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Abstract

GSAT is a randomized local search procedure for solving propositional
satisfiability problems. GSAT can solve hard, randomly generated problems
that are an order of magnitude larger than those that can be handled by
more traditional approaches, such as the Davis-Putnam procedure. This
paper presents the results of numerous experiments we have performed
with GSAT, in order to improve our understanding of its capabilities and
limitations.

We first characterize the space traversed by GSAT. We will see that for
nearly all problem classes we have encountered, the space consists of a
steep descent followed by broad flat plateaus. We then compare GSAT with
simulated annealing, and show how GSAT can be viewed as an efficient
method for executing the low-temperature tail of an annealing schedule. Fi-
nally, we report on extensions to the basic GSAT procedure. We discuss two
general, domain-independent extensions that dramatically improve GSAT’s
performance on structured problems: the use of clause weights, and a way
to average in near-solutions when initializing the procedure before each try.
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1 Introduction
Selman et al. (1992) introduced a randomized greedy local search procedure called
GSAT for solving propositional satisfiability problems. Experiments showed that
this procedure can be used to solve hard, randomly generated problems that are
an order of magnitude larger than those that can be handled by more traditional
approaches, such as the Davis-Putnam procedure or resolution. GSAT was also
shown to performwell on propositional encodings of the N-queens problem, graph
coloring problems, and Boolean induction problems.

This paper presents the results of numerous experiments we have performed
with GSAT, in order to improve our understanding of its capabilities and limita-
tions. We will begin with an exploration of the shape of the search space that
GSAT typically encounters. We will see that for nearly all problem classes we
have examined, the space consists of a steep descent followed by broad plateaus.
We then compare GSAT with simulated annealing, and show how GSAT can be
viewed as a very efficient method for executing the low-temperature tail of an
annealing schedule.

A common criticism of randomized algorithms like GSAT is that they might
not do as well on problems that have an intricate underlying structure as they do
on randomly generated problems. Based on our understanding of the shape of
GSAT’s search space, we developed two general, domain-independent extensions
that dramatically improve its performance: the use of clause weights, and a way
to average in near-solutions when initializing the procedure before each try. We
will also describe other local search heuristics which appear promising, but did
not improve performance on our test problems.

This paper is unabashidly empirical. Although we will point to relevant
results in the theoretical literature, we will not present an abstract analysis of
our results. It would obviously be highly desirable to characterize precisely the
class of problems for which GSAT succeeds, and to provide precise bounds on its
running time. Unfortunately, such results are extremely rare and difficult to obtain
in work on incomplete algorithms for NP-hard problems. The situation is similar,
for example, in research on simulated annealing, where the formal results show
convergence in the limit (i.e., after an arbitrary amount of time), but few address the
rate of convergence to a solution. In fact, a good, general characterization of the
rate of convergence appears to be beyond the current state of the art of theoretical
analysis (Bertsimas and Tsitsiklis 1992; Jerrum 1992). Current theory does,
however, explain why GSAT performs well on certain limited classes of formulas
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Procedure GSAT
Input: a set of clauses , MAX-FLIPS, and MAX-TRIES
Output: a satisfying truth assignment of , if found
for : 1 toMAX-TRIES

: a randomly generated truth assignment
for : 1 toMAX-FLIPS
if satisfies then return
: a propositional variable such that a change
in its truth assignment gives the largest
increase in the total number of clauses
of that are satisfied by

: with the truth assignment of reversed
end for

end for
return “no satisfying assignment found”

Figure 1: The GSAT procedure.
(e.g. 2-SAT and over-constrained formulas), and the range of applicability of such
formal results will certainly increase over time (Papadimitriou 1991; Koutsoupias
and Papadimitriou 1992). We believe that experimental work should proceed
in parallel with theoretical work, because real data can point out the problem-
solving techniques that are worthy of formal analysis, and can help distinguish the
asymptotic results that carry over to practical cases from those that do not.

