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Abstract

This paper introduces a hierarchical Markov model that can
learn and infer a user’s daily movements through the commu-
nity. The model uses multiple levels of abstraction in order
to bridge the gap between raw GPS sensor measurements and
high level information such as a user’s mode of transporta-
tion or her goal. We apply Rao-Blackwellised particle filters
for efficient inference both at the low level and at the higher
levels of the hierarchy. Significant locations such as goals or
locations where the user frequently changes mode of trans-
portation are learned from GPS data logs without requiring
any manual labeling. We show how to detect abnormal be-
haviors (e.g. taking a wrong bus) by concurrently tracking his
activities with a trained and a prior model. Experiments show
that our model is able to accurately predict the goals of a per-
son and to recognize situations in which the user performs un-
known activities.

I ntroduction

The advent of low-cost GPS (global positioning system)
technology has led to great interest in developing commer-
cial applications that take advantage of information about a
user’s current location — for example, 911 service. But lo-
calization based on immediate sensor data is only one small
part of inferring a user’s spatial context. In this paper we de-
scribe a system that creates a probabilistic model of a user’s
daily movements using unsupervised learning from raw GPS
data. The model allows one to:

o Infer the locations of usual goals, such as home or work-
place;

o Infer a user’s mode of transportation, such as foot, car, or
bus, and predict when and where she will change modes;

e Predict her future movements, both in the short term (will
the user turn left at the next street corner?) and in terms of
distant goals (is she going to her workplace?);

e Infer when a user has broken his ordinary routine in a way
that may indicate that he has made an error, such as failing
to get off his bus at his usual stop on the way home;

e Robustly track and predict locations even in the presence
of total loss of GPS signals and other sources of noise.

A motivating application for this work is the development
of personal guidance systems that help cognitively-impaired
individuals move safely and independently throughout their
community. Other potential applications include customized
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“just in time” information services (for example, provide the
user with current bus schedule information when she is likely
to need it or real time traffic conditions on her future trajec-
tories) and self-configuring appointment calendars.

Our approach is based on an abstract hierarchical Markov
model (Bui, Venkatesh, & West 2002) of a user from data
collected by a small wearable GPS unit. The model is
compactly represented by a dynamic Bayesian network, and
inference is efficiently performed using Rao-Blackwellised
particle filtering both for the low level sensor integration and
for the higher levels of the hierarchical model.

The main research contribution in this paper is a method
for learning hierarchical predictive models of user location
and transportation mode in an unsupervised manner. While
previous authors described inference in hierarchical models
(Bui, Venkatesh, & West 2002) and learning flat transporta-
tion models (Patterson et al. 2003), our work is the first
to combine the techniques. A second research contribution
are initial results on inferring user errors and deviationsfrom
routine by model selection. We demonstrate the effectiveness
of this approach with an example of the system recognizing
when the user has missed his bus stop.

This paper is organized as follows. In the next section, we
discuss related work. Then, we provide an overview of the
activity model, followed by a description of inference and
learning mechanisms. Before concluding, we present exper-
imental results that show the capabilities of our approach.

Related wor k

Over the last years, estimating a person’s activities has
gained increased interest in the Al, robotics, and ubiquitous
computing communities. (Ashbrook & Starner 2003) learn
significant locations from logs of GPS measurements by de-
termining the time a person spends at a certain location. For
these locations, they use frequency counting to estimate the
transition parameters of a second-order Markov model. Their
approach then predicts the next goal based on the current and
the previous goals. In contrast to our approach, their model
is not able to refine the goal estimates using GPS informa-
tion observed when moving from one significant location to
another. Furthermore, such a coarse representation does not
allow the detection of potential user errors. In our previous
work (Patterson et al. 2003), we estimate a person’s location
and mode of transportation from GPS measurements using a
“flat” model. Since the model has no notion of significant
locations, it is not able to predict the high-level goal of a per-
son. By conditioning on goals and segments of a trip, our



hierarchical model is able to learn more specific motion pat-
terns of a person, which also enables us to detect user errors.

