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Abstract—Accurate home location is increasingly important
for urban computing. Existing methods either rely on continuous
(and expensive) GPS data or suffer from poor accuracy. In
particular, the sparse and noisy nature of social media data poses
serious challenges in pinspointing where people live at scale. We
revisit this research topic and infer home location within 100
by 100 meter squares at 70% accuracy for 71% and 76% of
active users in New York City and the Bay Area, respectively.
We believe this is the first time home location is detected at
such a fine granularity using sparse and noisy data. Since people
spend a large portion of their time at home, our model enables
novel applications that were previously impossible. As a specific
example, we focus on modeling people’s health at scale.

Home, as one of the most important locations in people’s
mobility patterns, is the key to understanding many aspects
of urban life and environments. With the knowledge of where
people actually live, researchers are able to model the dis-
tribution of population, study human mobility patterns, infer
life styles, and even discover the correlation between home
location and other important aspects such as health conditions,
disease diffusion and environment changes.

Much of the research in above mentioned areas is based on
surveys and census, which are costly and often incur a delay
that hamper real-time analysis and response. Fortunately, the
wide adoption of geotagged social media provides us a new
opportunity to feel the pulse of cities. In this paper, we present
a machine learning based approach to detecting home locations
at the population level only based on geo-tagged tweets and
use the estimated home locations to investigate these crucial
aspects of urban life.

The practicability of a home detection method for urban
studies depends on two metrics. The first one is granularity,
which indicates in what resolution a method can predict one’s
home; the second one is applicable scope, which measures the
ratio of population that a method is applicable to. In some
prior work, granularity are also called “resolution” [1]. In this
paper, we use these two terms interchangeably. To look deep
into city life, an acceptable method should not only precisely
determines ones’ home, but also cover as many people as
possible.

Significant work has been done to find where people live
based on a wide variety of data sources, such as GPS data [2]–
[4], cellphone recording data [5] and geotagged social network
data [6]–[8]. High quality data such as continuous GPS data
and diary data were required to reduce the possible range of
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one’s home location. Krumm et al. [4] reported that home can
be located with a median error of about 60 meters using GPS
traces of vehicles. However the difficulties in collecting GPS
data leads to the low applicable scope of these type of methods.
The wide adoption of social media can help us overcome the
low applicable scope problem, but much of the existing work
could only locate home at a low resolution (city level, state
level or even time zone level) based on social media data [9].

In this paper, we investigate ways to balance granularity
and applicable scope. In most of the previous work based on
geo-attached data, home was simply estimated as the place
where one visited most frequently (most check-in place) [5]–
[8]. We will show that this method does not always work
especially when a user visits several places with similar fre-
quencies. In contrast, we extract the features of one’s trajectory
in terms of temporal, spatial and other aspects from a Twitter
user’s sparse trace of locations based on the geotagged tweets.
A machine learning method is employed to capture the inherent
properties of home using these mobility features, and further
detect one’s precise home location. We evaluate our method
on two large Twitter data sets from the Great New York
City(NYC) Area and the Bay Area and the results show that
our method is capable of locating homes within a 100 by 100
meter square with a 70% accuracy and applicable to 71%
and 76% active Twitter users in NYC and the Bay Area,
respectively. An active Twitter users is defined as one who sent
at least 5 geo-tagged tweets under using the same definition as
in [1], [10], [11]. Utilizing the rich text content within tweets,
we explore the health conditions of people in different zip code
districts. Note that, the zip code district in NYC has an average
area of 3.6 km2, the radiuses of many of them are less than 1
km. Therefore, finer granularity methods are required. As we
will show, our results correlate well (r=0.473, p-value=0.006)
with the data from the New York City Department of Health
and Mental Hygiene (NYC DOHMH).

I. RELATED WORK

A. Home Location-based User Behavior Understanding

Home location is crucial for modeling human mobility
patterns. With the knowledge of home locations, we can gain
a better insight of the mobility patterns, as well as lifestyle
in general. In [5], [6], [12], home location is the key origin
to calculate the distance that people travel and estimate the
distance between social network users in a pairwise fashion.
Researchers found that home location, as a crucial personal
location, can be inferred from information user posted online
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at a certain granularity [4], [7], [8]. Home location was also
used to model individuals’ living conditions and lifestyles by
Sadilek et al. [13].