2 The GSAT Procedure
GSAT performs a greedy local search for a satisfying assignment of a set

of propositional clauses.1 The procedure starts with a randomly generated truth
assignment. It then changes (‘flips’) the assignment of the variable that leads to
the largest increase in the total number of satisfied clauses. Such flips are repeated
until either a satisfying assignment is found or a pre-set maximum number of flips
(MAX-FLIPS) is reached. This process is repeated as needed up to a maximum
of MAX-TRIES times. See Figure 1. (For a related approach, see Gu (1992).)

1A clause is a disjunction of literals. A literal is a propositional variable or its negation. A set of
clauses corresponds to a formula in conjunctive normal form (CNF): a conjunction of disjunctions.
Thus, GSAT handles CNF–SAT.
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GSAT mimics the standard local search procedures used for finding approx-
imate solutions to optimization problems (Papadimitriou and Steiglitz 1982) in
that it only explores potential solutions that are “close” to the one currently being
considered. Specifically, we explore the set of assignments that differ from the
current one on only one variable. The GSAT procedure requires the setting of two
parameters, MAX-FLIPS and MAX-TRIES, which determine, respectively, how
many flips the procedure will attempt before giving up and restarting, and how
many times this search can be restarted before quitting. As a rough guideline,
setting MAX-FLIPS equal to about ten times the number of variables is sufficient.
The setting of MAX-TRIES will generally be determined by the total amount of
time that one wants to spend looking for an assignment before giving up.

In our experience so far, there is generally a good setting of the parameters
that can be used for all instances of an application. Thus, one can fine-tune the
procedure by experimenting with various parameter settings. It is important to
understand that we are not suggesting that the parameters need to be reset for each
individual problem— only for a broad class, for example, coloring problems, ran-
dom formulas, etc. Practically all optimization algorithms for intractable problems
have parameters that must be set this way,2 so this is not a particular disadvantage
of GSAT. Furthermore, one could devise various schemes to automatically choose
a good parameter setting by performing a binary search on different parameter
settings on a sequence of problems.

2.1 Summary of Previous Results
In Selman et al. (1992), we showed that GSAT substantially outperforms back-
tracking search procedures, such as the Davis-Putnam procedure, on various
classes of formulas. For example, we studied GSAT’s performance on hard
randomly generated formulas. (Note that generating hard random formulas for
testing purposes is a challenging problem by itself, see Cheeseman et al. (1991);
Mitchell et al. (1992); Williams and Hogg (1992); Larrabee and Tsuji (1993); and
Crawford and Auton (1993).) The fastest backtrack type procedures, using spe-
cial heuristics, can handle up to 350 variable hard random formulas in about one
hour on a MIPS workstation (Buro and Kleine Büning 1992; Crawford and Auton
1993). Nevertheless, the running time clearly scales exponentially, for example,
hard 450 variable formulas are undoable. Our current implementation of GSAT,

2For example, see the discussion on integer programming methods in Fourer (1993).
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using the random walk option discussed in Selman and Kautz (1993), solves hard
1500 variable formulas in under an hour. Selman et al. also showed that GSAT
performswell on propositional encodings of the N-queens problem, hard instances
of graph coloring problems (Johnson et al. 1991), and Boolean induction problems
(Kamath et al. 1992).

3 The Search Space
Crucial to a better understanding of GSAT’s behavior is the manner in which
GSAT converges on an assignment. In Figure 2, we show how the GSAT’s search
progresses on a randomly generated 100 variable problemwith 430 clauses. Along
the horizontal axis we give the number of flips, and along the vertical axis the
number of clauses that still remained unsatisfied. (The final flip reduces this
number to zero.) It is clear from the figure that most of the time is spent wandering
on large plateaus. Only approximately the first 5% of the search is spent in pure
greedy descent. We have observed qualitatively similar patterns over and over
again. (See also the discussion on “sideway” moves in Selman et al. (1992), and
Gent and Walsh (1993).)