In the context of probabilistic plan recognition, (Bui,
Venkatesh, & West 2002) introduced the abstract hidden
Markov model, which uses hierarchical representations to ef-
ficiently infer a person’s goal in an indoor environment from
camera information. (Bui 2003) extended this model to in-
clude memory nodes, which enables the transfer of context
information over multiple time steps. Bui and colleagues in-
troduced efficient inference algorithms for their models us-
ing Rao-Blackwellised particle filters. Since our model has
a similar structure to theirs, we apply the inference mecha-
nisms developed in (Bui 2003). Our work goes beyond the
work of Bui et al. in that we show how to learn the structure
and the parameters of the hierarchical activity model from
data. Furthermore, our low level estimation problem is more
challenging than their indoor tracking problem. In the con-
text of mobile robotics, (Cielniak & Burgard 2003) apply a
two level model to track and predict the location of people us-
ing a mobile robot equipped with a laser range-finder. Their
model learns a person’s trajectories using a mixtures of Gaus-
sians approach. Due to this representation, they are only able
to track a person along paths the robot has observed during
training. Thus, the technique is not able to track and detect
novel behaviors.

The task of detecting abnormal events in time series data
(called novelty detection) has been studied extensively in
the data-mining community (Guralnik & Srivastava 1999),
but remains an open and challenging research problem. We
present the first results on abnormality detection in location
and transportation prediction using a simple and effective
model selection approach based on comparing the likelihood
of a learned hierarchical model against that of a prior model.

Hierarchical Activity M odel

We estimate a person’s activities using the three level dy-
namic Bayesian network model shown in Fig. 1. The indi-
vidual nodes in such a temporal graphical model represent
different parts of the state space and the arcs indicate depen-
dencies between the nodes (Murphy 2002). Temporal de-
pendencies are represented by arcs connecting the two time
slices £ — 1 and k. The highest level of the model, denoted
goal level, represents the person’s next goal, e.g., her work
place. The trip segment level represents the mode of trans-
portation and the locations at which the person transfers from
one mode to another. The person’s location and motion ve-
locity are estimated from the GPS sensor measurements at
the lowest level of the model.

Locationsand transportation modes We denote by x; =
(I, vy, c) the location and motion velocity of the person,
and the location of the person’s car ! (subscripts  indicate
discrete time). As we will describe in the next section, loca-
tions are estimated on a graph structure representing a street
map. GPS sensor measurements, zj, are generated by the
person carrying a GPS sensor. Since measurements are given

"We include the car location because it strongly affects whether
the person can switch to the car mode.
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Figure 1: Hierarchical activity model representing a person’s out-
door movements during everyday activities. The upper level esti-
mates the current goal, the middle layer represents segments of a
trip and mode of transportation, and the lowest layer estimates the
person’s location. The dashed line indicates the flat model.

in continuous xy-coordinates, they have to be “snapped” to
an edge in the graph structure. The edge to which a spe-
cific measurement is “snapped” is estimated by the associa-
tion variable #;,. Thelocation of the person at time k& depends
on his previous location, 1, the motion velocity, vy, and
the vertex transition, 7. Vertex transitions - model the deci-
sion a person makes when moving over avertex in the graph,
for example, to turn right when crossing a street intersection.

The mode of transportation can take on four different val-
ues my € {BUS, FOOT,CAR, BUILDING}. Similar
to (Patterson et al. 2003), these modes influence the motion
velocity, which is picked from a Gaussian mixture model.
For example, the walking mode draws velocities only from
the Gaussian representing slow motion. BUILDING isa
special mode that occurs only when the GPS signal islost for
significantly long time. Finaly, the location of the car only
changes when the person is in the C'AR mode, in which the
car location is set to the person’s location.

Trip segments A trip segment is defined by its start loca-
tion, 7, end location, ¢¢, and the mode of transportation,
), the person uses during the segment. For example, atrip
segment models information such as “she gets on the bus at
location ¢; and takes the bus up to location ¢§, where she
gets off the bus”. In addition to transportation mode, a trip
segment predicts the route on which the person gets from ¢
to ¢;. Thisroute is not specified through a deterministic se-
quence of edges on the graph but rather through transition
probabilities on the graph. These probabilities determine the
prediction of the person’s motion direction when crossing a
vertex in the graph, asindicated by the arc from ¢, to 7.

The transfer between modes and trip segments is handled
by the switching nodes f;* and f}, respectively. More specif-
icaly, the binary trip switching node is set to true whenever
the person reaches the end location ¢ §, of the current trip seg-
ment. In this case, the trip segment is allowed to switch with
the constraint that the start location of the next segment is
identical to the end location of the current segment. The next
trip segment is chosen according to the segment transition
of the current goal g;. Once the next trip segment is active,



the person till has to change mode of transportation. This
does not happen instantaneously, since, for example, a per-
son hasto wait for the bus even though he already reached the
bus stop (and thus entered the bus trip segment). This semi-
Markov property of delayed mode switching is modeled by
the node f}, which is a counter that measures the time steps
until the next transportation mode is entered. The counter is
initialized by the next trip segment, then decremented until it
reaches avalue of zero, which triggers the mode switch.