B. Home Location Detection

1) Using social network data: In [9], Mahmud et al. used
Twitter data attached with geo-information, especially tweet
content to infer the home locations at city, state and time
zone levels. In this work, their accuracies were 58%, 66%,
78% at city level, state level and time zone level, respectively.
Pontes et al. [7] developed “single-attribute” models based
on different social network features, for example, taking the
value of user’s “Employment” as their home city in Google+.
They inferred the user home city using geotagged data from
Foursquare, Google+ and Twitter with 67%, 72% and 82%
accuracy, respectively. In [8], Pontes et al. also used geotagged
social network data (Foursquare) to infer the home city within
50 kilometers. A content-based method was used by Cheng et
al. [14] to detect Twitter users’ home cities. They could place
51% of active Twitter users within 100 miles of their actual
home locations. Cho et al. used a data set containing the traces
of 2 million mobile phone users from a European country to
estimate the home locations according to the most check-ins
places in [5]. They reported that by manual checking, the most
check-ins method can achieve 85% accuracy when they divided
the area into 25 by 25km cells. Scellato et al. [6] simply
assigned the most check-ins places as users’ home locations
but did not provide experiments to verify the accuracy of
their method. The location of a person’s home is estimated by
fitting a two-dimensional Gaussian to all his locations between
1 A.M. and 6 A.M. by Sadilek et al. [13]. The mean of
this Gaussian is taken as the most likely home location. In
summary, most of the home detection methods work based
on social media data require geotagged informatoin. Though
the accuracies reported in above studies are reasonable, the
granularity levels are so coarse that these method are not
applicable on district or finer level study.

2) Using GPS and Diary data: GPS and diary data are
much more dense and continuous than social network location
data, which make home detection more precise and easier.
However, such data are more difficult to obtain. Most of the
work using GPS data suffered from the small number of users.
In [4], a device recorded location coordinates every several
seconds when the car was moving on 172 subjects’ vehicles.
The ground truth of home location was filled by the drivers
themselves. They used 4 heuristic algorithms to compute the
coordinates of each subject’s home, and found that the best one
is “last destination of a day”. We also include this feature in
our extracted mobility features. The median distance error of
their best algorithm was 60.7 meters. Hoh et al. [3] clustered
the GPS traces of users agglomeratively until the clusters
reached an average size of 100 meters. Next they eliminated
clusters with no recorded points between 4pm and midnight
and clusters falling outside the residential areas by manual
checking.

II. METHODOLOGY

A. Data Set & Pre-Processing

We collected all the geo-tagged tweets sent from the greater
New York City area during July 2012 and also those sent from

NYC Bay Area

# of tweets 2,636,437 3,633,712

Total # of active users 55,237 53,314

# of tweets annotated by AMT 5,000 5,000

# home locations (GT) 1,063 987
TABLE I. STATISTICS OF OUR DATA SET.

the Bay Area during the summer of 2013 through a vendor. A
typical geo-tagged tweet contains the ID of the poster, the exact
coordinates from where the tweet was sent, time stamp, and the
text content. Due to the inherent noise in the geotags, we split
the areas into 100 by 100 meter squares and treat the centre of
each square as the target of home detection. We assign each
tweet to its closest square, each time a user tweet appeared in
a square we say s/he had a check-in in this square. Therefore,
the “resolution” of our square based home detection is around
70 meters (

√
2 ∗ 100/2 ≈ 70 meters). Similar to the previous

work [1], [10], [11], we only focus on those “active users” who
have sent at least 5 tweets. Also following these studies, we use
user’s hourly traces (only take one location for each hour in our
sampling duration) instead of taking account of every single
check-in. If a user’s location was not observed in an hour, the
location for the corresponding hour is set to “Null”; on the
other hand, if a user appeared in several unique squares in a
hour, we take the square with the highest number of check-ins
as the location of this user in this hour. Typically, the hourly
trace Tu of a user U looks like: T = [Null, Li,Null, ..., Lj].
Li does not have to be different with Lj. The lengths of the
hourly traces of all users are the same, equalling to the number
of hours of our sampling period. We provide a snapshot of our
data set in Table I.