The bottom panel in Figure 2 shows the search space for a 500 variable,
2150 clause random satisfiable formula. The long plateaus become even more
pronounced, and the relative size of the pure greedy descent further diminishes.
In general, the harder the formulas, the longer the plateaus.

Another interesting property of the graphs is that we see no upwards moves.
An upward move would occur when the best possible flip increases the number of
unsatisfied clauses. This appears to be extremely rare, especially for the randomly
generated instances.

The search pattern brings out an interesting difference between our use of
GSAT and the standard use of local search techniques for obtaining good approxi-
mate solutions to combinatorial optimization problems (Lin and Kernighan 1973;
Papadimitriou and Steiglitz 1982; Papadimitriou et al. 1990). In the latter, one
generally halts the local search procedure as soon as no more improvement is
found. Our figure shows that this is appropriate when looking for a near-solution,
since most of the gain lies in the early, greedy descent part. On the other hand,
when searching for a global minimum (i.e., a satisfying assignment) stopping
when flips do not yield an immediate improvement is a poor strategy — most of
the work occurs in satisfying the last few remaining clauses.
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Figure 2: GSAT’s search space on a 100 and 500 variables formulas.

Note that finding an assignment that satisfies all clauses of a logical theory is
essential in many reasoning and problem solving situations. For example, in our
work on planning as satisfiability, a satisfying assignment correspond to a correct
plan (Kautz and Selman 1992). The near-satisfying assignments are of little use;
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they correspond to plans that contain one of more “magical” moves, where blocks
suddenly shift positions.

3.1 Simulated Annealing
Simulated annealing is a stochastic local search method. It was introduced by
Kirkpatrick et al. (1983) to tackle combinatorial optimization problems. Instead
of pure greedy local search, the procedure allows a certain amount of “noise”
which enables it to make modifications that actually increase the cost of the
current solution (even when this is not the best possible current modification). In
terms of finding satisfying assignments, this means that the procedure sometimes
allows flips that actually increase the total number of unsatisfied clauses. The idea
is that by allowing random occurrences of such upwards moves, the algorithm can
escape local minima. The frequency of such moves is determined by a parameter
, called the temperature. (The higher the temperature, the more often upward
moves occur.)

The parameter is set by the user. Normally, one follows a so-called annealing
schedule in which one slowly decreases the temperature until reaches zero. It
can be shown formally that provided one “cools” slowly enough, the system will
find a global minimum. Unfortunately, the analysis uses an exponentially long
annealing schedule, making it only of theoretical interest (Hajek 1988). Our real
interest is in the rate of convergence to a global minimum for more practical
annealing schedules. Current formal methods, however, appear too weak to tackle
this question.3

It is interesting to compare the plot for GSAT (Figure 2) with that for annealing
(Figure 3) on the same 100 variable random formula.4 In the early part of the
search, GSAT performs pure greedy descent. The descent is similar to the initial
phase of an annealing schedule, although more rapid, because GSAT performs
no upward moves. In the next stage, both algorithms must search along a series
of long plateaus. GSAT makes mostly sideways moves, but takes advantage of

3Recent work by Pinkas and Dechter (1992) and Jerrum (1992) provides some interesting
formal convergence results for a special class of optimization problems.

4We use the annealing algorithm given in Johnson et al. (1991). Start with a randomly generated
truth assignment; repeatedly pick a random variable, and compute howmany more clauses become
satisfied when the truth value of that variable is flipped — call this number . If 0, make the
flip. Otherwise, flip the variable with probability . We slowly decrease the temperature from
10 down to 0.05.
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Figure 3: Simulated annealing’s search space on a 100 variable formula.

a downward move whenever one arises. Annealing has reached the long, low-
temperature “tail” of its schedule, where it is very unlikely to make an upward
move, but allows both sideways and downward moves. Because much of the
effort expended by annealing in the initial high temperature part of the schedule
is wasted, it typically takes longer to reach a solution. Note, for example, that
after less than 500 moves GSAT has reached a satisfying assignment, while the
annealing algorithm still has 5 unsatisfied clauses. A more rapid cooling schedule
would, of course, more closely mimick GSAT.