Goals A god represents the current target location of the
person. Goals include locations such as the person’s home,
work place, the grocery store, and locations of friends. These
goals are a'so contained in the trip segment level. Thus, the
goal of the person can only change when the person reaches
the end of atrip segment. The goal switching node f/ istrue
only when the trip switching node f} is true and the end of
the current trip segment ¢, is identical to the goal gi. If the
goal switches, the next goa is chosen according to alearned
goal transition model.

Inference, Learning, and Error Detection
Inference

The independence structure of our hierarchical activity
model allows us to use efficient inference developed for ab-
stract hidden Markov memory models (Bui 2003). Thistech-
nique relies on Rao-Blackwellised particle filters, where the
states at the lowest level are estimated using particle filters,
and higher levels are solved analytically conditioned on the
low level particles. For brevity, we focus on the task of esti-
mating a person’s location and mode of transportation using
GPS measurements. Inference at higher levels will only be
outlined, sinceit is very similar to (Bui 2003).

GPS-based tracking on street maps Our previous
work (Patterson et al. 2003) uses a “flat” model for loca-
tion and transportation mode estimation. Such a model is
obtained by removing the nodes ¢, f9, and ¢t from the activ-
ity model shownin Fig. 1, asindicated by the dotted line. In
that model, we estimate a person’s location on a street map
represented by a graph-structure S = (V, E), where V' isthe
set of vertices, v;, and E is the set of edges, e;. Typically,
vertices areintersections and the length of edges corresponds
to city blocks. The person can switch mode of transportation
whenever she is near her car or a bus stop. While our pre-
vious work uses particle filters for inference, we now rely
on a more efficient Rao-Blackwellised solution to the prob-
lem (Doucet et al. 2000), which is based on the following
factorization of the posterior:

p(xkv mg, flia flznv ok; Tk | Zl:k) =

p(fl;k'mk; flia flzna 9]@, Tk, Zl:k)p(mka f]iv flzna 9167 Tk|zlzk)(1)
The posterior at time k is conditioned on z;.x, the sequence
of GPS measurements observed so far. The factorization (1)
separates the state space of our estimation problem into its
continuous and discrete parts. The continuous part repre-
sents the location and motion vel ocity of the person, x, and
the discrete part represents the remaining quantities includ-
ing transportation mode m ., edge association 6, edge tran-
sition 73, and switching nodes f;* and f7.

Rao-Blackwellised particle filters (RBPF) estimate this
factorized posterior by sampling the discrete states using a
particle filter and then estimating the person’s location and
motion velocity using Kalman filters conditioned on the sam-
ples. More specifically, RBPFs represent posteriors by sets
of weighted samples, or particles:

Sk z{s,(j),w,(f) |1<i< N}

Each s,(:) = <</ik(i), Ek(l)>; my, ), f/?m)a fzz(m), 91@(7’),71@(2-)%
where the person’s location and velocity are represented
by (1,2, the mean and covariance of the Kalman
filter, which represents posteriors by Gaussian approxima
tions (Bar-Shalom, Li, & Kirubargjan 2001). The other com-
ponents of the particle are instances of the discrete parts of
the state space. At each time step, RBPFs first sample the
discrete components from the posterior at the previous time
k — 1. This can be done stepwise by simulating (1) from
right to left, using the independence represented in the activ-
ity model (see Fig. 1). Then, the continuous part is updated
analytically using Kalman filters.

The discrete variables are sampled as follows. The value

of thetrip switching node f ,ﬁ(i) issampled conditioned on the
previous location of the person ;. For example, when-
ever the person approaches a bus stop, f ,ﬁ(l) is set to true
with a small probability. 1f £t = T, then the value of
the mode switching counter f7*(*) is initialized to the wait-
ing time. Otherwise, the value of f;"(*) is decremented, and
when it reaches zero, the new transportation mode m (9 is
sampled according to the mode transition probability; oth-
erwise, mi () = my_1(. The value of the edge transi-
tion variable 7, determines, for example, whether the person
moves straight or turns right at the next intersection. 7, () is
sampled based on the previous position of the person and a
learned transition model. Finally, the edge association vari-
able 6;, “snaps”’ the GPS reading to a street in the map. This
step is crucial for the Kalman filter update described bel ow.