B. Ground Truth

In this study, we rely on tweet content and human intel-
ligence. For some tweets, a human can easily tell where it
was sent from. For example, if a tweet said “The view from
my office is awesome!” and included a picture of the view
from a window, we can tell it was sent from a user’s office.
Some tweets are obviously sent from home, for example,
“finally home!” or “home sweet home”. This is the basis
for us to design a mechanism to build the ground truth for
home location. We polled some faithful Twitter users what
they would like to post when at home. Based on their answers,
we selected a set of keywords, each of which is likely to be
mentioned in the tweets sent from home. This set contains
words like “home”, “bath”, “sofa”, “TV”, “sleep” and so
on. We ended up with a set of 50 unique words and their
variants. Next, we used a simple keyword filter to obtain all the
tweets that contain at least one of these keywords. From here
we relied on human intelligence through crowdsourcing on
Amazon Mechanical Turk (AMT) to find the “home tweets”,
which were sent from home. We gathered these tweets into
questionnaires. Each questionnaire contains 5 tweets, where we
simply ask “do you think these tweets are sent from home?”
and the options include “Yes”, “No” and “Not sure”. We then
posted these questionnaires to AMT. Each questionnaire was
answered by three unique workers. We only retained the tweets
strictly for which all the three workers thought were sent from
home.
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C. Models based on Human Mobility Features

To study the inherent property of home, we extract several
features of every unique location of one’s hourly trace. In this
section, we discuss these features in detail. Some of these
temporal and spatial characteristics can be used as baseline
methods to detect home location (e.g. check-in rate, PageRank
score). We will show that although a single feature can be used
to detect home location with a reasonable accuracy, it usually
covers a limited amount of people. However, combining them
appropriately using a machine learning method brings us
significant gain in applicable scope.

1) Check-in Rate: As we mentioned in Section 2, taking
the place of most check-ins as home is a popular method. We
call this method “Most Check-in”. Due to the different tweet
volumes of users, we do not use the absolute check-in amount.
Although check-in based methods work well on GPS data [4],
it’s not the case when it is employed on Twitter data. Unlike
vehicle GPS devices which keep recording the location every
several seconds, people only tweet when they feel like to do
so. The place with most check-ins definitely is important to a
user, but “important” does not necessarily mean it is the home.
We found that, the effectiveness of Most Check-in is closely
related to how much higher the rate of check-ins of the most
check-in place than the second most check-in place. Figure 1
shows that, the accuracy of Most Check-in decreases along
with the check-in margin linearly. The accuracy is 70% only
when the the margin is significantly higher (50% or higher).
Therefore, besides the check-in rate of a place, we also include
the margins of check-in rate between a place and its next higher
and lower most check-in places. Also, this is the reason for the
poor applicable scope of Most Check-in when high accuracy
is required under our granularity setting (100 by 100 meter
square). Figure 2 is the cumulative distribution. It shows that
only about 40% users have the margins which are 50% or
larger. The inset of Figure 2 reports the the distribution of
check-in rate margin between most check-in place and the
second most check-in place.
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Fig. 1. Accuracy vs. the check-in rate margin between the most check-in
place and the second most check-in place.

2) Check-in rate during midnight: Intuitively, the places
people appear at midnight are probably their homes. Sadilek
et al. [13] took the places with the most check-ins during mid-
night (00:00-07:00) as people’s homes. This method potentially
alleviates the biases caused by other frequently visited places
during daytime. Therefore, we take the check-in rate during
midnight of a place as another feature, separated from the

0 10 20 30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Check−in rate margin

P
ro

ba
bi

lit
y

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fig. 2. The cumulative distribution of the check-in rate margin between the
most check-in place the the second most check-in place.

total check-in rate discussed above. However, as we will show
later, it is not the case among active Twitter users. When an
active user checks in at some places during midnight, this place
is most probably not the home. This reflects the difference
between Twitter data and GPS data. In Twitter data, a user
had to be awake and active to report the current location at
that moment, while in GPS data, the location recording is
automatical even when the users are inactive. We will discuss
more on this lately.

