Hard Problems for Simple Default Logics

Abstract

Kautz, H.A. and B. Selman, Hard problems for simple default logics,
Artificial Intelligence 49 (1991) 243-279.

We investigate the complexity of reasoning with a number of limited de-
fault logics. Surprising negative results (the high complexity of simple
three literal default rules) as well as positive results (a fast algorithm
for skeptical reasoning with binary defaults) are reported, and sources
of complexity are discussed. These results impact on work on defeasible
inheritance hierarchies as well as default reasoning in general.

1 Introduction

It has been suggested that some kind of default inference can be used to simplify
and speed commonsense reasoning. Researchers have appealed to default logics
as a solution to the problem of generating and reasoning with large numbers of
“frame axioms”; as a way of simplifying complex probabilistic calculations; and
recently as a way of “vivifying” (filling out) an incomplete knowledge base, thus
suppressing the complexities of reasoning with uncertainty [10, 11].

While current formal theories of default inference are computationally much
worse than ordinary logic, it has been tacitly assumed that this additional com-
plexity arises from their use of consistency tests. Our interest in fast, special
purpose inference mechanisms led us to investigate very simple propositional,
disjunction-free systems of default reasoning, where consistency checking is triv-
ial. Here, we thought, default reasoning should shine.

This paper reports a number of surprising complexity results involving re-
stricted versions of Ray Reiter’s default logic [13]. We define a partially-ordered
space of propositional default theories of varying degrees of generality. For each
we determine the complexity of solving the following three problems: finding
an extension; determining if a given proposition is true in some extension; and
determining if a given proposition is true in all extensions.

All of these problems are NP-hard for propositional, disjunction-free default
logic. This shows that consistency checking is not the only source of complex-
ity in default reasoning. We show that a condition called “ordering” (which
is related to stratification in logic programming) makes finding an extension
tractable. The extension membership problems, however, remain intractable for
most of the restricted logics. In particular, these questions are NP-complete for
the logic that most naturally represents acyclic inheritance hierarchies. Systems
whose rules are similar in form to Horn clauses do admit a tractable algorithm
for testing membership in some extension. Finally, we present a polynomial
algorithm for testing the membership of a proposition in all extensions of the
very restricted class of “normal unary” theories, thus settling an open question
in work on inheritance.

The next part of the paper presents general reductions of finding an extension
to testing membership in some extension, and that to testing membership in
all extensions. This shows that for a large class of default theories, it is at
least as hard to test the status of a single proposition as to compute a complete
extension.

The final part of the paper provides some intuitive characterizations of the
sources of complexity in default reasoning. It suggests that the most efficient
use of default information is to “flesh out” the missing detail in a knowledge
base in a “brave” manner, a process that corresponds to finding an extension.

A note on notation: throughout this paper, the symbols p, q, r, s, and t are
used for propositional letters (also called positive literals). The symbols a, b, c,
x, y, and z are used for literals (propositional letters and their negations). The
greek letters «, 3, and ~ are used for formulas. The sign ~ is a meta-language
operator that maps a positive literal to a negative literal and vice versa. For
example, the expression

~z€eFE

where F is a set of literals, is equivalent to the lengthy expression

if x = p for some letter p, then —~x € E; otherwise, where x = —p for
some letter p, it is the case that p € E.

Use of this operator avoids the need to explicitly invoke a rule of negation
elimination to convert formulas of the form ——p to p.

2 Reiter’s default logic

Reiter formalized default reasoning by extending first-order logic with default
inference rules. This paper will not consider the other nonmonotonic formalisms
based on modal logic, circumscription, or model-preference rules, although many
of the results it presents have counterparts in those systems. (See [14, 15] for a
similar analysis of model-preference theories.)

A default theory is a pair (D, W) where D is a set of default rules and W
a set of ordinary first-order formulas. This paper examines theories containing

only semi-normal default rules, which are of the form

a:fB Ny
g

where « is the prerequisite, 8 the conclusion, and B A~ the justification of a rule,
each of them formulas. The rule is intuitively understood as meaning that if
is known, and (3 A v is consistent with what is known, then 8 may be inferred.
If v is missing, then the rule is normal. Default rules are sometimes written as
a : B A~/v for typographic clarity.

An eztension is a maximal set of conclusions that can be drawn from a
theory. But care must be taken that the justification of each rule used in the
construction of an extension be consistent with the complete contents of the
extension, not just with the non-default information.

Definition:Extension. Where E is a set of formulas, Th(E) is the deductive
closure of E. £ is an extension for the theory (D, W) if and only if it satisfies
the following equations:

E[) - W,

and for i > 0,

a:f

Ei+1:Th(Ei)U{’y TED, a € E;, and —rﬁgé’};

i=0

Note the explicit reference to £ in the definition of E;y;. A theory can have
several, one, or no extensions.

Although normal theories have a number of nice theoretical and compu-
tational properties, semi-normal rules are often needed to establish a priority
among the defaults. For example, two default rules may have conflicting con-
clusions, yet have their preconditions satisfied in the same situation. If normal
rules were used, this kind of situation would lead to two different extensions.
One may know, however, that the first rule should always take priority over the
second when both apply. This can be encoded by adding the negation of the
precondition of the first rule to the justification of the second rule. Formally,
given rules ¢; and d-, where

oA i Ay

b=—"—"2, fy=—
! 2 ? By

in order to establish §; as being of higher priority than 62, replace 62 by 85:

6, _OéQZﬂQ/\’)/Q/\—'Oq
2 B2 '

One kind of priority that this scheme can encode is the “specificity” ordering
that intuitively should appear in an inheritance hierarchy. For example, W may

include the fact that “penguins are birds”,! and D defaults that assert that
penguins don’t fly, and that birds do fly. The first, more specific default can be
given priority over the second by encoding the pair as

Penguin : ~Fly Bird : Fly A ~Penguin
-Fly ’ Fly ’

3 Complexity

Following [8], we shall refer to a problem class as “tractable” if a poly-
nomial-time algorithm can solve all its instances. It is not yet possible to prove
that any of the problem classes considered in this paper require exponential time,
but many are as hard as any solvable in polynomial time by a nondeterministic
computer. Such “NP-hard” problems are considered to be intractable.

This paper only considers worst-case complexity. Since the problem in-
stances that cause a particular algorithm to run the longest time may rarely
arise, it would be useful to follow this worst-case analysis by some kind of
“average-case” analysis. Such an analysis would require some characterization
of “average” commonsense theories—a significant task in its own right.

Nonetheless, this worst-case analysis is useful in revealing different sources of
complexity in default reasoning, and in providing efficient algorithms for certain
problem classes. For example, Section 5 includes a polynomial-time algorithm
for computing extensions of the special class of ordered default theories. This
algorithm is not necessarily correct for more general problem classes; on the
other hand, the obvious general algorithm for computing extensions can take
exponential time on an ordered theory. Once tractable algorithms are known
for a number of useful classes of default theories, a general algorithm can be
constructed that first tests to see if any of the special case algorithms apply,
and if none does, invokes the intractable general method.

This paper uses the standard terminology of NP-completeness, which is sum-
marized in Appendix A.

4 A taxonomy of default theories

Two sources of complexity in default theories are readily apparent: the inherent
complexity of the first-order component (W), and the complexity of determining
whether the justification of a default rule is consistent with the currently-derived
set of formulas. We will restrict our attention to finite propositional theories in
which W is simply a set (conjunction) of literals. The precondition, justification,
and consequence of each default rule is also a conjunction of literals. We will
call such a theory “disjunction-free” (abbreviated “DF”). Thus determining
whether a default rule is applicable to W is trivial: the precondition must be a

11t remains an open problem to determine if a default theory must include this assertion,
although a survey of the literature lends strong evidence to the conjecture. Certainly it is
true that every paper on nonmonotonic reasoning must include this example [5].

subset of W, and the intersection of W with the negation of each literal in the
justification must be empty. The extended theory is again a set (conjunction)
of literals. Although an extension is, by definition, an infinite, deductively
closed set of formulas, any extension of a disjunction-free theory is equivalent
to the deductive closure of a finite set of literals. Henceforth, when we speak of
“computing an extension”, we will mean computing such a finite set of literals.

The following functions access the components of default rules of this re-
stricted form.

Definition:pre, concl, just*, just. Where

arAN---ANag:by A Abp Aer ANy
by A---ANbp,

d =
and none of the ¢; are the same as any of the b;, let

pre(6) = {as1,...,a},
concl(8) = {b1,...,bm},
just*(6) = {e1,...,ent,
just(8) = just*(6) U concl(9).