To sample H(l), we first determine the distance between the
measurement, z, and the different streetsin thevicinity. The
probability of “snapping” zj to one of these streets is then
computed from this distance.

At this step of the algorithm, we can assume that all
discrete values of a sample are already generated, that is,

s = (), m @D, @ gt g, () 7 )y, The RBPF now
generates the missing values (1, (", 2,9 by updating the
Kaman filter conditioned on the already sampled values. To
see, let us rewrite the left term on the right hand side of (1):

/p<xk|m§:>, 79 20 ) pa? | z1) d2l? | ()

(2) follows by applying Bayes rule and the independences
in our estimation problem. It represents the standard re-
cursive Bayes filter update rule; see (Bar-Shalom, Li, &
Kirubargjan 2001) for details. The prior probability is given
by the Gaussian of the previous Kalman filter estimate:



€
iy it 6=, | 6=¢;
I
I Zy
/
- o
e\.% | @;% :e:ez e2

Figure 2: Kalman filter update and data association: The person is
located on edge e3. The continuous coordinates of the GPS mea-
surement, zy, are between edges e; and e2. Depending on the value
of the edge association, 6, the correction step moves the estimate
up-wards or down-wards.

p(x,(;zl |21:—1) = N(J?](jzl : ,u,(jzl, Z,(Ql). The Kalman fil-
ter implements the update rule (2) by two steps. a prediction
step followed by a correction step.

In the prediction step, the distance traveled since the last
filter updateis predicted using the previous vel ocity estimate.
The prediction, </1§j), il,(j) ), results then from shifting and
convolving the previous estimate by the predicted motion,
thereby implementing the integration in (2). This prediction
stepisstraightforward if the person stays on the same edge of
the graph. If she transits over a vertex of the graph, then the
edge is given by the already sampled edge transition 7, (%).

In the correction step, the predicted estimate (ﬂg’), 2,(;)>
is corrected based on the most recent GPS measurement, z .
Intuitively, this correction compares the predicted mean i ,(j)
with the location of z; and shifts the mean toward the mea-
surement (under consideration of the uncertainties). The cor-
rection step isillustrated in Fig. 2. The predicted location is
on edge e3, and the GPS sensor reports a measurement, z g,
between edges e; and e;. Depending on whether z;, origi-
natesfrom e, or eo, the predicted estimate is corrected either
up-wards or down-wards.? The already sampled value of the

edge association variable f, () uniquely determines to which
edge the reading is “snapped” (see previous paragraph).

After al components of each particle are generated, the
importance weights of the particles are updated. Thisisdone
by computing the likelihood of the GPS measurement z,
which is provided by the update innovations of the Kalman
filters (Doucet et al. 2000).

Goal and trip segment estimation So far, we concen-
trated on the estimation in a flat model. To further esti-
mate a person’s goal and trip segment, we apply the infer-
ence algorithm used for the abstract hidden Markov mem-
ory models (Bui 2003). More specifically, we use a Rao-
Blackwellised particle filter both at the low level and at the
higher levels. Each sample of the resulting particle filter con-
tains the discrete and continuous states described in the pre-
vious section, and ajoint distribution over the goals and trip
segments. These additional distributions are updated using
exact inference. To summarize, at each time step, thefilter is
updated as follows (see (Bui 2003)):

2Alternatively, one could compute the innovation in zy-space
and project it onto the graph. However, such an approach can result
in “stuck situations”, for example, in dead ends on the graph.

1. For each particle, sample the discrete states,
m, @ o] pe® g 20 yndate the  continu-
ous state (1", ") by performing one-step Kaman
filtering, and compute importance weight w ,(f) .

2. Do re-sampling according to the importance weights.

3. For each particle, perform one-step exact inference to up-
date the distribution of goals g\ and trip segments ¢\,

Thefirst step is extremely similar to the flat model described
in the previous section. The main difference lies in the fact
that the transportation mode m,(f), the trip switching f,f,(’),

and the edge transitions T,S") are sampled conditioned on the
estimates of the high level goa and trip segment. Thereby,

the sampling is adjusted to the current high level information.

Learning

Learning of the hierarchical model includes two procedures:
structural learning and parameter learning, both are com-
pletely unsupervised. Structura learning searches for the
significant locations, i.e., usua goals and mode transfer lo-
cations, from GPS logs collected over an extended period of
time. To do that, we apply expectation maximization (EM)
using the “flat” activity model described above (called flat
EM). When it finishes, the structure of the model is deter-
mined. EM is then used to estimate the transition probabili-
tiesin the hierarchical model (called hierarchical EM).