3) Last destination of a day: According to the research
by Krumm [4] on GPS data, the last destination of a user in
a day (no later than 03:00 in the morning) is probably the
home. It reveals that people’s daily movements end at their
homes. We includes this as another mobility feature after minor
modification. First, we extract all the final destinations of a user
over the entire sampling period. We then sum up the number
of days a place had been the final destination of that day. This
value, the times of being the last stop of a day, is taken as one
of the mobility feature of this place.

4) Last destination with inactive midnight: Since “Last
destination” might suffer from the check-ins sent from non-
home places especially when the night was spent outside,
we also consider a variant feature of last destination. We
only consider tweets sent on the days when people were
inactive during midnight (00:00-07:00). We exclude the days
with active midnight and find the last destination among the
remaining days, then count the time of a place of being the
last destination.

The three features above introduce extra human behaviour
information into the original check-in feature. This helps to
reduce the applicable scope limitation of simple check-in rate
feature.

5) Spatial Features: As the centre of everyday activities
of most users, home is one of the most important starting
points and destinations of their movements. We use weighted
PageRank [15] and Reversed PageRank scores to model the
importance of a place of being an origin point and a destina-
tion. To use PageRank related algorithms, we transfer one’s
trace into a directed graph. Vertexes of the graph are the
locations one have visited. A directed edge from location
Li to Lj represents that Lj is visited directly after Li. To
quantify the certainty and importance of transitions between
locations, we assign weight to each edge. The weight should be
inversely proportional to the length of blank idle between two
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locations, and also proportional to the times of a transition
appears in one’s trace. Formally, let t(Li, Lj) represent the
transition between Li and Lj and wt(Li,L j) represent the weight.
The definition of the weight is as follows:

wt(Li,L j) =
∑

kth t(Li,L j) in T

1

# idle hours in kth t(Li, Lj)
(1)

After constructing a user’s movement graph, we apply the
PageRank algorithm to calculate the importance of being a
destination for each location in one’s trace. Meanwhile, to
study the importance of being an origin, we propose a Reversed
PageRank score. We reverse each edge’s direction in the
movement graph, with the weights of edges unchanged. The
same reversed calculation is also performed with the weighted
PageRank algorithm. Comparing with the earlier features, the
PageRank score and Reversed PageRank score describe the
spatial characteristics of movements.

6) Temporal Features: According to [4], the probability of
being at home varies over time. We extract the check-in rates
of a place in different hours. These time related features help
us capture the property of home in terms of temporal patterns.

D. Multi-feature prediction

We believe that, as a distinctive place of one’s trace, home
permeates its influence into all the mobility features discussed
above. Indeed, one can use single feature to detect home
location. However, a single feature captures only one type
of characteristic, and thus will lead to low applicable scope
of these methods. We apply a machine learning method to
combine all the features. Because of the complementary effect
between features, an appropriate combination will significantly
increase the method applicable scope without loss of accuracy.

Our goal is to distinguish home from other locations that
one has visited. Since we obtain various features for every
place of one’s trace, the original problem can be transferred to
an equivalent classification problem: given locations and cor-
responding feature values, we want to train a model to predict
home among them. The input of the model are transactions
identified uniquely by user ID and location ID, followed by
features calculated from this user’s hourly trace and a label
as “home” or “non-home”. We use a linear SVM model to
exploit how these features are combined. Given the places
and their features for a given user, the model outputs a score
for each place. If the highest score exceeds a threshold, we
take the corresponding place as the user’s home. Otherwise,
this user cannot be covered by our model. In Table II, we
present significantly positive and negative features and their
weights. Not surprisingly, check-in rate, PageRank score and
Reverse PageRank score related features are more significant
than others. Note that all features contribute to the better
overall applicable scope.

