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Abstract

Formal AT systems traditionally represent knowledge using logical formulas. Some-
times, however, a model-based representation is more compact and enables faster
reasoning than the corresponding formula-based representation. The central idea
behind our work is to represent a large set of models by a subset of characteristic
models. More specifically, we examine model-based representations of Horn theories,
and show that there are large Horn theories that can be exactly represented by an
exponentially smaller set of characteristic models.

We show that deduction based on a set of characteristic models requires only
polynomial time, as it does using Horn theories. More surprisingly, abduction can
be performed in polynomial time using a set of characteristic models, whereas ab-
duction using Horn theories is NP-complete. Finally, we discuss algorithms for gen-
erating efficient representations of the Horn theory that best approximates a general
set of models.

1 Introduction

Logical formulas are the traditional means of representing knowledge in formal
Al systems [17]. The information implicit in a set of logical formulas can also
be captured by expliciting recording the set of models (truth assignments) that
satisfy the formulas. However, when dealing with incomplete information, the
set of models is generally much too large to be represented explicitly, because
a different model is required for each possible state of affairs. Logical formulas
can often provide a compact representation of such incomplete information.

There has, however, been a growing dissatisfaction with the use of logical
formulas in actual applications, both because of the difficulty in writing con-
sistent theories, and the tremendous computation problems in reasoning with
them. An example of the reaction against the traditional approach is the grow-
ing body of research and applications using case-based reasoning (CBR) [14].
By identifying the notion of a “case” with that of a “model”, we can view the
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CBR enterprise as an attempt to bypass (or reduce) the use of logical formulas
by storing and directly reasoning with a set of models.*

This paper explores, from a complexity-theoretic standpoint, the question of
how a model-based representation could be a practical alternative to a formula-
based representation in the context of incomplete information. The central
idea behind our work is to represent a large set of models by a subset of
characteristic models, from which all others can be generated efficiently. More
specifically, we examine model-based representations of Horn theories.

The paper begins by comparing the size of representations. We show that
there are large Horn theories that can be exactly represented by exponentially
smaller sets of characteristic models. The characteristic model representation,
however, is not always smaller; we also provide an example where the clausal
representation is exponentially smaller than the set of characteristic models.
Both the characteristic model and clausal representations are strictly better
than a simple enumeration of all models. 2

Next, we consider the complexity of reasoning with sets of characteristic mod-
els. Deduction based on a set of characteristic models takes only polynomial
time, as it does using Horn theories [6]. More surprisingly, abduction can be
performed in polynomial time using a set of characteristic models, whereas
abduction using Horn theories is NP-complete [23]. This result is particularly
interesting because very few other tractable classes of abduction problems are

known [3,8,24].

The final part of this paper examines the problem of converting a set of models
into an efficient representation. This general task can be viewed as identifying
meaningful, computationally-attractive structures in a set of empirical data,
where each model represents a data point [5]. As such structure identification
is a way of formalizing (some kinds of) scientific discovery, where a repre-
sentation is judged to be good if it compactly represents the data and can
be reasoned with easily. We consider the specific problem of converting a set
of models into either a set of characteristic models or a set of Horn clauses.
Previously, Dechter and Pearl [5] have shown that it is easy to check when
an exact translation is possible, and that in that case both kinds of represen-
tations can be generated in polynomial time. Some sets of models, however,
can only be approzimated by such representations. Converting a set of mod-
els into an approximating set of characteristic models remains easy. Dechter
and Pearl provided an algorithm for the special case where the theory and

I This is, of course, an oversimplified description of CBR; most CBR systems in-
corporate both a logical background theory and a set of cases.

2 Some closely related results have been obtained in the databased community in
the development of the theory of Armstrong relations and functional dependencies
[2,16]. We thank Heikki Mannila for this observation.



it’s approximation have nearly the same number of models (up to a constant
multiple), as well as a general algorithm for generating approximate clausal
representations where each Horn clause is limited to a specified length k. They
noted, however, that such k-Horn approximations can be weak — and in fact,
we will demonstrate a class of theories with good Horn approximations but
overly general k-Horn approximations. We therefore conclude by providing a
randomized algorithm that generates a Horn theory that is arbitrarily close
to the best Horn approximation, in time that is polynomial in the output size
and the permissible degree of error.