Finding goals We consider goal locations to be those lo-
cations where a person typically spends extended periods of
time. (Ashbrook & Starner 2003) extract significant loca-
tions by detecting places where the GPS signal is lost. The
disadvantage of such an approach is that it can only detect
indoor goals. To overcome this problem, we store for each
edge on the graph how long the person stays on this edge,
estimated during the flat EM. Since we model loss of GPS
signal by transiting into a “BUILDING” mode, our model
can thus detect both indoor and outdoor goals. Once sig-
nificant edges are detected, they are clustered by combining
edges that are connected or very close.

Finding mode transfer locations The mode transition
probabilitiesfor each street are estimated during the flat EM.
Even before learning, knowledge about the bus stops and the
fact that the car is either parked or moves with the person,
already provides important constraints on mode transitions.
In the E-step, both a forward and a backward filtering pass
are performed and the transition counts of the two passes are
combined. Then in the M-step, the parameters are updated
based on the counts. The mode transfer locations for a user,
i.e., usual bus stops and parking lots, are then those locations
at which the mode switching exceeds a certain threshold.

Estimating transition matrices Once goals and trip seg-
ments are determined, we can extend the flat model by in-
serting these significant locationsinto the higher levels of the
activity model. Then, we can re-use the GPS dataiin the hier-
archical EM to estimate the transition matrices between the
goals, between the trip segments given the goal, and between
the adjacent streets given the trip segment. Hierarchical EM
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Figure 3: (a) Street map along with goals (dots) learned from 30 days of data. Learned trip switching locations are indicated by cross marks.
From home, the person either walks to one of the two bus stops or takes the car, which isnot learned as a trip switching location since the car
is parked inside the house. (b) Zoom into the area around the work place. Shown are very likely transitions (probability above 0.75), given
that the goal is the work place (dashed lines indicate car mode, solid lines bus, and dashed-dotted lines foot). (c) Learned transitions in the

same area conditioned on the home being the goal.

is similar to flat EM. During the E-steps, smoothing is per-
formed by tracking the states both forward and backward in
time. The M-steps update the model parameters using the
frequency counts generated in the E-step. All transition pa-
rameters are smoothed using Dirichlet priors.

Detection of User Errors

If the person always repeats her past activities, activity track-
ing can be done with only a small number of particlesin the
learned model. This is mainly because the model has low
uncertainty in where the person switches modes and goals.
In redlity, however, people often perform novel activities or
commit some errors. The most straightforward way to model
abnormalities is to add an unknown goa and an unknown
mode transfer location to the learned model, and estimate
the probability of the unknowns. However, this means the
person can change mode and goal everywhere, because any
place could be an unknown goal or transfer location. This
would require a huge number of particlesto track correctly.

Instead, we use two different trackers simultaneously and
perform model monitoring by computing the Bayes factors
between the two models (West & Harrison 1997). The first
tracker uses hierarchical inference on the learned model that
models the person’s ordinary routine. The second uses a flat
model with the apriori parameter settings; these account for
general physical constraints but are not adjusted to the in-
dividual’s ordinary routines. The trackers are run in paral-
lel, and the probability of each model is calculated from the
observation likelihoods of the two models. When the user
is following her ordinary routine the hierarchical model has
higher likelihoods, but when the user does something unex-
pected the general flat model becomes more likely.

Both trackers can be run very efficiently. The hierarchical
tracker has “expensive” particles, each containing much state
information, but requires few particles for accurate tracking.
The flat, untrained tracker needs more particles to maintain
tracking, but each particle is cheaper to compute. Further-
more, calculating the likelihood of amodel introduces no ex-
tra expense, because the value already needs to be computed
as part of importance weighting.

Experimental Results

We collected a log of 60 days of GPS data from one per-
son using a wearable GPS unit. We use the first 30 days for

learning and the other 30 days for the empirical comparison.
Activity model learning The learning was done compl etely
unsupervised without any manual labeling. The structural
learning precisely identifies the subject’s six most common
transportation goals and all frequently used bus stops and
parking lots, as shown in Fig. 3 (a). After recognizing the
goals and transfer locations, parameter |earning estimates the
transition matrices at al levels of the model. Fig. 3 (b) and
(c) show the learned street transitions given high-level in-
formation. The model successfully discovered the most fre-
quent trajectories for traveling from home to the workplace
and vice-versa, as well as other common trips, such asto the
homes of friends.