Any inferential power such systems possess resides in the default rules;
the only non-default inference rules that apply are negation elimination and
conjunction-in and -out (to convert, e.g., {, 3} to a A 8 and vice versa). The
reader should remember, in particular, that because the default rules are in fact
rules and not axioms, the principle of reasoning by cases does not apply. For
example, given a theory with empty W and rules

pia Tpig

))

q q

one may not conclude q.

Further restrictions on the form of the default rules leads to the hierarchy
shown in Fig. 1. The black arrows lead from the more restricted classes to the
more general classes. A negative complexity result (that is, a transformation
from an NP-hard problem) for a class in the hierarchy applies also to all elements
above it. A positive complexity result (that is, a polynomial-time algorithm) for
a class applies also to all classes below it. The classes of theories are as follows:

— Unary: These theories restrict the prerequisite to a single letter and the
consequence to a single literal. In the case of a positive consequence,
the justification may include a single additional negative literal. Unary
theories have a simple graphical notation, as shown in Fig. 2. Positive and
negative default arcs appear, where optional cancel links may be attached
to positive arcs. Note that only positive information enables or cancels the
default. Unary theories are a simple example of the kind of graph-based
representational systems inspired by Fahlman’s work on NETL [7], and
are a restricted case of Etherington’s “network theories” [6, p. 91].

— Disjunction-free ordered: “Ordering” is a syntactic property of default
theories developed in [6, p. 86] as a sufficient (but not necessary) condi-
tion for a theory to have an extension. The basic idea is to make sure
that the application of a default rule can never enable another rule whose
conclusion is inconsistent with the justification of the first rule. Formally,
given a disjunction-free theory (D, W) and a set lits containing the literals
in the theory, define <« and < to be the smallest relations over lits x lits
such that

o < is reflexive,

e < is a superset of <,

< and K are transitive,

e < is transitive through <; that is, for literals x, y, and z in lits:

(r<yNyL2)V(<LyAy < 2)] Dz < 2,

for every 6 € D, and every a € pre(d), b € concl(§), and ¢ € just*():
a<b, ~c<Lb.

Then (D, W) is ordered if and only if it contains no literal = such that
z < 2.2 Ordered theories are quite expressive, but as we will see also have
some nice computational properties. Later we will describe how ordering
is a generalization of the notion of stratification in logic programming.

— Ordered unary: These theories have no cycles involving cancel arcs, as
shown in Fig. 2. Of all the classes considered here, ordered unary the-
ories possess the minimum amount of machinery necessary to represent
inheritance hierarchies with some notion of priority between rules.

— Disjunction-free normal: Normal theories are formally well-behaved, and
possess a resolution-based proof procedure. Normal theories are ordered.

— Horn: Horn clause non-default theories have proven useful for applica-
tions in databases and expert systems. Satisfiability of propositional Horn
clauses can be determined in linear time [3]. Therefore in the search for
“easy” default theories it is natural to consider default theories whose
rules are similar in form to Horn clauses: the literals in the prerequisite
are all positive, and the justification and consequence are the same single
literal.

— Normal unary: This final category falls in the intersection of all the oth-
ers. Its graphical representation contains only positive and negative de-
fault implication arcs. Normal unary theories can represent inheritance
hierarchies with no “preemption strategy” between competing paths [16],
but are more general, in that the graph need not be acyclic.

2The definition of < given in [6] does not require that relation to be reflexive or a superset
of <. But the definitions agree on <, and on whether any particular theory is ordered or not.

Table 1: Forms of default rules in the various classes of theories.

Unary p:a/q, p:gA-r/p, p:-q/mg,
Disjunction-free ordered a3 A---Aa;:by A---Abp Act A---ANep /by A--- ANby,

and for no literal z is z < =

Ordered unary p:q/q, p:gA-r/p, p:—q/q,
and for no literal z is z < =

Disjunction-free normal a3 A---Aa;:by A---ANby /by A--- A by,

Horn PLA--ADniq/q
PLAApn /g
Normal unary P:q/q, p:-q/-q

Table 1 summarizes the forms of the rules that appear in each kind of theory.
In every case, the elements of a rule are optional. For example, the precondition
of a rule may be empty.

5 Finding an extension

It is obvious that the question of whether a first-order default theory has an
extension is undecidable, because the question of whether the justification of
a rule is consistent with an extension is equally undecidable. In the case of
disjunction-free theories, however, this consistency test, as well as the test that
the precondition of a rule is satisfied, reduce to simple set operations. Further-
more, the fact that the theories are finite allows an extension to be constructed
by the application of one rule at a time. It is straightforward to rewrite the
definition of an extension for this special case:

Lemma 1 (Extension of a disjunction-free theory) Let (D, W) be a dis-
Junction-free default theory. Then & is an extension of (D,W) if and only
if there exists a sequence of rules 61,02,...,6, from D, and a series of sets
Ey, Ey,...,E, such that for all i > 0:

EO = W7

E; = E;_, U concl(6;),

pre(6;) C E; 1,

-3¢ € just(8;) . ~c € By,

-36 € D. pre(6) C E, Aconcl(é) € E,
A =3c € just(8). ~ c € E,

and &£ is the deductive-closure of E,,.

This observation makes it possible to construct a nondeterministic algorithm
to decide if a disjunction-free theory has an extension. The machine guesses an
extension. It then tries to verify the extension by trying to construct it starting
with W, and adding the conclusion of any rule whose precondition is contained in
the current approximation and whose justification is consistent with the guessed
extension. When the loop halts the guess is correct just in case the final approx-
imation is the same as the extension. The first algorithm in Fig. 3 does just this.
It takes as input not only the theory but two additional arguments, In and Out,
which restrict the extensions that can be guessed. The set operations performed
in the subroutine applicable run in polynomial time, and in the worst case the
inner loop cycles |D| times and in each cycle |D| or fewer rules are checked for
applicability, so the algorithm also runs in nondeterministic polynomial time.
Therefore the extension existence decision problem is in NP.

The second algorithm in the figure actually computes an extension, build-
ing it from the conclusions of rules one rule at a time. The In parameter of
ND-Exists-Extension-Containing is passed to the current approximation
together with the conclusion of the next rule under consideration. If the answer
is “yes” then the conclusion is added to the approximation. The main loop in
this algorithm iterates |D| times, thus proving our first theorem:

Theorem 1 The problem of computing an extension of a disjunction-free de-
fault theory (or determining that none exists) is NP-easy.

So, finding an extension of a DF propositional theory is not harder than the
hardest problem in NP. The question then becomes: is there a deterministic
polynomial algorithm to compute an extension of a disjunction-free theory?
Unless P is NP, the answer is no. In fact, 3SAT can be reduced to the extension
existence problem for unary theories. Suppose ¢ is a formula in 3CNF. We can
construct a default theory whose extension, if any, is a model of o. Four sets of
rules are needed. The first adds every letter or its negation to the “candidate”
extension. The second adds special letters to stand for negative literals, since
negative literals cannot appear in the preconditions of rules. The third group
checks that every clause is satisfied. If the negation of every literal in some
clause is present in the candidate extension, then a special “failure” letter F
is added. The fourth group contains a special “killer” rule. The precondition
of this rule is F, but its conclusion, Z, is inconsistent with the justification of
the rule which added F. This kind of “vicious cycle” undermines the candidate
extension: it can’t be a “real” extension after alll Thus, o is satisfiable if and
only if the theory has an extension; that is, when no sequence of applications of
default rules can ever conclude F.

The following makes this reduction precise.

Definition:Mappings from 3CNF to defaults. Let o be a propositional
3CNF formula. The function m maps each positive literal to itself, and each
negative literal —p to a new letter p’. Consider the following groups of default
rules:

(A) for each letter p that appears in o, the rules:

p Lp,

)

P -p’

(B) for each letter p that appears in o, the rules:

p:p PN
! ’ /)

-p p

(C) for each clause z Vy V z of o, the following three rules, where Fgy, Fayz,
F, and Z are new letters:
w(~x): Fay A o(y)
Fay ’

Fay : Fayz N m(2)

fzyz ’
Fayz: FANDZ
e

(D) the single rule:
F:Z

Z

Thus we see that a 3CNF formula is satisfiable if and only if the default
theory consisting of an empty W and a D made up of groups (A), (B), (C), and
(D) has an extension. This proves the next theorem:

Theorem 2 The problem of determining whether a unary default theory has
an extension is NP-complete. The corresponding problem of computing a set of
literals equivalent to an extension (or determining that none exists) is NP-hard.