2 Horn Theories and Characteristic Models

We assume a standard propositional language, and use a, b, ¢, d, p, and ¢ to
denote propositional variables. In any context the number of variables is fi-
nite, and is usually denoted by n. A literal is either a propositional variable,
called a positive literal, or its negation, called a negative literal. A clause is a
disjunction of literals, and can be represented by the set of literals it contains.
A clause C' subsumes a clause C' iff all the literals in C' appear in C’. A set
(conjunction) of clauses is called a clausal theory, and is represented by X.
The length of a clause is the number of literals it contains, and the length
of a theory X, written |X[, is the sum of the lengths of its clauses. A clause
is Horn if and only if it contains at most one positive literal; a set of such
clauses is called a Horn theory. (Note that we are not restricting our attention
to definite clauses, which contain exactly one positive literal. A Horn clause
may be completely negative.)

A model is a complete truth assignment for the variables that appear in the
theory under consideration (equivalently, a mapping from the variables to
{0,1}). For example, the fact that m assigns the variable “x” to true can

“m(x)=1". We sometimes write a model as a bit vector, e.g.,

be written as
[010...], to indicate that variable « is assigned false, b is assigned true, ¢ is

assigned false, etc.

A model satisfies a theory if the the theory evaluates to “true” in the model.
The “models of a theory X7, denoted by models(Y), is the set of models that
satisfy the theory.

If m and m’ are models over the same set of variables and all the variables
assigned true by m are assigned true by m’, then we write m C m/. Where
M is a set of models, |M] is the cardinality of the set. Using the bit vector
representation, the size of the representation of M is n|M|.

A Horn theory ¥ is a Horn upper-bound of a given set of models M if and
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Fig. 1. The circled models are M/, which is the closure of the example set of models
M.

only if its models contain M:

M C models(X)

The upper-bound with the fewest models is called the Horn approximation
of M, and corresponds to the notion of the “least upper-bound” defined in
[21,22]. The Horn approximation of any set of models is unique up to logical
equivalence.

It is useful for our purposes to develop an alternative but equivalent model-
theoretic characterization of a Horn approximation. We begin by defining the
intersection of a pair of models as the model that assigns “true” to just those
variables that are assigned “true” by both of the pair. The closure of a set of
models is obtained by repeatedly adding the intersection of the elements of
the set to the set until no new models are generated.

Definition 1 Intersection and Closure
The intersection of models my and my over a set of variables is given by

[mq N my](x) = Fime) =) =1
1 2 =
0 otherwise

Where M is a set of models, closure(M) is the smallest set containing M that
is closed under N.

To illustrate the various definitions given in this section, we will use an example
set My of models throughout. Let My = {[1110],[0101],[1000]}. The closure
of this set is given by M} = My U {[0100], [0000]}. See Fig. 1.

The notion of closure is particularly relevant in the context of Horn theories,



due to the following theorem.

Theorem 2 (McKinsey 1943 [18], Dechter and Pearl 1992 [5]) A theory X is
equivalent to a Horn theory if and only if models(X) is closed under intersec-
tion.

The original proof by McKinsey is for first-order equational theories, and in
fact led to the original definition of Horn clauses [9]. A direct proof for the
propositional case appears in [5].

Thus there is a direct correspondence between Horn theories and sets of models
that are closed under intersection. For example, consider the closure M of the
models in set My defined above. It is not difficult to verify that the models in
the closure are exactly the models of the Horn theory ¥ = {=aV =bV ¢, =bV
—¢Va, naV -d, bV —d, bV el

The closure property is also useful in the characterization of Horn approxima-
tions. In fact, the closure of a set of models exactly yields the set of models of
its Horn approximation:

Theorem 3 For any set of models M with Horn approximation ¥, we have

closure(M) = models(Y)