Empirical comparison to other models The hierarchical
model is very expressive and able to answer many useful
queries. For example, many applications need to query the
probability of a given goal. Here we compare the perfor-
mance of our hierarchical model to the goa prediction of a
flat model (Patterson et al. 2003) and a second-order Markov
model between goas (2MM for simplicity) (Ashbrook &
Starner 2003).

Since a flat model only keeps a first-order Markov model
over the street blocks, in order to calculate the probability
of agoal one must calculate the sum over all possible paths
to the goal, which is intractable if the god is far avay. A
reasonable approximation is to compute the probability of
themost likely pathto thegoal. Fig. 4 (a) comparesthe result
of such aquery on the probability of the goal being the work
place during an episode of traveling from home to work. As
one can see, quite early on the hierarchical model assigns a
high probability to the true goal, while the estimate from the
flat model is meaningless until the user is near the goal.

The2MM modelsthe goal transitions explicitly, but it can-
not refine the prediction using the observations collected dur-
ing transit. To show the difference, we labeled the 30 days
of test data with the true goals  and compute the prediction
accuracy using the 2MM and our hierarchical model, which
are learned using the same training data. The average predic-
tion accuracies at the beginning of the trips and after 25%,
50%, 75% of thetrips arelisted in Table 1. At the beginning,
our model predicts the next goal using first-order transition
matrices; it performs a little worse than the 2MM. But by
integrating real time measurements, our predictions become

3We exclude the trips with novel goalsin this experiment.
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Figure 4: (a) Probability of the true goal (work place) during an episode from home to work, estimated using the flat and the hierarchical
model. (b,c) Probability of an activity being normal or abnormal, estimated by the concurrent trackers. (b) Normal activity: driving from
home to work. (c) Abnormal activity: missing to get off the bus at time t2.

more accurate while 2MM ’s estimates remain the same.

Avg. accuracy at giventime
Model beginning | 25% | 50% | 75%
2MM 0.69 0.69 | 0.69 | 0.69

Hierarchical model 0.66 0.75 | 0.82 | 0.98

Table 1: Goal predictions using 2MM and hierarchical model

Detection of user errors Another important feature of our
model is the capability to capture user errors using the par-
allel tracking approach. To demonstrate the performance of
parallel tracking, we did two experiments, with a subject who
sometimes drives and sometimes takes the bus from work to
home. In the first experiment, the subject drove from home
to work as usual. In the second experiment, the subject took
his usual bus toward home but failed to get off the bus at
the usual stop. In each experiment, we determine the prob-
ability of each tracker over time, as shown in Fig. 4 (b) and
(). In the first experiment, because the trajectory matches
the learned model well, the normal tracker quickly becomes
dominant. The second experiment starts when the subject is
waiting at the bus stop. At time t1, the person gets on the
bus. Since the route is aready well-learned, the belief that
the subject is going home becomes high. At time t2, how-
ever, the person misses the usual bus stop. At this point the
probability of the learned model quickly drops, while that of
theflat “abnormal” model quickly rises. We performed addi-
tiona experimentsin which the goal and transportation mode
were instantiated explicitly in the model. In such a setting,
the model is ableto quickly determinewhen the user deviates
from the desired behavior; an ability that can be very useful
to monitor and guide cognitively-impaired individuals.

Conclusions and Future Work

We have described the formal foundations and experimental
validation of a hierarchical model that can learn and infer a
user’s daily movements and use of different mode of trans-
portation. The model can be learned using only unlabeled
data, and online inference can be efficiently performed. Our
results show that the approach can provide strong predictions
of movements to distant goals, and support a simple and ef-
fective strategy for detecting novel events that may indicate
user errors.

Our future work builds upon the foundation laid in this
paper in severa directions. One obvious extension isto in-
corporate information about time of day and the day of the

week into the model, which we expect to greatly enhance
predictive power. We furthermore plan to use probabilistic
relational models (Getoor et al. 2001) to better represent and
learn types of locations. Specific features of location types
can be learned from data sets collected by several people.
The same data can aso be used to create loosely-coupled
models of severa individuals, so that one can predict joint
activities, such as when two people will meet. Finaly, the
approach described here will be incorporated into a safety
monitoring and guidance system that we are constructing for
cognitively-impaired individual s who often become lost and
have difficulty in using public transportation safely.
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