As noted earlier, ordered theories cannot fall victim to the kind of vicious
cycle used in this reduction. In fact, the extension existence problem is trivial
for ordered theories: they always have extensions. One might think that it is
possible to construct an extension of an ordered theory by simply applying any
rule which applies to W, then any rule which applies W and the conclusions of
the first rule, and so on, until no rules apply. But this is not the case. Consider
a theory containing an empty W and just two rules:

8 = m, by = L.
q p
The rule §; applies to W, but there is no sequence of rule applications beginning
with 6; that leads to an extension. Intuitively, d5 is of higher priority; that rule
must be considered for application before §;. So what is needed is a way to
derive a priority ordering on the rules of an ordered theory, given the ordering
on its literals. The following definition does just that.

Definition:< over D. Let (D, W) be a disjunction-free ordered theory, and
< be defined over the literals of the theory as described above. Then for any
01,00 € D,

61 < b2

if and only if
3b € concl(8y), ¢ € just®(2) . b KL ~c.

Lemma 3 in the appendix proves that < is in fact a partial order. In the
example just given, the theory orders ¢ < p, so that d2 < 81, as desired. One
finds an extension by computing the partial order over the rules, topologically
sorting the rules by the order, and then repeatedly firing the lowest ranked rule
which is applicable. Figure 4 presents the algorithm, whose proof of correctness
appears in Appendix B. The computationally most intensive part of the process
turns out to be the transitive closure operation needed to compute <, which
requires cubic time. This leads to the following theorem:

Theorem 3 There is an O(n3) algorithm that finds an extension of a dis-
junction-free ordered theory, where m is the length of theory.

This result is significant for several reasons. As we noted before, ordered
unary theories can represent default inheritance hierarchies, as was demon-
strated by [4]. This gives an efficient algorithm for finding some extension,
that is, some consistent interpretation, of such inheritance hierarchies. This
form of default inheritance has been called “credulous” reasoning by Touretzky
et al. [18]. It is of further interest that the efficiency comes from ordering, and
not from the fact that the theories are unary, nor from the fact that inheri-
tance hierarchies are completely acyclic. The requirement that the graphical
representation of the inheritance hierarchy be acyclic (a condition imposed by
Touretzky [19] and followed in the literature ever since) is a sufficient condition
for ordering, but is not necessary. For example, the theory containing just the

rules))))
Penguin : ~Flier Flier : = Penguin

—Flier ’ - Penguin

is ordered, but would not be admitted by most definitions of an inheritance
hierarchy.

This result is also important because of its relation to logic programming.
It has been known for some time [2, 12] that stratified logic programs (without
“cut”) can be mapped into default logic theories, by turning clauses of the form:

b—ay,...,a4m,C1, ..., Cpy

into default rules of the form:

air NNy :C1,...,7Cpy

b

10

These rules are not semi-normal, and therefore not ordered. But it is not difficult
to show that translation into rules of the form
ar N ANagym:bA=eL A+ A =ey,
b

yields an ordered default theory with the same unique extension. Therefore we
also have a polynomial algorithm for propositional stratified logic programming,.

Although ordered theories are still quite expressive, some natural situations
do map into unordered theories. Consider the “corrupt city government” ex-
ample illustrated in Fig. 5. We are using default rules to represent the con-
cept “most”. This year, most Republican councilmen are running for office,
as are most Democratic councilmen. Furthermore, most councilmen running
for office are under indictment. The District Attorney is Democratic, and will
push the cases against the Republicans much harder than the cases against the
Democrats. Therefore most Republican councilmen who are under indictment
are not running for office. This final condition is most naturally represented by
a justification on the default rule for Republicans running for office, that is,

Republican : Running A ~UnderIndictment

Running

The alternative of making “not Republican” a justification on the “under in-
dictment” rule would leave the theory ordered but would change the meaning
of the theory. It is easy to verify that there are worlds where most Republicans
who are running for office are under indictment, and yet most Republicans who
are under indictment are not running for office.

In summary, finding an extension is tractable for ordered theories and in-
tractable for the non-ordered ones considered in this paper, as shown by the
top-most horizontal line in Fig. 1. Intractability is caused by the apparent need
to consider all possible sequential orderings of rule applications to see if any do
not lead to situations where the conclusion of an applicable rule contradicts the
justification of a previously applied rule.

6 Membership in some extension

An extension can be thought of as a complete set of beliefs which is consistent
with a given set of defaults. Often one is concerned, however, with the status
of only a particular proposition. Asking if a proposition p is a member of some
extension of a theory is equivalent to asking if it is reasonable to believe p; that
is, whether there is a good argument for p. The same theory may provide good
arguments for both p and —p; but the complementary literals must appear in
different extensions.

Reiter [13] showed that p holds in some extension of a normal theory just
in case there is a top-down default proof of p. (A top-down default proof is,
roughly, a sequence of non-default proofs; the first proves the goal given W and
the conclusions of some set of the default rules; the next proves the antecedents

11

of those defaults, perhaps given the conclusions of another set of default rules;
and so on, until a proof that only depends on W is reached.) As we noted above,
Touretzky’s notion of “credulous” reasoning is similar to finding an extension;
he has no notion similar to determining membership in some extension.

The nondeterministic algorithm given in Fig. 3 that solves the generalized
version of the extension existence decision problem also solves this problem.
The function call

ND-Exists-Extension-Containing({z},0, D, W)
returns “yes” whenever x appears in some extension . Thus:

Theorem 4 The problem of determining if a given literal appears in some ex-
tension of a disjunction-free theory is in NP.

One might think that checking the status of a single literal is easier than
computing an entire extension. Unfortunately, this is not the case. Default logic
is “non-local” in the sense that to determine the status of any proposition, one
must consider all interactions between all rules and axioms. Is the problem then
of equivalent complexity to computing an extension? Surprisingly, the answer is
again in general no. While finding an extension is tractable for ordered theories,
determining membership in some extension is NP-complete. In fact, we will
prove two stronger results, for two special cases of ordered theories: ordered
unary and disjunction-free normal.

First, consider the ordered unary case. We will use a reduction like the
one used in the proof of Theorem 2 above, but will eliminate the “killer” rule
(D), which makes the theory unordered. Then we add the following rule, which
makes sure that an extension contains a new letter 7 whenever it does not
contain the “failure” letter F:

(E)

:T AN=F
—

The reader can verify that the theory generated by applying mappings (A), (B),
(C), and (E) to a 3CNF formula o is ordered unary. Furthermore, o is satisfiable
if and only if this theory has an extension containing 7. Thus:

Theorem 5 Determining if a given literal appears in some extension of an
ordered unary theory is NP-complete.

Next, consider the case of disjunction-free normal theories. Normal theories
allow negative literals to appear in the precondition which simplifies the reduc-
tion. The default rules in set (A) again are used to guess a truth assignment.
A second set of rules checks that each clause in o is satisfied by the extension:

12

(F) Let z; V y; V z; stand for the ith clause of o. Then for each clause i in o,
the following three rules appear, where T; is a new letter:

The third group contains a single rule which simply checks that every clause is
simultaneously satisfied; that is, that some extension contains all of the 75:

(G) where n is the number of clauses in o, the rule:

TyANToN---NT, - T
T .

A 3CNF clause o is satisfiable if and only if the theory given by mappings (A),
(F), and (G) has an extension containing 7. In other words:

Theorem 6 Determining if a given literal appears in some extension of a dis-
junction-free normal default theory is NP-complete.

These reductions demonstrate that in order to determine if a literal appears
in some extension it is generally necessary (unless P is NP) to search through
all possible extensions. This should give pause to those who would consider
using default rules to extend ordinary backward-chaining theorem proving, as
suggested in Reiter’s original paper. Default rules can expand the search space
exponentially. If the theorem prover chains backward from the given goal, ap-
plying default rules as needed, it can reach a state where some “wrong” default
has been applied earlier on, which blocks completion of the proof. The system
cannot be sure that there is no default proof until it tries all different sequences
of the defaults.

Is there any interesting class of default theories which does admit a tractable
algorithm? Recall that the preconditions of Horn default rules contain only
positive literals. This means that no default rule is enabled by applying a
different rule which has a negative conclusion. Therefore, in order to construct
a default proof of a positive literal p, you do not need to consider any rules with
negative conclusions. Because the justification and conclusions of the remaining
rules are all positive, none of them can be mutually inconsistent. It is never
necessary to “undo” the application of a default rule during the attempt to
prove p. The situation where the literal to be tested is negative differs only in
that one also uses a rule whose conclusion is the negative goal literal itself.