Proof. By Theorem 2 there is some Horn theory Y’ whose set of models is
closure(M). Plainly ¥ is a Horn upper-bound. Now we claim that ¥’ must
be equivalent to ¥. Since again by Theorem 2, models(¥) is a closed set, and
contains M, it also contains closure(M). Therefore ¥ has either the same
models as Y, or more models. But by definition ¥ is the upper-bound with
the fewest models, and is thus equivalent to ¥/. O

Thus the Horn approximation “weakens” the input data by adding in all the
models generated by taking intersections. In our example above, we have that
Yo with models M/ is the Horn approximation of My. Note that it is also the
Horn approximation of, for example, My U {[0100]}. When M is equal to its
own closure, then it follows that the Horn approximation ¥ is an exact fit to
the data.

Next, we define the notion of a characteristic model. The characteristic models
of a closed set M can be thought of as a minimal “basis” for M, that is, a
smallest set that can generate all of M by taking intersections. In general, the
characteristic models of any finite M are defined as those elements of M that
do not appear in the closure of the rest of M:

Definition 4 Characteristic Model



Where M is a finite set of models, the set of characteristic models is given by

char(M) def {m € M | m & closure(M — {m})}

For example, the characteristic models of M} are [1110], [1000], and [0101].
The other two models in M{ can be obtained from these characteristic models
via intersection.

According to the definition above the characteristic elements of any set of
models are unique and well-defined. Furthermore, the characteristic models of
a set can generate the complete closure of the set. Now, because the set of
models of a Horn theory is closed, it follows that we can identify a Horn theory
with just the characteristic elements among its models. (In fact, henceforth
we will simply say “the characteristic models of a Horn theory” to mean the
characteristic subset of its models.) In general, this set may be much smaller
than the set of all of its models. Finally, we arrive at an alternative charac-
terization of the notion of a Horn approximation of a set M: as the closure of
the set of characteristic models of M. The following theorem summarizes this
discussion. Each property follows fairly directly from the above definitions.

Proposition 5 Let M be any finite set of models. Then,

(i) char(M) is unique,
(it) closure(char(M)) = closure(M),
(tii) If ¥ is a Horn theory then closure(char(models(X))) = models(Y),
(iv) If ¥ is the Horn approximation of M,
then closure(char(M)) = models(X).

Characteristic models are called “extreme” models in [5]. The proofs in this
paper all depend upon the assumption that we are dealing with finite sets of
models: certain infinite sets of models (over an infinite number of variables)
may have no characteristic elements.

As an aside, one should note that the notion of a characteristic model is not
the same as the standard definition of a maximal model. By definition, any
m € M is a maximal model of M iff there is no m’ € M such that the variables
assigned to “true” by m’ are a superset of those assigned to “true” by m. It is
easy to see that all maximal models of a set (or theory) are characteristic, but
the reverse does not hold. For example, the model [1000] in Mj is an example
of a non-maximal characteristic model.



3 Size of Representations

In this section we will examine the most concise way of representing the in-
formation inherent in a Horn theory. We have three candidates: a set of Horn
clauses; the complete set of models of the theory; and the set of characteristic
models of the theory.?

We can quickly eliminate the complete set of models from contention. Ob-
viously, it is as least as large as the set of characteristic models, and often
much larger. Furthermore, every Horn theory with K models over n variables
can be represented using at most An® Horn clauses [5]. Thus up to a small
polynomial factor, the complete set of models is also always at least as large
as the clausal representation.

Neither of the other two representations strictly dominates the other. We first
show that in some cases the representation using characteristic models can be
exponentially smaller than the best representation that uses Horn clauses.

Theorem 6 There exist Horn theories with O(n2) characteristic models where
the size of the smallest clausal representation is O(2").

Proof. Consider the theory ¥ = {—a1 V -z V...V 5z,| 2; € {p;,q:}}. The
size of ¥ is O(2"). Moreover, we show that there is no shorter clausal form for
Y, but the size of its set of characteristic models is polynomial in n.

Observe that no two clauses in ¥ resolve. First we will prove that ¥ is irre-
dundant (no subset of ¥ implies all of ¥). Then we will prove that ¥ is of
minimum size. (Note that being of minimum size is a stronger condition than
being irredundant.)

