment to an activity when
insufficient evidence has been gathered. With a com-
petent user who does not need reminders to start or
stop activities, this approach generates no cues at all.
For situations where the user stalls and needs a re-
minder, PEAT still provides cues appropriately.

Therapy compliance. Using the activity precondi-
tions, PEAT can also remind a user to use a mobility
aid (such as a cane) when appropriate. We tested this
with an activity (GetNewspaper) which has touching
a cane as a precondition. When PEAT observes that
the user is attempting the activity and has not recently
touched the cane, PEAT generates a cue to the user to
get the cane. The user at this stage can choose to
either return and grab the cane, or continue the ac-
tivity without the cane. In either case, PEAT logs
the attempted intervention and the user’s response.
This style of intervention can help the user remem-
ber instructions from their therapist. Moreover the
user could review the logs with a therapist to monitor
progress.

Related Work
This project builds upon several pieces of related work.
The PEAT system developed from research in unified
planning and execution systems (Levinson 1995b). Pre-
vious research has shown that RFID technology can be
used to reliably recognize ADLs (Patterson et al. 2005).
Previous work also showed that significant locations
can be inferred by clustering GPS signals (Liao, Fox,
and Kautz 2004).

This project is most similar to previous work in the
Autominder project (Pollack et al. 2003). Autominder
also reasons over temporal constraints and performs in-
telligent cueing, either on a PDA or on a mobile robot.
However, this work has not demonstrated how sensors
can be integrated into the scheduling process to provide
more effective cue generation.

Other research has also studied integrated sensing
and cueing. Mihailidis and colleagues (Mihailidis,
Carmichael, and Boger 2004; Boger et al. 2005) are
studying how to provide effective automatic cue gen-
eration for bathroom ADLs, in particular for hand-
washing. Their system senses the user with a vision
system built into the bathroom. The system provides
audible cues and monitors the user’s behavior to infer
both the user’s progress in the task and the user’s cur-
rent cognitive state. This work focuses on building a
very detailed model for one specific ADL, in compar-
ison to the approach in this paper of providing more
limited assistance over many daily activities in many
locations.
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Work on the House n project (Tapia, Intille, and Lar-
son 2004) studies how sensing technology can accu-
rately detect which activity the user is performing. This
work has evaluated the effectiveness of several sensors
in the home. They have discovered issues including
limitations of RFID and the effectiveness of location
sensors for activity classification. PEAT is capable of
using multiple type of sensors and should work with
whichever sensors are available and most effective.

Discussion
Our exploration of the integrated sensing and cueing is
ongoing, and there are several possible extensions for
this work. One is to use automatic activity classification
to facilitate a fine-grained activity specification without
requiring additional interaction on the part of the user.
Individual steps in an activity (such as adding milk to
the tea) could be automatically learned and activities
can be interleaved without requiring additional cues.
Another extension is to modify cue generation based on
a user’s location and current activity (in a movie the-
ater or driving). Another valuable function is to remem-
ber the last locations where objects were sensed, which
could be used to help a user find their cane or their car.
Finally, by extending the activity constraints with post-
conditions, PEAT can form plans by chaining together
activities with matching preconditions and postcondi-
tions.

Although adding sensors to PEAT provides several
benefits, there are potential pitfalls. One is that the
increased nondeterminacy of sensor-contingent cueing
could lower the user’s trust in PEAT’s reliability. Low-
ered trust could also occur if sensor errors lead to in-
correct cues to the user. We believe these issues can
be managed by conservative cueing and reliable sen-
sors. Although we are generating activity models for the
activity classifier manually, learning the models from
training data has been effective in the past (Patterson et
al. 2005). There could be challenges in personalizing
the activity models for individual users which may re-
quire gathering some training data for each user. There
are still many open issues in generating effective cues
over a range of activities. The most appropriate cue
could vary depending on the user’s current state, which
could be subject to both intra- and inter-day variations.
There is also the potential for the deterioration of an
individual’s capabilities from illness progression or in-
creased prosthetic reliance. Finally, there are privacy
issues that can arise if the information about a user’s
activities is not managed effectively. Currently all this
information is stored locally on the cell phone and is
under the user’s control.

Conclusions
We have described how a reminder system can incor-
porate sensors to improve performance. The system

infrastructure is flexible, adjusting to incorporate the
available sensors but functioning even when sensors
are not available. The addition of sensors and activ-
ity classification can improve the cues generated by the
reminder system and extend the system’s functionality
through the introduction of cues for therapy compli-
ance. The integration of the component technologies
demonstrates the feasibility of this approach. Although
further work is required to demonstrate effectiveness in
large deployments, we believe this approach can sub-
stantially improve the quality of life for many users.
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