The following lemma (whose proof appears in Appendix B) shows how to
translate the membership problem for Horn default theories into a deduction
problem for a consistent classical Horn theory, but eliminating some of the
negative default rules.

13

Lemma 2 Where (D, W) is a Horn default theory and x is a literal, let H be
the following Horn theory:

a:y/y €D and
H=WUcaDy| ~y&W and
[(y #~ x and y is positive) or y = x|

Then x appears in some extension of (D, W) iff H - z.

By the results of [3] the problem of determining if a literal follows from a
propositional Horn theory can be solved in O(n) time, where n is the length of
the theory. The translation can also be done in linear time, so therefore:

Theorem 7 There is an O(n) algorithm which determines if a given literal
appears in any extension of a Horn default theory, where n is the length of the
theory.

Horn default theories may have some practical applications in artificial intel-
ligence, as a language for logic programming with default information. It would
be useful to let W contain Horn clauses, instead of simply a set of literals, so
that both default and non-default information could be represented. Unfortu-
nately, Stillman [17] shows that this extension makes the membership decision
problem NP-complete.

The middle horizontal line in Fig. 1 summarizes the results of this section.
Horn and normal unary theories are tractable, and the others intractable.

7 Skeptical reasoning

The final kind of reasoning we examine is determining if a proposition holds in
all extensions of a theory. This task has been called “skeptical” reasoning in
the inheritance literature [18], because it is the most cautious form of default
inference. Intuitively, one may skeptically conclude p only when p appears in
all sets of beliefs which are consistent with the default axioms. Skeptical rea-
soning possesses several attractive properties absent from the other two tasks.
First, the set of skeptical conclusions of a theory is closed under ordinary logical
deduction, and the composition of this set is fixed for any given theory. This
leads to the practical advantage of allowing decomposition in problem solving.
For example, a system could employ several processors to compute different
parts of the set of skeptical conclusions of a theory in parallel. The answers
returned by the processors could be simply conjoined. If the processors were
computing what held in different arbitrary extensions, however, it would not
make sense to conjoin their answers. Second, the conclusions of skeptical rea-
soning often match our intuitions more closely than the conclusions reached by
the other methods. Consider a case where our default knowledge is truly am-
biguous; suppose we believe that berries are by default edible, green fruit is by
default poisonous, and we encounter a green berry. It seems more reasonable to

14

withhold judgement until more information is gathered, rather than jump to an
arbitrary conclusion, which could leave us either hungry or poisoned.® Finally,
skeptical reasoning provides the strongest notion of consistency. If the non-
default part of the theory is consistent, then one cannot skeptically conclude
both p and —p. On the other hand, there may be some extension containing p,
and some other extension containing —p.

Note that skeptical reasoning cannot be defined in terms of the test for
membership in some extension; that is, one cannot skeptically affirm p if no
extension contains —p. This is because some extensions may contain neither p
nor —p.

Skeptical reasoning falls in the class co-NP, rather than NP. The nondeter-
ministic algorithm for the generalized extension existence problem solves this
problem as well. To determine if every extension of a theory contains a literal
x, we ask if there is any which does not contain z. That is, if

ND-Exists-Extension-Containing(, {z}, D, W)
returns “yes”, then the answer is “no, x does not appear in all extensions”.

Theorem 8 The problem of determining if a given literal appears in every ex-
tension of a disjunction-free theory is in co-NP.

One might expect the complexity results for skeptical reasoning to mirror
those for the membership problem. Indeed, just as membership in some exten-
sion is NP-complete for ordered unary theories, membership in all extensions is
co-NP-complete for those theories. The reduction uses the rules in groups (A),
(B), and (C) from the analysis of the extension existence problem. Recall that
these rules were set up to assert the “failure” letter F just in case the potential
extension did not satisfy the 3CNF formula o. In other words, o is unsatisfiable
if and only if F appears in all extensions of the theory containing just those
rules. This shows that:

Theorem 9 Determining if a given literal appears in every extension of an
ordered unary theory is co-NP-complete.

The analogy between membership in all and in some extensions breaks down,
however, when we come to the class of Horn theories. We were able to obtain
a polynomial algorithm for testing membership in some extension by throwing
out all the default rules with negative conclusions (except those which matched
the literal to be tested). This cannot be done when one wants to know if a literal
holds in all extensions. We need to consider extensions which contain neither
the literal nor its negation; extensions where all proofs of the literal are blocked
by the application of rules with negative conclusions. Appendix B includes the
proof of the following theorem:

3 As we will see below, skeptical reasoning is computationally the most demanding form of
default reasoning, so in practice one would like to have some idea of the “cost” of jumping
to the wrong conclusion in order to be able to decide what default reasoning strategy is most
appropriate.

15

Theorem 10 Determining if a given literal appears in every extension of a
Horn default theory is co-NP-complete.

Intuitively, it is harder to find extensions which leave the truth value of a
letter undecided than it is to find ones which assign it true or false. This theorem
also illustrates the tradeoff between “caution” and speed in default reasoning:
the most conservative kind of reasoning in default logic is also the most complex.
The next section of this paper includes a general proof of this observation.

The difficulty in devising complete and tractable algorithms for this kind of
skeptical reasoning has led some researchers to suppose that any formulation of
reasoning based on an intersection of extensions is intractable. (In particular,
the polynomial form of skeptical reasoning developed in [9] is not correct ac-
cording to an intersection of extensions or expansions semantics. Whether it is
correct according to our intuitions is, of course, another matter.) An example
which demonstrates this point is a version of the “extended Nixon diamond”,
shown in Fig. 6. Nixon inherits from “Voter” in all three extensions, but through
Republican in one, Quaker in the other, and both in the third. (Note that in the
default logic formulation, unlike in Touretzky’s “path-based” system, no special
status given to the links that lead directly out of a leaf node such as Nixon.
Touretzky treats such links as representing strict implications, rather than as
defaults.)

This problem and others like it can be encoded entirely in a normal unary
theory. We have devised the first sound and complete polynomial algorithm for
skeptical reasoning in this logic. We will illustrate the central idea behind the
algorithm by first considering the restricted case where W is empty, and the
literal to be tested is positive. A polynomial algorithm for this case is given in
Fig. 7. To determine if a proposition p holds in all extensions, the algorithm
attempts to find a complete set of literals containing —p which is consistent with
some extension that does not contain p.

The reader may gain some understanding of the Normal-Unary-All-
Extensions-Pos algorithm by “running” it on the extended Nixon diamond
example. The set of rules D, where each proposition is abbreviated by its initial

letter, is:
n:r n:q r:-gq q:—r r:iv q:v
))))) -

r q -q -r v v

Rather than including n in W, we will simply add a default rule which always

adds n. Since no rule adds —n, this yields exactly the same set of extensions,
in

n

We wish to determine if v holds in all extensions. The three extensions of the
theory are:
gl = {’I’l,T,q,’U},

82 = {’I’l,’f’, _'qav}a

16

53 = {’I’l, -, q,’U}.

4

Therefore we expect the algorithm to return “yes”.
The complete set of literals L is initially set to

Ll = {TL, T4, _|’U}.

L, is positive consistent, and all its elements are grounded. However, (7, —w) is
negative inconsistent, because a rule with precondition r adds v, and no rule
whose precondition holds in L adds —w. So r is replaced by —r, yielding the
next version of L:

L, = {TL, -4q, _I’U}.

Now the algorithm notices that (g, —v) is negative inconsistent, so ¢ is replaced:
L3 = {n,-r, ~q,-v}.

But now (n,—r) is negative inconsistent, so n must be replaced by —n.
Ly ={-mn,-r,—q,w}.

L, is not positive consistent, because n is fixed positive. Therefore the algorithm
returns “yes”; v holds in all extensions.

An algorithm for the more general case of normal unary skeptical reasoning
appears in Fig. 8. It transforms the input theory to the simpler case by replacing
literals in W by new rules (as in the example above) and by substituting a new
letter for a negative query. A proof of correctness and a complexity analysis of
the two algorithms appears in Appendix B. Thus:

Theorem 11 Given a normal unary theory and a literal z, the Normal-Unary-
All-Extensions algorithm returns “yes” if and only if every extension of the
theory contains x. The time complezity of the algorithm is O(n?), where n is
the length of the theory.

In summary, all kinds of skeptical reasoning other than for normal unary
theories are intractable, as shown by the lowest horizontal line in Fig. 1. Stein
[16] uses normal unary theories to capture so-called “ideally skeptical” inheri-
tance, which is default inheritance without priorities. Thus, our algorithm can
be directly applied to handle this, very conservative, form of inheritance. It
remains to be seen if there are interesting practical applications of this kind of
reasoning.