Proof that ¥ is irredundant: suppose there is a clause « in ¥ such that ¥ —
{a} E a. Since no two clauses in ¥ —{a} resolve, by completeness of resolution
there must be an o’ in ¥ —{a} such that o’ subsumes «. But this is impossible,
since all clauses in ¥ are of the same length.

Next, we prove that there is no smaller set of clauses ¥’ which is equivalent
to X: Suppose there were an ¥ such that ¥ = ¥/ and |¥'| < |X|. Then for all

3 Another representation one could consider is DNF (disjunctive normal form).
However, R. Khardon and D. Roth have recently shown that the characteristic
model representation is more concise than DNF. Specifically, the number of char-
acteristic models of a Horn theory is bounded by the size of the minimal DNF
representation times the number of variables; on the other hand, the minimal DNF
may be exponentially larger than the number of characteristic models [12].



a in Y/ it is the case that ¥ | «. Because no clauses in ¥ resolve, this means
that there exists an o' in X such that o' subsumes a.

That is, every clause in ¥’ is subsumed by some clause in Y. Suppose each
clause in ¥ subsumed a different clause in ¥'; then |¥'| > |¥|, a contradiction.
Therefore there is a proper subset X" of ¥ such that each clause in Y/ is
subsumed by some clause in 3.

Then ¥" = ¥, and therefore ¥ |= ¥. But this is impossible, because we saw
that ¥ is irredundant. Therefore there is no smaller set of clauses equivalent
to ¥ which is shorter than .

Thus we have shown that the smallest clausal representation of the set of
models described by ¥ is just X itself, and thus is exponential in terms of the
number of variables n. Now we show that the set of characteristic models that
describes this theory is polynomial in n.

Write a model as a truth assignment to the variables pi¢1p2qs . . . ppg,. From
the clauses in X, it is clear that in each model there must be some pair p; and
¢; where both letters are be assigned false (otherwise, there is always some
clause eliminating the model). Without loss of generality, let us consider the
set of models where p; and ¢, are both assigned false. Each of the clauses
in ¥ is now satisfied, so we can set the other letters to any arbitrary truth
assignment. The characteristic models of this set are

00111111 ... 11] 00111111 ... 11]
[0001111T...11]  ...... [00111111...01]
[00101111 ... 11] [00111111...10]

The three models in the first column represent all the settings of the second
pair of letters. (Note that 00 can be obtained by intersecting the 2nd and
the 3rd model.) Each triple handles the possible settings of one of the pairs.
From these 3(n — 1) models, we can generate via intersections all possible
truth assignments to the letters in all pairs other than the first pair. For each
pair, we have a similar set of models with that pair set negatively. And, again
each set can be generated using 3(n — 1) models. So, the total number of
characteristic models is at most O(n?). O

The following theorem, however, shows that in other cases, the set of char-
acteristic models can be exponentially larger than the best equivalent set of
Horn clauses.

Theorem 7 There exist Horn theories of size O(n) with O(20/?) character-
istic models.



Proof. Consider the theory ¥ given by the clauses (—a V —b), (—¢ V —d),
(me V = f), etc. The set M of characteristic models of this theory contains all
the models where each of the variables in each consecutive pair, such as (a, b),
(¢,d), (e, f), etc., are assigned opposite truth values (i.e., either [01] or [10]).
So, we get the models [010101...], [100101...], [011001...], ..., [101010...].
There are 2(*/?) of such such models, where n is the number of variables. It is
easy to see that these are all maximal models of the theory, and as we observed
earlier, all such models are characteristic. (One can go on to argue that there
are no other characteristic models in this case.) O

Thus we see that sometimes the characteristic model set representation offers
tremendous space-savings over the clausal representation, and vice-versa. This
suggests a strategy if one wishes to compactly represent the information in
a closed set of models: interleave the generation of both representations, and
stop when the smaller one is completed.

The characteristic models in a closed set can be efficiently found by selecting
each model which is not equal to the intersection of any two models in the
set. The clausal theory can be found using the algorithms described in [5] and
[11]. We will return to the problem of generating efficient representations in
Section 6 below.