Thus we can view GSAT as a very efficient method for executing the low-
temperature tail of an annealing schedule. Furthermore, our experiments with
several annealing schedules on hard, random formulas confirmed that most of the
work in finding a true satisfying assignment is in the tail of the schedule. In fact,
we were unable to find an annealing schedule that performed better than GSAT,
although we cannot rule out the possiblity that such a schedule exists. This is an
inherent difficulty in the study of annealing approaches (Johnson et al. 1991).
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4 Extensions
The basic GSAT algorithm is quite elementary, and one might expect that more
sophisticated algorithms could yield better performance. We investigated several
extensions to GSAT, and found a few that were indeed successful. But it is
important to stress that the basic GSAT algorithm is very robust, in the sense that
many intuitively appealing modifications do not in fact change its performance.
We have found that experimental study can help reveal the assumptions, true or
false, implicit in such intuitions, and can lead to interesting questions for further
empirical or theoretical research.

4.1 Improving the Initial Assignment
One natural intuition about GSAT is that it would be better to start with an
initial assignment that is “close” to a solution, rather than with a totally random
truth assignment. Indeed, the theoretical analysis of general greedy local search
presented in (Minton et al. 1992) shows that the closer the initial assignment is to
a solution, the more likely it is that local search will succeed.

Therefore we tried the followingmethod for creating better initial assignments:
First, a variable is assigned a random value. Next, all clauses containing that
variable are examined, to see if the values of any unassigned variables are then
determined by unit propagation. If so, these variables are assigned, and again
unit propagation is performed. (If a clause is unsatisfied by the current partial
assignment, it is simply ignored for the time being.) When no more propagations
are possible, another unassigned variable is given a random value, and the process
repeats.

Experiments revealed that this strategy did not significantly reduce the time
required to find a solution. In retrospect, this failure can be explained by the shape
of the search space, as discussed above. The descent from an initial state in which
many clauses are unsatisfied to one which only a few are unsatisfied occupies only
a tiny fraction of the overall execution time, and initial unit propagation helps only
in this phase of the search.

The problem is that the number of unsatisfied clauses is a fairly crude measure
of the distance to a solution, measured in terms of the number of flips required to
reach a satisfying assignment. (Minton et al. (1992) make a similar observation
regarding coloring problems. See also Gent and Walsh (1993).) This led us to
consider another strategy for generating good initial assignments. Since GSAT
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typically performs many tries before finding a solution, we make use of the
information gained from previous tries to create an initial assignment that is
already some distance out on a low plateau, and thus actually closer to a solution.
We do this by initializing with the bitwise average of the best assignment found
in the two previous tries.

The bitwise average of two truth assignments is an assignment that agrees
with the assignment of those letters on which the two given truth assignments are
identical; the remaining letters are randomly assigned truth values. After many
tries in which averaging is performed, the initial and final states become nearly
identical. We therefore reset the initial assignment to a new random assignment
every 10 to 50 tries.5

In Selman and Kautz (1993), we give an empirical evaluation of the averaging
strategy. We considered propositional encodings of hard graph coloring problems
used by Johnson et al. (1991) to evaluate specialized graph coloring algorithms.
Our experiments show that GSAT with the averaging strategy compares favorably
with some of the best specialized graph coloring algorithms as studied by Johnson.
This is quite remarkable because GSAT does not use any special techniques for
graph coloring.

4.2 Handling Structure with Clause Weights
As we noted in the introduction, the fact that GSAT does well on randomly-
generated formulas does not necessarily indicate that it would also perform well
on formulas that have some complex underlying structure. In fact, Ginsberg
and Jónsson (1992) supplied us with some graph coloring problems that GSAT
could not solve, even with many tries each with many flips. Their dependency-
directed backtracking method could find solutions to these problems with little
effort (Jónsson and Ginsberg 1993). In running GSAT on these problems, we
discovered that at the end of almost every try the same set of clauses remained
unsatisfied. As it turns out, the problems contained strong asymmetries. Such
structure can lead GSAT into a state in which a few violated constraints are
consistently “out-voted” by many satisfied constraints.