8 Comparing the reasoning tasks

The complexity results for the specific classes of default theories we considered
showed that the task of finding an extension is no harder than determining if
a literal holds in some extension of a theory, which in turn is no harder than
skeptical reasoning. This section develops general results that show this is true

17

for very broad classes of disjunction-free theories. (These general theorems do
not make the previous results redundant; the results limited to the specific
classes are stronger.)

First we compare finding an extension to determining if a literal holds in some
extension. The first algorithm presented in Fig. 9 reduces the former problem
to the latter. The algorithm works by maintaining an approximation to an
extension in the variable E. It creates a new default rule whose precondition
is the conjunction of all the literals in F, and whose conclusion is a new letter
p. The oracle Some-Extension determines that some extension of the original
theory augmented with this new rule contains p just when some extension of
the original theory contains all of E. The main loop of the algorithm makes
E maximal, by trying to add each literal to it. Note that a disjunction-free
normal default rule is added to the theory. A requirement of this reduction is
therefore that the class of default theories under consideration be closed under
the addition of such rules. Note that this reduction is not too surprising given
our earlier result which showed that the membership question is NP-complete
for disjunction-free normal theories.

Theorem 12 For any class of disjunction-free theories that is closed under the
addition of a single disjunction-free normal default rule, the problem of finding
an extension is Turing-reducible to the problem of determining whether a given
literal appears in some extension.

The second algorithm in Fig. 9 reduces membership in some extension to
membership in all extensions. Where z is the literal to be tested, the reduction
adds a new default rule with no precondition whose conclusion is ~ x. This rule
can only fail to be applied to an extension which contains x. Therefore, we see
that some extension of the original theory contains « if and only if it is not the
case that every extension of the modified theory contains ~ z. This reduction
applies to any class of theories closed under the addition of the new default rule,
which can be characterized as follows:

Theorem 13 For any class of default theories that is closed under the addition
of a rule of the form : ~ x/ ~ x, determining if a given literal appears in some
extension is Turing-reducible to the task of determining whether a given literal
appears in all extensions.

These reductions can be used to derive complexity results for classes of de-
fault theories not specifically examined in this paper. For example, by Theorem
12, any NP-completeness result for the problem of finding an extension will
carry over to that of membership in some extension, provided the class of the-
ories under consideration is disjunction-free and closed under the addition of
the simple default specified above. Going in the other direction, a polynomial
algorithm for finding an extension can be obtained from one for membership in
some extension.

The second reduction is even more general, and even applies to infinite and
first-order theories. Any lower bound result, such as NP-hardness, PSPACE-

18

completeness, undecidability, and so on, carries over from the problem of mem-
bership in some to membership in all extensions. Likewise, a polynomial algo-
rithm or decision procedure for skeptical reasoning immediately gives one for
membership in some extension.

9 Conclusions

We have examined a wide range of simple default theories and have uncovered
some surprising worst-case complexity results. The problems of deduction and
consistency checking are not the only source of difficulties in reasoning with
defaults. In the study of finding an extension, the source of complexity can be
characterized as the problem of detecting incoherent cycles in the rules, which
make it hard to detect if a sequence of rule applications is actually leading
toward an extension. In the membership problems, the source of complexity
can be characterized as the exponential number of different extensions that can
be generated by a set of defaults. One can think of the rules as specifying a
nondeterministic computation, and the test for membership of a literal in some
or all extensions as picking out a successful computation, or determining that
there are none.

Yet we also developed a number of interesting positive results. We presented
a polynomial algorithm to find an extension of a propositional ordered theory,
and these theories appear to have many uses in AI and logic programming.
In particular, this class includes “credulous” reasoning in default inheritance
hierarchies, but is strictly more general, in that rules may have any number of
positive literals in the preconditions, and the graphic form of rules may include
(certain kinds of) cycles. As noted earlier, the syntactic constraints traditionally
placed on inheritance hierarchies do not correspond to the constraints actually
needed for efficient reasoning. Ordered theories also subsume stratified logic
programs, but allow both negative and positive literals to appear anywhere in
a rule.

Horn default theories nicely generalize classical Horn theories and retain
linear complexity for the problem of membership in some extension. Finally,
we developed the first polynomial algorithm for determining the contents of the
intersection of all extensions of a default theory—albeit a very restricted class
of theories.

Last but not least, the general reductions between the reasoning tasks sug-
gest how default logic may be most efficiently used in problem solving. The riski-
est, most credulous form of default reasoning is also the fastest. At least in the
propositional case, it is possible to construct an efficient problem solver which
simply applies all its default rules to an input problem description, forward-
chaining to a complete extension. The abundance of detail in the extension
would, one might hope, simplify or trivialize further inference. This is the use
of defaults suggested by Levesque in his proposal for “vivid reasoning” [10].

Reiter identified the notion of a “default logic proof” with determining if a
formula held in some extension of a theory. The much greater complexity of the

19

problem of determining membership in some extension over finding an arbitrary
extension indicates that great care will be needed in augmenting traditional
backward-chaining theorem provers with default rules, in order to not fall victim
to an exponential expansion of the search space.

Finally, the most conservative use of default logic, skeptical reasoning, may
prove too computationally intensive for any application. If default logic is your
tool of choice, and you are concerned with the complexity of inference, it appears
that you should design your theory so that any extension in fact yields a rea-
sonable set of conclusions, and you should not depend on taking an intersection
of extensions to filter out the good from the bad.

A Terminology of NP-completeness

For an introduction to the theory of NP-completeness, see [8]. The class NP
consists of decision problems (ones whose solution is either “yes” or “no”) that
can be solved by a nondeterministic algorithm that given a problem instance
(1) guesses a data structure and (2) deterministically checks in polynomial time
whether the answer is “yes” or “no”. The algorithm is said to solve the problem
if and only if for any “yes”-instance of the decision problem, there exists a data
structure that leads to a “yes” answer after checking; whereas for any “no”-
instance of the problem, no such structure exists. An NP-complete problem
is a member of an NP to which any problem in NP can be transformed in
polynomial time. A problem is in co-NP if its complement is in NP, and any
such problem can be transformed in polynomial time into a co-NP-complete
problem. A problem (not necessarily a decision problem) is NP-hard if an NP-
complete problem can be solved by a deterministic polynomial algorithm that
employs an oracle that solves the NP-hard problem. Conversely, a problem
is NP-easy if it can be solved by a deterministic polynomial algorithm that
employs an oracle that solves a problem in NP. Hence an NP-easy problem is
essentially “no harder” than any problem in NP. (That is, if P = NP, then
any NP-easy problem is polynomial. But in terms of the complexity hierarchy,
NP-easy properly includes both NP and co-NP.)

The NP-complete problem 3SAT is that of determining the satisfiability of
a conjunction of three-element clauses in propositional logic (3CNF); that is, of
a formula of the form:

0'2(1‘1\/yl\/Zl)/\(l'z\/yz\/Zz)/\"'.

The corresponding co-NP-complete problem is determining the unsatisfiability
of such a formula.

B Proofs

Proof:Proof of Lemma 1(Sketch). It is easy to see that the lemma’s definition
of an extension is equivalent to the original definition (presented in Section 2) if

20

the logical closure operation is applied to the E’s on the right-hand side of the
expressions in the lemma. For example, ~ ¢ € E,, becomes ~ ¢ € Th(E,,). The
original definition allows the application of a number of defaults at each step,
while the lemma effectively stretches the applications out into a single sequence.
The difference is not significant for finite propositional theories. (The lemma
fails for infinite theories, because there may not be any maximal n.)

Let E be a set of literals and « a single literal. Observe that if E is consistent,
then z € E if and only if # € Th(E). Furthermore, if W is a consistent set of
literals, then applications of semi-normal default rules will maintain consistency.
Therefore the definitions are equivalent for consistent disjunction-free theories.
On the other hand, if W is an inconsistent set of literals, then both by the
lemma and by the original definition the inconsistent theory Th(1V) is the unique
extension. So the definitions are fully equivalent for disjunction-free theories.

Note that the lemma fails for non-semi-normal finite propositional theories
containing no disjunctions. This is because the application of a non-semi-normal
default rule to a consistent set of literals can yield an inconsistent set.Q.E.D.

Lemma 3 The relation < as defined over D in a disjunction-free ordered theory
is a partial order.