4 Deduction using Characteristic Models

One of the most appealing features of Horn theories is that they allow for fast
inference. In the propositional case, queries can be answered in polynomial
time [6]. However, there is no a priori reason why a representation based
on characteristic models would also enable fast inference. Nevertheless, in
this section, we show that there is indeed a polynomial-time algorithm for
deduction using characteristic models.

We will take a query to be a formula in conjunctive normal form — that is, a
conjunction of clauses. It is easy to determine if a query follows from a complete
set of models: simply verify that the query evaluates to “true” on every model.
But if the representation is just the set of characteristic models, such a simple
approach does not work. For example, let the query « be the formula a Vb, and
let the characteristic set of models be My = {[1110],[0101],[1000]}, as defined
earlier. It is easy to see that « evaluates to true in each member of M.
However, a does not logically follow from the Horn theory with characteristic
model set My; in other words, « does not hold in every model in the closure

of M. For example, the query is false in [0101] N [1000] = [0000].



There is, however, a more sophisticated way of evaluating queries on the set
of characteristic models, that does yield an efficient sound and complete algo-
rithm. OQur approach is based on the idea of a “Horn-strengthening”, which
we introduced in [21,22].

Definition 8 Horn-strengthening

A Horn clause Cy is a Horn-strengthening of a clause C iff Cy ts a Horn
clause, Cy subsumes C', and there is no other Horn clause that subsumes C
and is subsumed by Cy.

Another way of saying this is that a Horn-strengthening of a clause is generated
by striking out positive literals from the clause just until a Horn clause is
obtained. For example, consider the clause C' = pV ¢V —r. The clauses pV —r
and ¢V —r are Horn-strengthenings of '. Any Horn clause has just one Horn-
strengthening, namely the clause itself.

A key property of Horn theories is described by the following lemma.

Lemma 9 Let ¥y be a Horn theory and C a clause that is not a tautology.
If ¥y | C then there is a clause Cy that is a Horn-strengthening of C such
that ZH |: CH O

Proof. By the subsumption theorem [15], there is a clause C’ that follows
from Yy by resolution such that €’ subsumes C. Because the resolvent of
Horn clauses is Horn, C" is Horn. Either C” itself is a Horn-strengthening of
C (so C" = Ch),or €’ subsumes some Horn-strengthening Cy. In either case,

Sple O Cy D

Suppose the query is a single clause. Then the following theorem shows how
to determine if the query follows from a knowledge base represented by a set
of characteristic models.

Theorem 10 Let ¥ be a Horn theory and M its set of characteristic mod-
els. Further let C be any clause. Then ¥ = C iff there exists some Horn-
strengthening Cy of C such that Cy evaluates to “true” in every model in

M.

Proof. Suppose ¥ = C. By Lemma 9, ¥ = Cy for some Horn-strengthening
Cyh of C. So Cy evaluates to “true” in every model of ¥, and thus in every
member of M. On the other hand, suppose that there exists some Horn-
strengthening Cy of €' such that Cy evaluates to “true” in every model in M.
By Theorem 2, because the elements of M are models of a Horn theory Cy,

10



the elements of the closure of M are all models of Cyg. But the closure of M
is the models of ¥; thus ¥ = Cy. Since Cy |= C, we have that ¥ = C. O

In the previous example, one can determine that aV b does not follow from the
theory with characteristic models My because neither the Horn-strengthening

a nor the Horn-strengthening b hold in all of {[1110], [0101], [1000]}.

A clause containing k literals has at most & Horn-strengthenings, so one can
determine if it follows from a set of characteristic models in & times the cost
of evaluating the clause on each characteristic model. In the more general
case the query is a conjunction of clauses. Such a query can be replaced by a
sequence of queries, one for each conjunct. We therefore obtain the following
theorem:

Theorem 11 Let a Horn theory ¥ be represented by its set of characteristic
models M, and let o be a formula in conjunctive normal form. It is possible
to determine if ¥ = « in time O(n|M||a|?), where n is number of variables.