III. HOME LOCATION EVALUATION

To guarantee the practicability of our home detection
method, we need to balance granularity and applicable scope.
Because of the natural trade-off between granularity and de-
tection accuracy, we fix the granularity as 100 by 100 meter
square and explore the relationship between accuracy and
applicable scope. The accuracy of each single feature can

Positive Features Weight
Check-in ratio 2.03

Margin over second highest check-in 0.19

PageRank Score 0.19

Last destination on inactive midnight 0.12

Reverse PageRank score 0.09

Negative Features Weight
Margin below next higher check-in -0.30

Margin under next higher PageRank -0.28

Margin under next higher Reverse PageRank -0.21

Rank of Reverse PageRank -0.07

Rank of PageRank -0.07
TABLE II. SIGNIFICANTLY POSITIVE AND NEGATIVE FEATURES AND

THEIR WEIGHTS.

be adjusted through the threshold, which affects applicable
scope as well. In this section, on both NYC and Bay Area
Data we compare our method with three other intuitive single-
feature based methods: 1) Most Check-in (Due to the statistical
insignificance of too few check-ins, we also set a constraint
on this method: the absolute check-in number of the most
check-in place is at least 3 times.), 2) Highest PageRank
Score (Similarly, the threshold is how much higher the highest
PageRank Score than the second highest one.) 3) Highest
Reversed PageRank Score. Figure 3 and Figure 4 indicates
the trend of applicable scope along with accuracy. Applicable
scope decreases rapidly as the accuracy goes higher. It shows
that, at every accuracy level, our method cover much more
users. Especially, when we set the accuracy of each method
at 70% (which we think is acceptable for urban computing),
our method obtains 71% and 76% applicable scope in NYC
and Bay Area, respectively. As to other methods, none of
them is able to detect home for more than 50% users when
the accuracy is 70% or higher. It proves that an intelligent
combination model leads to a significant increase in applicable
scope. Most Check-in works better than PageRank Score and
Reversed PageRank Score, but the still suffers from low a
applicable scope. The higher applicable scope of our method
implies the complementary effect between these mobility
features. This method dose not depend on any one type of
information but combines the information of several aspects.
For example, when a user’s check-in features do not provide
enough cues to predict the home, other types of features may
pick up the slack and naturally lead to a higher applicable
scope. The balance of applicable scope and accuracy facilitates
more extensive and deep urban life studies, which we will
describe.
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data set.
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Fig. 4. The applicable scope and accuracies of different methods on the Bay
Area data set.

IV. COMMUNITY HEALTH CONDITION ESTIMATION

With the precise knowledge of where people live, we are
further interested in the relationship between people’s health
conditions and their home locations. Let’s start with how we
model the health conditions of tweet users.

A. Inferring Health State

We build upon previous work on classification of short
text messages [16]–[18] and learn a support vector machine
classier Cs (underscript s indicates sickness to differentiate
it from the earlier SVM used for home location) that iden-
tifies tweets that indicate their author is ill. Cs is trained
by directly optimizing the area under the ROC curve. It is
robust even in the presence of strong class imbalance, where
for every health-related message there are more than 1,000
irrelevant ones. We use Cs to distinguish between tweets
indicating the author is acted by an ailment (we call such
tweets “sick tweets”), and all other tweets (called “other”
or “normal” tweets). For SVM features, we use all unigram,
bigram, and trigram word tokens that appear in the training
data. For example, “so sick of” is represented by the feature
vector: (so; sick; o f ; so sick; sick o f ; so sick o f ). As a result,
our SVM operates in more than 1.7 million dimensions,
where each dimension represents a word or a phrase extracted
from the training data. Before tokenization, we convert all
text to lower case, strip punctuation and special characters,
and remove mentions of user names (the “@”tag) and re-
tweets (analogous to email forwarding). However, we do
keep hashtags (such as “#sick”), as those are often relevant
to the author’s health state, and are particularly useful for
disambiguation of short or ill-formed messages. Table III
lists examples of significant features found in the process
of learning Cs. We use the SVM cascade learning procedure
described in [18]. Evaluation of Cs on a held-out set shows
0.98 precision and 0.97 recall with respect to labels agreed
upon by human annotators. Ground truth for each tweet was
obtained by asking AMT workers to label the tweet as either
“sick” or “other” and subsequently extracting the majority
vote.

B. Zip Code District Health Condition

We define “sickness score” of a district as the percentage
of “sick” people who live in it. Therefore the higher sickness
score is, the worse the health condition of this district is.