Proof: We show that < is transitive and irreflexive over D.
(transitive) Suppose §; < 62 and §3 < 63. Then in must be the case that

3b; € concl(dy),co € just*(62) . by L ~ cq,
Jbs € concl(dz2),c5 € just*(d3) . by L ~ c3.
The rule 65 induces the literal ordering
~ C2 <L b2.

So by € ~ c3, which entails that §; < d3.
(irreflexive) Suppose it were the case that § < §. Then it must be the case
that

3b € concl(d), ¢ € just*(§) . b KL ~c.
But this rule induces the literal ordering
~cLb
which would imply that b < b, violating the definition of an ordered theory.

Proof:Proof of Theorem 3

(correctness) Let FEpinar, be the value returned by Ordered-
Find-Extension(D,W). We claim that the following assertion is true at the
end of the then clause in the algorithm:

=3¢ € just(DJ[i]) . ~ ¢ € EFiNAL-

21

Correctness of the algorithm follows immediately from this assertion and Lemma
1.

So suppose the assertion were false. Let E; represent the value of the vari-
able E after cycle j of the outer loop, and DJi;] be the rule selected by the
if statement in cycle j. Suppose the assertion fails when 5 = j,. Plainly
¢ ¢ concl(D]ij,]), so

¢ € just*(Dlij,))

and there must be some j; > jo such that for j = j;,
~ ¢ € concl(D[ij,]).
Then by the definition of <,
D[ij,] < Dlijq]
because ~ ¢ € ~ ¢. This implies that
1y, K ij-

Now suppose that pre(D[ij,]) C Ej,—1). Then the inner loop in cycle jo should
choose D[ij,] rather than D[i;,]. But since this is not the case, there must exist
some literal a such that

a € pre(D[ijl]), a g E(jofl)-

This a must have been added in either cycle jy or in some cycle which follows
jo- First, consider the possibility that a is added in cycle j,. In that case,
a € concl(D[ij,]) and thus ~ ¢ < a. Also, since a € pre(D[ij,]) and ~ ¢ €
concl(D[ij,]), we have that a~ ¢. Thus, ~ ¢ < ~ ¢, which contradicts the
fact that our theory is ordered. Therefore, ¢ must have been added in some
cycle jo which follows j, and precedes ji:

Jo < j2 < J1-
Note that D[i;,] < DJij,] because
a<L~e, a € concl(Dlij,]), ¢ € just*(Dlij]).

Now by the previous argument pre(D[ij,]) € E(j,—1), so there must be some
literal a’ such that

a’ € pre(Dlij,]), a' & Ej,—1).

Again, we can show that a’ cannot have been added in cycle jy. For suppose it
was. Then, o' € concl(DJ[ij;,]) and thus ~ ¢ < a'. Also, since a' € pre(D]ij,])
and a € concl(DJij;,]), we have that o’ < a, and, again from Dli;,], we have
a<&~ c. Thus, ~ ¢ € ~ ¢, which contradicts the fact that our theory is ordered.

22

Therefore, a must have been added by some rule D[i;,] which fires at a cycle
j3, where

Jo <Js <Jj2 <J1.
As before, D[ij,] < Dlij,—1] and pre(D[i;,]) € Ej,. The argument can be
repeated any number of times, leading to an infinite sequence

Jo < <js<jz3<j2< g1

But since there are a finite number of rules in D, this is impossible.

(complezity) Let us suppose that the propositional letters of the input are
represented by the odd integers 1 through m —1, and the corresponding negative
literals by the integers 2 through m. Note that n < m < 2n, where n is the
length of the theory. The variable FE is represented by a vector of length m, with
E[i] = 1 when the literal represented by i is in E. The precondition, justification
(just*), and conclusion of each default rule is stored as a list of integers.

The first task is to compute the ordering < on the literals. This relation
can be stored in an m x m table, with entry (4,7) equal to 1 just in case literal
i < literal j. The table is first set to all 0’s except for the diagonal (i,¢) which
is set to all I’s (because < is reflective), in O(m?) steps. Next the constraints
derived from each default rule (¢ < b and ~ ¢ < b) initialize the table. The
constraints on < induced by each rule § can be calculated in |§|? time, so the
initialization step requires the following time:

2
|D| |D|

i=1 i=1

Finally the transitive closure of < is taken in O(m?) time [1]. Thus this task
requires O(m? + n? + m3) = O(n?) time.

The next task is to compute the ordering < on default rules. For each pair
of rules, compare each literal in the conclusion of the first rule with each literal
in the proper justification (just*) of the second rule. This takes the following
time:

|D| |D| |D
Sosls = Dolsl D] 16
ij=1 i=1 j=1

|D| |D|

< Z |6:]n = nz 6:] < n?.
i=1 i=1

The result of this task is a list of length less than |D|? describing the relation
<.

Now we come to the proper algorithm. The topological sort of D is linear
in the number of rules plus the number of pairs describing <. So the sort is
O(|D| + |D|?) or more simply O(n?).

23

Checking that rule D[i] is applicable to E takes |D[i]| time. Checking all
the rules to find an applicable one takes

|D]

> 1Dl <

steps. Each rule applies at most once, so this check has to be performed at most
|D| times. Therefore all the calls to applicable require O(|D|n) = O(n?) time.
Each union of E with concl(DJi]) also takes |D[i]| time, and again this step is
performed at most |D| times, so again the time is O(n?).

The total time for the algorithm is therefore O(n® +n? +n?) = O(n?). It is
interesting to note that the most expensive part of the algorithm is taking the
transitive closure of the literal ordering.Q.F.D.

Proof:Proof of Lemma 2

(=) Suppose x appears in some extension £ of (D,W). By Lemma 1 there
are a finite number of approximations F; to £. Let E; be the lowest numbered
approximation such that x € E;. If j = 0 then 2 € W so of course H F z.
Otherwise & € concl(6;) which implies that pre(é;) D « € H. It is apparent
from the construction of E; that one can extract a forest of default rules all with
positive conclusions rooted at pre(d;) and with leaves in W. All of the Horn
clauses corresponding to these rules must be in H as well. Then this forest
together with ¢; constitutes a proof of z from H.

(<=) Suppose H F z. Note that H must be consistent; therefore there exists
a linear resolution style proof tree T of x from H. Traverse T in an order with
visits a node after visiting all of its children; the result is a linearization of the
Horn clauses used in the proof of z. Eliminate any clause which appears in W
or earlier in the sequence. Replace each clause by the corresponding default
rule which generates it. It is clear then that the resulting sequence is a prefix
of a sequence of rules whose application to W leads to an extension containing
z.Q.E.D.

Proof:Proof of Theorem 10 An arbitrary 3CNF formula o is unsatisfiable if and
only if F holds in every extension of the theory containing rules in groups (H),
(I), and (J) below:

(H) for each letter p which appears in o, with p' = (p), the four rules:

T A S A
p

) 7) 7

p -p -p
(I) likewise for each letter p, the following rule, where F is a new letter:

pAp F
f b

24

(J) for each clause z V y V z of o, the rule:

m(~x)Ar(~y)Ar(~2z): F
7 :

We prove the equivalent statement, that o is satisfiable if and only if some
extension does not contain F.

(if) Let € be an extension not containing F. By the rules in group (H), for
any letter p, every extension contains either {p,p'}, {p, —p'}, or {-p,p'}. Since
none of the rules in group (I) applied in &, the first alternative never occurred
for any p. Thus p’ can be taken to stand for —p. Thus the fact that no rule in
group (J) could have applied in £ means that one of the literals in each clause
of o appeared in £. So £ is a model for o, and o is satisfiable.

(only if) Suppose M is a truth assignment for o. Let £ be the deductive
closure of the set of literals which hold in M, together with p’ or —p’ for every
literal —p or p respectively which holds in M. Then £ is an extension of the
default theory. Note that £ is grounded by the rules in groups (H), and that
none of the rules in groups (I) or (J) apply. In particular, 7 does not appear in
£.Q.E.D.

Proof:Proof of Theorem 11 The correctness proof of the Normal-Unary-
All-Extensions-Pos algorithm is based on the following loop invariant:

Lemma 4 Given a set of normal unary defaults D and a positive literal py,, the
following property is maintained each time through the while loop in Normal-
Unary-All-Extensions-Pos(pg,D):

INV: If L contains —~q and £ is an extension of D that does
not contain py,, then £ does not contain q.

Proof:(By induction on the number of times through the loop).

Base case (upon entering the while statement). L = {p1,pa, ..., "Dk, -, Pn }-
The only negative literal in L is —p;. So, INV holds.