5 Abduction using Characteristic Models

Another central reasoning task for intelligent systems is abduction, or inference
to the best explanation [19]. In an abduction problem, one tries to explain
an observation by selecting a set of assumptions that, together with other
background knowledge, logically entails the observation. This kind of reasoning
is central to many systems that perform diagnosis or interpretation, such as

the ATMS.

The notion of an explanation can be formally defined as follows [20]:

Definition 12 [Explanation] Given a set of clauses 32, called the background
theory, a subset A of the propositional letters, called the assumption set, and
a query letter q, an explanation E for q is a minimal subset of unit clauses
with letters from among A such that

1. YUF[Eq, and
2. Y UFE is consistent.

Note that an explanation E is a set of unit clauses, or equivalently, a single
conjunction of literals.

For example, let the background theory be ¥ = {a, =aV =bV —¢V d} and let
the assumption set A = {a, b, c}. The conjunction b A ¢ is an explanation for

d.

11



It is obvious that in general abduction is harder than deduction, because
the definition involves both a test for entailment and a test for consistency.
However, abduction can remain hard even when the background theory is
restricted to languages in which both tests can be performed in polynomial
time. Selman and Levesque [23] show that computing such an explanation is
NP-complete even when the background theory contains only Horn clauses,
despite the fact that the tests take only linear time for such theories. The
problem remains hard because all known algorithms have to search through
an exponential number of combinations of assumptions to find an explanation
that passes both tests.

There are very few restricted clausal forms for which abduction is tractable.
One of these is definite Horn clauses, which are Horn clauses that contain
exactly one positive literal — completely negative clauses are forbidden. How-
ever, the expressive power of definite Horn is much more limited than full
Horn: In particular, one cannot assert that two assumptions are mutually
incompatible.

It is therefore interesting to discover that abduction problems can be solved
in polynomial time when the background theory is represented by a set of
characteristic models. We give the algorithm for this computation in Fig. 2.
Note that the algorithm takes advantage of the fact that when the background
theory ¥ is Horn, every explanation contains only positive literals (i.e., each
explanation is simply a subset of A).

The abduction algorithm works by searching for a characteristic model in
which the query holds. Then it sets F equal to the strongest set of assumptions
that is compatible with the model, and tests if this £ rules out all models of the
background theory in which the query does not hold. This step is performed
by the test

closure(M) = (AF) D ¢

and can be performed in polynomial time, using the deduction algorithm de-
scribed in the previous section. (Note that the formula to be deduced is a single
Horn clause.) If the test succeeds, then the assumption set is minimized, by
deleting unnecessary assumptions. Otherwise, if no such characteristic model
is in the given set, then no explanation for the query exists. Note that the min-
imization step simply eliminates redundant assumptions, and does not try to
find an assumption set of the smallest possible cardinality, so no combinatorial
search is necessary.

It is easy to see that if the algorithm does find an explanation it is sound,
because the test above verifies that the query follows from the background
theory together with the explanation, and the fact that the model m is in

12



function Explain(M, A, ¢)
for each m in M do
if m |= ¢ then
E « all letters in A that
are assigned “true” by m
if closure(M) = (A E) D ¢ then
Minimize F by deleting as many
elements as possible while
maintaining the condition
that closure(M) = (A E) D q.
return £
endif
endif
endfor
return “false”
end.

Fig. 2. Polynomial time algorithm for abduction. M is a set of characteristic models,
representing a Horn theory; A is the assumption set; and ¢ is the letter to be
explained. The procedure returns a subset of A, or “false”, if no explanation exists.

M (and thus also in the closure of M) ensures that the background theory
and the explanation are mutually consistent. Furthermore, if the algorithm
searched through all models in the closure of M, rather than just M itself, it
would be readily apparent that the algorithm is complete. (The consistency
condition requires that the the explanation and the query both hold in at
least one model of the background theory.) However, we will argue that it
is in fact only necessary to consider the mazimal models of the background
theory; and since, as we observed earlier, the maximal models are a subset of
the characteristic models, the algorithm as given is complete.