To overcome asymmetries, we added a weight to each clause (constraint).6 A
5We thankGeoffrey Hinton andHector Levesque for suggesting this strategy to us. The strategy

has some of the flavor of the approaches found in genetic algorithms (Davis 1987).
6Morris (1993) has independently proposed a similar approach.
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weight is a positive integer, indicating how often the clause should be counted
when determining which variable to flip next. Stated more precisely, having a
clause with weight is equivalent to having the clause occur times in the
formula. Initially, all weights are set to 1. At the end of each try, we increment
by 1 the weights of those clauses not satisfied by the current assignment. Thus the
weights are dynamically modified during problem solving, again making use of
the information gained by each try.

# unsat clauses # of times reached
at end of try basic weights

0 0 80
1 2 213

2–4 0 0
5–9 90 301
10+ 908 406

Table 1: Comparison of GSATwith andwithout weights on a highly asymmetrical
graph coloring problem (see text for explanation).

Using weights, GSAT solves a typical instance of these coloring problems in a
second or two. This is comparable with the time used by efficient backtrack-style
procedures. Table 1 shows the distribution of the number of unsatisfied clauses
after each try for GSAT with and without weights on Ginsberg and Jónsson’s 50
node graph (200 variables and 2262 clauses). We used a total of 1000 tries with
1000 flips per try. For example, basic GSAT never found an assignment that had
no unsatisfied clauses, but GSAT with weights found one in 80 tries out of 1000.
Similarly, basic GSAT found an assignment with one unsatisfied clause only twice,
while GSAT with weights found such an assignment 213 times.

The weight strategy turns out to help not only on problems handcrafted to fool
GSAT (including the similarly “misleading” formulas discussed in Selman et al.
(1992)), but also on many naturally occuring classes of structured satisfiability
problems. A case in point are formulas that encode planning problems. As we
reported in Kautz and Selman (1992), the basic GSAT algorithm had difficulty in
solving formulas that encoded blocks-world planning problems. However, using
weights GSAT’s solution times are comparable with those of the Davis-Putnam
procedure on these formulas. Details appear in Selman and Kautz (1993).
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The regularities that appear in certain non-random classes of generated for-
mulas tend to produce local minima that can trap a simple greedy algorithm. The
weights, in effect, are used to fill in local minima while the search proceeds, and
thus uncover the regularities. Note that this general strategy may also be useful in
avoiding local minima in other optimization methods, and provides an interesting
alternative to the use of random noise (as in simulated annealing).

5 Conclusions
The experiments we ran with GSAT have helped us understand the nature of the
search space for propositional satisfiability, and have led us to develop interesting
heuristics that augment the power of local search on various classes of satisfiability
problems. We saw that the search space is characterized by plateaus, which
suggests that the crucial problem is to develop methods to quickly traverse broad
flat regions. This is in contrast, for example, to much of the work on simulated
annealing algorithms, which support the use of slow cooling schedules to deal with
search spaces characterized by jagged surfaces with many deep local minima.

We discussed two empirically successful extensions to GSAT, averaging and
clause weights, that improve efficiency by re-using some of the informationpresent
in previous near-solutions. Each of these strategies, in effect, helps uncover hidden
structure in the input formulas, and were motivated by the shape of GSAT’s
search space. Given the success of these strategies and the fact that they are not
very specific to the GSAT algorithm, it appears that they also hold promise for
improving other methods for solving hard combinatorial search problems. In our
future research we hope to improve our formal understanding of the benefits and
applicability of these techniques.

Finally, we should note that we do not claim that GSAT and its descendants
will be able to efficiently solve all interesting classes of satisfiability problems.
Indeed, no one universal method is likely to prove successful for all instances of
an NP-complete problem! Nonetheless, we believe it is worthwhile to develop
techniques that extend the practical range of problems that can be solved by local
search.
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