Induction step. Let L be the complete set of literals after [times through the
body of the loop, and L' the updated L after one additional time through. By
the induction hypothesis, L has property INV. Clearly, if the condition in the
if statement is false, we have L' = L. And thus, INV holds for L’. Otherwise,
L' = (L — {p}) U {-p} where p in L is such that (1) not grounded(p,L, D)
or (2) neg-inconsistent(p,—q,L, D) for some —g in L. We will now show by
contradiction that INV holds for L'. Assume that L' does not satisfy INV, i.e.,
there exists an extension £* of D that does not contain p; but does contain
some letter s such that —s in L'. If s # p, then INV would not hold for L either,
violating the induction hypothesis. So, s = p.

Case 1. not grounded(p,L,D). Since p in £*, there must exist a sequence
of one or more rules that adds p to the extension, i.e., there exists a sequence
qo,q1,---,Gm = p such that

(a) q; ing*aogjgma

25

(b) : go/qo in D, and

(¢) pj—1:pj/pjin D, 1< j <m.
Now, by the induction hypothesis, we have p; in L with 0 < 7 < m, since these
positive literals are in an extension £* of D that does not contain p;. Therefore,
grounded(p,L,D). Contradiction.

Case 2. neg-inconsistent(p,~q,L,D). From neg-inconsistent(p,~q,L,D), it
follows that

(a) pand —q in L,

(b) p:g/qin D,

(¢) :=g/—q not in D, and

(d) for each rule r : =¢/—q in D, we have —r in L.
By the induction hypothesis it follows that £* does not contain ¢ (since L
contains —q), and neither does £* contain an r with a rule r : —~g/-¢q in D
(since, if £* would contain such an r then, by the induction hypothesis, L
contains r and therefore (d) is false). Contradiction. Moreover, since : ~q/—g
not in D, it follows that £* does not contain —q either. Now, since p in &%,
it follows that the rule p : ¢/¢ in D is applicable. But since neither ¢ nor —g
is in £*, £* violates the fixed point property of a default logic extension [13,
Theorem 2.5]. So, no such £* exists. Contradiction.

From the base case and the induction step, it follows by finite induction that
INV is maintained.

We will now prove the correctness of the Normal-Unary-All-Extensions-
Pos algorithm.

Lemma 5 Given a set of normal unary defaults D and a positive literal py,, the
algorithm Normal-Unary-All-Extensions-Pos returns “yes” iff every extension
of D contains py. The time complezity of the algorithm is O(n?), where n is
the length of D.

Proof: First, we will show that:
The algorithm returns “yes” iff every extension of D contains py,.

(=) By contradiction. Assume the algorithm returns “yes” while there exists
some extension £* of D that does not contain p. Note that L is not pos-
consistent upon exiting. So, there exists some ¢ such that —g in L with fixed-
pos(q,L,D), i.e.,

(a) :¢/qin D,

(b) : =¢/—q not in D, and

(c) for each rule of the form r : =¢/—¢q in D, we have —r in L.

Also, by Lemma 4, L has the property INV. Now, since £* is an extension of
D that does not contain p;, it follows from INV that £* does not contain g.
Moreover, by (b), (c), and INV it follows that £* does not contain —¢ either
(no rule present or applicable to add —¢q to &£). It follows that : ¢/q in D is
applicable. But since £* does not contain ¢, £* violates the fixed point property
of a default logic extension [13, Theorem 2.5]. Therefore, no such £* exists.
Contradiction.

26

(<) Assume the algorithm returns “no”. Therefore, L upon exiting is such

that

(a) pos-consistent(L,D),

(b) for each letter ¢ in L, we have grounded(q,L,D),

(c) there do not exist ¢ and —r in L such that neg-inconsistent(q,—r,L,D),
and

(d) =p;, in L.

We will construct a set of literals from L, and show that the deductive closure
of this set is an extension of D that does not contain pg. Thereby, we will
have shown the contrapositive of the <=-direction.

Let neg-supported(—p,L,D) iff : =p/—p in D or there exists a ¢ in L and
arule ¢: -p/-pin D, and let £ = Th({p|pin L} U {-p|—-pin L and
neg-supported(—p,L,D) }). We will now show that £ is an extension of D
that does not contain p,.

First, by (d) and the definition of £ it follows that £ does not contain py.
From (b) and the definition of £ it also follows that each positive literal in
£ is grounded, i.e., for each p in & there is a sequence of one or more rules
starting with a rule of the form : go/go that brings in p. Now, consider
starting off with the empty set and applying all the rules (and only those)
that bring in all positive letters of £, to obtain Ey. Now, by the definition
of £ it follows that all negative letters in £ can subsequently be brought
in by rules in D that are applicable at Fy. After applying those rules,
and only those, in a sequence starting at E,, we obtain a set E and its
deductive closure £. It now remains to be shown that: (1) no subsequent
application of rules can undermine the justification of any rule applied so
far (i.e., make some previously applied rule non-applicable), and (2) no
additional literals can be brought in by any of the rules in D.

Case 1. Follows immediately from the fact that we have only normal defaults
in D.

Case 2. By contradiction. Assume more literals can be added to £ by further
rule applications. Let r or —r be the first such literal that can thus be
added. By definition of £ and the fact that L is a complete set of literals,
it follows that —r must be in L, and therefore, the first new literal that
can be brought in must be a positive one, i.e., r (if —r could be brought
in then we would have neg-supported(—r,L,D) and —r would already be
in £, contradiction). Note that since r is added by a normal default, £
cannot contain —r. The literal » can only be brought in via one of the
following rule applications:

e Application of a rule : r/r. Since there are no rules to bring in —r (from
definition of £), we have : =r/—r not in D, and for each rule s : =r/—r
in D, we have —s in L. From : r/r in D it follows that fixed-pos(r,L,D).
And thus, we have that L is not pos-consistent. Contradiction with (a).

e Application of a rule ¢ : r/r. As argued above, we again have that : —r/-r
not in D and for each rule s : =r/—r in D, we have —s in L. Now, since

27

t:r/r is applicable in &, ¢ is in £ and thus, ¢ in L. Therefore, we have
neg-inconsistent(t,—r,L,D) for ¢t and —r in L. Contradiction with (c).

It follows that & is a fixed point of the defaults and grounded. So, £ is an
extension of D not containing p,,, and thus, it is not the case that every
extension of D contains pg. This completes the correctness proof of the
algorithm.

Finally, we will determine the time complexity of the algorithm. Since the
number of positive literals in L is decreased by one each time through the
body of the while loop with the possible exception of the last time through,
it follows from the definitions of grounded and neg-inconsistent that the
loop body is executed at most N times (N is the number of distinct propo-
sitional letters in the theory). Computing pos-consistent(L,D) can be
done in O(n), where n is the length of the theory. And, a pair of letters
p, —q such that (not grounded(p, L, D)) or neg-inconsistent(p, —q, L, D))
can also be found in time O(n). Therefore, the time complexity of the
Normal-Unary-All-Extensions-Pos algorithm is O(n?).Q.E.D.

Proof:Proof of Theorem 11 (Continued). It is not difficult to see that the set of
defaults D’ is such that a set of formulas £ is an extension of (D, W) if and only
if £ is an extension of (D',). (New defaults are introduced that add the literals
from W into each extension; note that rules which add literals inconsistent with
W have to be removed—such rules are not applicable in the original theory.)
When the Normal-Unary-All-Extensions algorithm is queried with a posi-
tive literal, the algorithm directly calls the subroutine Exists-Ext-Without-
Pos-Lits; a query with a negative literal z is converted into one for a positive
literal for the new letter p. The correctness of the algorithm follows from the
observation that the default rules added to D' to obtain D" are such that all
extensions of (D', () contain the negative literal x if and only if all extensions
of (D",) contain the positive literal p. This can be seen as follows. If (D’,0)
has some extension containing ~ x, then there will be some applicable default
to add ~ z to the extension, and thus there is some default in the second set of
defaults added to D' that can add —p to the corresponding extension of (D", ().
If (D',0) has some extension that contains neither x nor ~ z, then none of the
defaults that could add = or ~ x will be applicable, and thus neither p nor —p
can be added to the corresponding extension of (D", (). So, if (D', §) has an ex-
tension that does not contain x, then (D", () has some extension that contains
—p or one that contains neither p nor —p. Finally, assume that all extensions
of (D',) contain z. For each extension containing x, there will be a corre-
sponding extension of (D", () containing p because of the first set of defaults
added to D'. Moreover, there are no other extensions of (D",), since if (D",)
had an extension containing —p, then there would exist an extension of (D',)
containing ~ z: contradiction; and, by a similar argument, (D", §)) cannot have
an extension containing neither p nor —p. Thus, all extensions of (D', () contain
the negative literal z if and only if all extensions of (D", @) contain the positive
literal p.