So suppose m is in closure(M), and E is a subset of A such that ¢ and all of
FE hold in m. Let m’ be any maximal model of M (and thus, also a maximal
model of closure(M)) such that m C m’ — at least one such m’ must exist. All
the variables set to “true” in m are also set to “true” in m’; and furthermore,
¢ and all of E consist of only positive literals. Therefore, ¢ and £ both hold
in m’ as well.

Thus the algorithm is sound and complete. In order to bound its running time,
we note that the outer loop executes at most | M| times, the inner (minimizing)
loop at most |A] times, and each entailment test requires at most O(n|M||A|*)
steps. Thus the overall running time is bounded by O(n|M|?|A|?). In summary:

Theorem 13 Let M be the set of characteristic models of a background Horn
theory, let A be an assumption set, and g be a query. Then one can find an
abductive explanation of q in time O(n|M|?*|A]?).

13



The fact that abduction is hard for clausal Horn theories, but easy when
the same background theory is represented by a set of characteristic models,
means that it may be difficult to generate the characteristic models of a given
Horn theory: there may be exponentially many characteristic models, or even if
there are few, they may be hard to find. None the less, it may be worthwhile to
invest the effort to “compile” a useful Horn theory into its set of characteristic
models, just in case the latter representation does indeed turn out to be of
reasonable size. This is an example of “knowledge compilation” [21,22], where
one is willing to invest a large amount of off-line effort in order to obtain fast
run-time inference. Alternatively, one can circumvent the use of a formula-
based representation all together by constructing the characteristic models by
hand, or by generating them from empirical data, aas described in the next
section.

6 Generating Characteristic Model Approximations

So far, we have compared the size of model-based representations to that of
clausal representations, and compared their computational properties. We now
turn our attention to the question of how to obtain characteristic model or
clausal representations when given as input a a set of models (or cases, as
discussed in the introduction).

When we find that the set of models of a Horn approximation of a set of
input models is identical to the input set, we say that we have identified a
Horn theory. Using the closure property of Horn theories it is easy to determine
whether the input set corresponds to a Horn theory: For each pair of models in
the input set, determine whether the intersection of those models is also in the
input set. The complexity of this procedure is O((n|M|)?). More interestingly,
Dechter and Pearl [5] show that if a set of input models M does correspond
to a Horn theory, then this theory can be represented using at most n*|M|
clauses, and the clauses can be generated in polynomial time.

When the set of input models does not correspond to a Horn theory, we want to
find the Horn approximation of that set of models. The characteristic models
from a (not necessarily closed) set M can be selected by testing for each
m € M whether m € closure(M), using Definition 4; by Proposition 5, this
gives the characteristic model representation of the Horn approximation of M.
A naive implementation of this algorithm, however, would require exponential
time, because the closure of M — {m} may be exponentially larger than M.
Fortunately, it is possibly to efficiently check whether a model falls in the
closure of a set of models, without actually generating that closure.

The algorithm to perform this test appears in Fig. 3. It is based on the ob-

14



function inClosure(m, M)
M :={m/|m’ € M and m C m'}
if M’ = () then return “false” endif
if m = (N M’) then return “true”
else return “false”

endif

end.

Fig. 3. Algorithm to test membership of a model m in the closure of a set of models
M. It returns “true” if m € closure(M ), and “false” otherwise.

servation that in trying to generate a model m by taking intersections, one
need only consider models that assign true to all variables assigned true by m.
Taking an intersection with any m’ for which this did not hold would result
in a model that assigned false to at least one variable that m assigned true.
Furthermore, in trying to generate m one may as well intersect all models that
assign true to the variables assigned true by m. Even if only a subset of these
models generates m, intersecting with the other models still results in m.

The inClosure algorithm runs in O(n|M|). Therefore computing the charac-
teristic model representation of an arbitrary set of models can be done in

O(n|M|*) time.

7 Computing General Horn Approximations

We have seen that the characteristic model representation of the Horn approx-
imation of a set of models can be computed and reasoned with efficiently. None
the less, for some applications there may be other reasons to prefer a rule-like,
clausal representation. Therefore let us consider the problem of generating a
clausal representation of the Horn approximation of a set of models.