Positive Weight Negative Weight
sick 0.9579 sick of -0.4005

headache 0.5249 you -0.3662

flu 0.5051 lol -0.3017

fever 0.387 love -0.175

coughing 0.291 so sick of -0.08

being sick 0.191 bieber fever -0.10

better 0.198 smoking -0.098

being 0.194 i’m sick of -0.089

stomach 0.170 pressure -0.083

infection 0.168 i love -0.071
TABLE III. EXAMPLES OF POSITIVELY AND NEGATIVELY WEIGHTED

SIGNIFICANT FEATURES OF OUR SVM MODEL Cs .

Area Name Sickness Excellent Good
Upper West Side 0.046 30.7 26.3

Chelsea 0.018 29.3 20

Gramercy 0.029 26.4 19.8

Flatbush 0.100 23.6 30.5

Central Harlem 0.062 23.2 23.9

Lower Manhattan 0.019 23.2 22

Southeast Queens 0.043 22.1 27.6

Astoria 0.042 21 35.1

Crown Heights 0.066 20.8 34.7

Heights/Slope 0.061 20.5 27.1

Inwood 0.049 20.2 38.8

Bushwick 0.070 20 30.5

Southwest Queens 0.084 16.9 33.5

The South Bronx 0.050 13.2 38.6

Fordham 0.083 13 46.1

Pelham 0.085 10.5 38.7

Correlation NA -0.569 0.601
TABLE IV. THE SICKNESS SCORE, PERCENTAGE OF PEOPLE WHOSE

HEALTH ARE IN EXCELLENT AND GOOD CONDITION. THE BOTTOM ROW

SHOWS THE CORRELATION BETWEEN OUR SCORE AND THE RATIO. THE

TABLE IS SORTED BY THE COLUMN “EXCELLENT”.

To evaluate our home location method as well as our health
inference model, we compare our sickness score with the data
from NYC DOHMH. In the data set provided by DOHMH,
NYC were divided into 34 areas. The health condition of
individuals has 4 levels, “excellent”, “very good”, “good”
and “fairly good”. DOHMH provides the percentage of each
level of every area. We calculate the correlation between our
sickness score and the percentage of “excellent”, “very good”,
“good” level (since the sum of four percentages is one, there is
no need to calculate the correlation for all them). Our sickness
score is highly negatively correlated with the “excellent”
percentage (r=-0.383, p-value=0.030), and positively correlated
with “good” percentage of each area (r=0.473, p-value=0.006).
This makes sense because our health state inference method is
based on the percentage of sick Twitter users, thus it indicates
a rough degree of relatively unhealthy people in an area.
Intuitively, this degree should be negatively correlated with the
percentage of people whose health is in excellent condition.
Because there are only four levels in the health survey and the
“good” level is the second worst level among the four levels,
we consider this level as a “relatively unhealthiness” metric.
Therefore, the positive correlation between our sickness score
and this level makes sense. Although our method can provide
the highest applicable scope among all the method, we still
suffer from few sampling problem in some districts. For better
data reliability, we excluded all the districts in which there are
fewer than 200 residents detected by our method, Table IV
shows that the correlations with “excellent” (r=-0.569, p-
value=0.017) and that with “good” (r=0.601, p-value=0.010)
increase significantly for the districts with sufficient number
of residents.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a machine learning based multi-
feature method that can precisely locate peoples’ home lo-
cations. Different from previous works, we do not require
continuous GPS trace data but instead utilize noisy and sparse
Twitter data. By evaluating on the ground truth obtained by
human annotation, our method has achieved 71% and 76%
applicable scope on the Twitter data we have collected from
New York City and the Bay Area, respectively. To the best
of our knowledge, this is the first time that urban life can be
studied on such open source data at a fine granularity.

With such a balance, we are able to study human mobility
patterns to an extent that was not feasible before.We use a
health state model to estimate Twitter users’ health conditions.
We relate people’s health to their home locations and compare
our estimated sickness scores with data from NYC DOHMH.
Highly correlated results have validated the effectiveness of
both our home location estimation method and our health state
inference model.

In the future, we will investigate other domains of interest
in urban computing given the knowledge of home locations,
such as economic activities, resource consumption, urban plan-
ing and emergency management. It is also interesting to extend
our method for home location to general place recognition
based on user movement behaviors.
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