28

As can be seen from the algorithm, its time complexity is dominated by that
of the procedure Normal-Unary-All-Extensions-Pos. Therefore, the time
complexity of the algorithm is O(n?), where n is the length of the theory.Q.E.D.

Acknowledgement

We thank Hector Levesque for useful discussions and comments.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms (Addison-Wesley, Reading, MA, 1976).

[2] N. Bidoit and C. Froidevaux, Minimalism subsumes default logic and cir-
cumscription in stratified logic programming, Preprint (1986).

[3] W.F. Dowling and J.H. Gallier, Linear time algorithms for testing the
satisfiability of propositional Horn formula, J. Logic Program. 3 (1984)
267-284.

[4] D.W. Etherington and R. Reiter, On inheritance hierarchies with excep-
tions, in: Proceedings AAAI-83, Washington, DC (1983).

[5] D. Etherington, K. Forbus, M. Ginsberg, D. Israel and V. Lifschitz, Critical
issues in non-monotonic reasoning, in: Proceedings First International Con-
ference on Principles of Knowledge Representation and Reasoning, Toronto,
Ont. (1989).

[6] D. Etherington, Reasoning with Incomplete Information (Morgan Kauf-
mann, Los Altos, CA, 1988).

[7] S.E. Fahlman, Netl: A System for Representing and Using Real-World
Knowledge (MIT Press, Cambridge, MA, 1979).

[8] M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman,
New York, 1979).

[9] J.F. Horty, R. Thomason and D.S. Touretzky, A skeptical theory of inher-
itance in non-monotonic semantic nets, in: Proceedings AAAI-87, Seattle,
WA (1987).

[10] H. Levesque, Making believers out of computers, Artif. Intell. 30 (1986)
81-108.

[11] J. McCarthy, Applications of circumscription to formalizing common-sense
knowledge, Artif. Intell. 28 (1986) 89-116.

29

[12] T.C. Przymusinski, On the relationship between logic programming and
non-monotonic reasoning, in: Proceedings AAAI-88, St. Paul, MN (1988)
444.

[13] R. Reiter, A logic for default reasoning, Artif. Intell. 13 (1980) 81-132.

[14] B. Selman and H. Kautz, The complexity of model-preference default the-
ories, in: Proceedings CSCSI-88 (1988) 102-109; also in: Non-monotonic
Reasoning, Lecture Notes in Artificial Intelligence 346 (Springer, Berlin,
1989).

[15] B. Selman and H. Kautz, Model-preference default theories, Artif. Intell.
45 (1990) 287-322.

[16] L.A. Stein, Skeptical inheritance: computing the intersection of credulous
extensions, in: Proceedings [JCAI-89, Detroit, MI (1989) 1153.

[17] J. Stillman, It’s not my default: the complexity of membership problems
in restricted propositional default logic, in: Proceedings AAAI-90, Boston,
MA (1990).

[18] D.S. Touretzky, R. Thomason and J.F. Horty, A clash of intuitions: the
current state of nonmonotonic multiple inheritance systems, in: Proceedings
IJCAI-87, Milan, Italy (1987) 476-482.

[19] D.S. Touretzky, The Mathematics of Inheritance Systems (Morgan Kauf-
mann, Los Altos, CA, 1986).

30

Disjunction
Free

Unary

Find ExtensionNP-Hard

O(n3)

D.F. Ordere
A

D.F. Normal
Ordered

Member Some Unary
Extension? NP-Complete

0O (n)

A

Horn

Member.All Co-NP-Complete
xtensions?

O(n2)

Normal
Unary

Figure 1: The hierarchy of default theories.

31

Flier Flier

~ A 3
“~‘ .
Bird ‘. Bird 1
] ¢'
I’ ¢"
4
4
L4
4
Penguin Penguin
dered unary theory: Non-ordered unary theory:
aguin : Bird / Bird Penguin : Bird A —Flier / Bird

rd : Flier A —Penguin / FRiex : Flier / Flier

Figure 2: Ordered and unordered unary default theories.

32

ND-Exists-Extension-Containing(In, Out, D, W)
input: A disjunction-free theory (D,IV) and sets of literals In and Qut.
output: “Yes” iff there exists an extension containing all of In
but none of Out.

Guess E, an arbitrary consistent superset of In disjoint from Out
E =W
while [36 € D . applicable(é, E', E) | do
E":= E' U concl(9)
if[' #FE]
then “no”
else “yes”
end.

ND-Find-Extension(D, W)
input: A disjunction-free theory (D,IV).
output: An extension of the theory, or “no” if there is none.

if [ND-Exists-Extension-Containing(®, §, D, W)]
then return “no”
E =0
for 6 € D do
if [ND-Exists-Extension-Containing(E U concl(6),0, D, W) |
then F := E U concl(d)
return F
end.

Definitions:
applicable(8, E', E) iff
(a) pre(6) C E',
(b) concl(6) € E', and
(c) ~3p €just($). ~p€ E

Figure 3: Nondeterministic algorithm to find an extension of a disjunction-free
theory.

33

Ordered-Find-Extension(D, W)
input: A disjunction-free ordered theory (D, W)
output: An extension of the theory.

Topologically sort D by <, so that D[i] is the ith rule in the ordering
E=W
1:=1
while [i < |D|] do
if [applicable(D]i], E, E)]

then
begin
E := E U concl(D]i])
1:=1
end
elsei:=¢+1
return £

end.

Figure 4: Deterministic polynomial-time algorithm to find an extension of a
disjunction-free ordered theory.

Under Indictment

Republican Democratic
Councilman Councilman

Figure 5: An unordered default theory.

34

Voter

Nixon

Figure 6: The extended Nixon diamond.

35

Normal-Unary-All-Extensions-Pos(py, D)
input: Positive literal p;, and a set D of normal unary
defaults containing letters py,...,pn.
output: “Yes” iff every extension of (D,) contains py,.

L:= {p17p27 ceey WDk 7pn}
while [pos-consistent(L, D) | do
if [exists p, ~q in L such that
((NOT grounded(p, L, D))
OR neg-inconsistent(p, ~q, L, D))]
then L := (L — {p}) U {-p}
else return “no”
return “yes”

end.
Definitions:
fixed-pos(p, L, D) iff
(a) : p/p €D,
() :—|p/—|p¢D and

(c) —q € L, for each rule ¢ : =p/-p € D
pos-consistent(L,D) iff
for all p, if fixed-pos(p, L, D), then p € L
grounded(p, L, D) iff
exists a sequence ¢y, q;,---,q; = p such that
(a) quL,OSjSk,
(b) : q0/q0 € D, and
(¢)gj_1:9;/q; €D, 1<j<k
neg-inconsistent(p, =g, L, D) iff
(a) pand ~g € L
(b)p:q/qe D,
(¢) : =g/~q ¢ D, and
(d) —~r € L, for each rule r : =q/~q € D

Figure 7: Skeptical reasoning algorithm with a positive literal and a set of
normal unary defaults as input.

36

Normal-Unary-All-Extensions(z, D, W)
input: A literal z and a normal unary theory (D, W).
output: “Yes” iff every extension of the theory contains z.

D' :={6eD|~concl(d) gW}tU{:y/y|lyeW}
if [z is a positive literal]
then Normal-Unary-All-Extensions-Pos(z,D")
else
begin
Let p be a new letter
D" := D" U {pre(d) : p/p| 6 € D' and concl(é) = {z}}
U {pre(d) : ~p/—-p| 6 € D" and concl(é) = {~ z}}
Normal-Unary-All-Extensions-Pos(p,D")
end
end.

Figure 8: Algorithm to determine if a literal holds in all extensions of a normal
unary theory.

Reduction-Find-To-Some(D, W)
input: A disjunction-free theory (D, W).
output: An extension of the theory, or “no” if there is none.

Let p be a propositional letter not appearing in (D, W)
if [=Some-Extension(p, D U {: p/p}, W)]
then return “no”
E=0
for each literal do
if [Some-Extension(p, D U{A\ E Az : p/p}, W)]
then F := EU {z}
return £
end.

Reduction-Some-To-All(z, D, W)
input: A disjunction-free theory (D,IV).
output: “Yes” if (D, W) has an extension containing z, otherwise “no”.

if [All-Extensions(~ z, (D U {: ~z/—xz}, W)]
then “no”
else “yes”
end.

Figure 9: Turing reductions of reasoning tasks.

37