It follows from Theorem 6 that the clausal representation of the Horn ap-
proximation of M can be exponentially large. Dechter and Pearl [5] therefore
investigated k-Horn approximations. The maximum size of a k-Horn approx-
imation is given by the maximum number of distinct Horn clauses with at
most k literals, which is polynomial in n. Dechter and Pearl give a polyno-
mial time algorithm for generating such k-Horn approximation. Of course,
intuitively speaking, k-Horn approximations may not be as good as some less
restricted Horn approximation. In fact, the following proposition shows that
a k-Horn approximations can be very bad compared to even an only slightly
more general Horn approximation, such as a (k 4 1)-Horn approximation.

Theorem 14 For any k, there exists a set of models of size O(n**1), where
the best k-Horn approximation has O(2") models, whereas the (k + 1)-Horn
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approzimation has O(n**') models.

Proof. We consider a (k+ 1)-Horn theory that has no good k-Horn approxi-
mations. Let S = {z1,...,2,} be the set of propositional variables. Let ¥ be
the (k4 1)-Horn theory

A (y1 V =y2 Voo k),
{v1,-yr411CS

The models of ¥ are exactly those assignments with at most & variables set
to true. There are roughly O(n**!) such models total, so certainly the set of
characteristic models is bounded in size by O(n**+!).

Now, consider any k-Horn clause, say (—xq1 V...V —xy). If we set the variables
it contains to true, then we have falsified the clause, but have set at most &
variables to true. Thus we can still extend our assignment to a model of ¥.
Therefore, the best k-Horn theory approximating ¥ is the empty theory which
has 2™ assignments as models. O

Given Theorem 14, it is clear that it can still be a good idea to generate
unrestricted Horn approximations. Therefore we will present an algorithm for
generating a general clausal presentation of the Horn approximation of a given
input model set.* It is unknown whether there exists a exact, polynomial,
deterministic algorithm for this task. However, we can come close:

Theorem 15 Let X be the smallest Horn theory such that

models(X) = closure(M). There is a randomized algorithm that takes as input
both M and small real numbers € and 6 (where 0 < ¢, 6 < 1), and outpuls a
Horn theory S such that with probability 1 — 6,

closure(M) = models(¥) C models(i])

4 Dechter and Pearl [5] observe that when the closure of the input set M is rea-
sonably small (|closure(M)|/|M] is bounded by some constant), general Horn ap-
proximations can also be computed by simply generating the complete closure and
then directly applying the algorithm for the exact case. The randomized algorithm
described below, however, can be used even when the closure is large. For exam-
ple, suppose |M| = n, and |closure(M)| = 2(7/2) Tn this case it is impractical to
generate the closure. However, the fraction of all models on which M and its Horn
approximation disagree is only (2(”/2) —n)/2" ~ 1/2(”/2), that is, vanishingly small.
Thus, even in this case it may be quite desirable to generate a representation of the
Horn approximation.
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Fig. 4. Relative size of the sets of models contained in M, the general Horn approx-
imation of M, the e-good Horn approximation, and the k—Horn approximation.

and

|models(3) — models(X)| -
2 -

This algorithm runs in time poly(n,|M|,|Z], L, ).

Thus, 3 will be an overgeneralization of the desired Horn approximation ¥,
but it is a controllable overgeneralization: for any small €, we can ensure that
the fraction of all assignments that are models of ¥ but not models of ¥ is
smaller than e. See Fig. 3.

Our algorithm is based on an algorithm for learning Horn theories from ex-
amples (i.e., models) by Angluin et al. [1]. Angluin et al.’s algorithm is quite
involved, and we refer the reader to their paper for the details. The algorithm
employs a membership oracle and an equivalence oracle to construct a formula
that is logically equivalent to the unknown Horn formula that is to be learned.
Given a truth assignment the membership oracle determines whether or not
the assignment is a model of the formula to be learned. The equivalence oracle
takes as input a theory and determines whether it is logically equivalent to
the formula to be learned. If that is not the case, the oracle returns a coun-
terexample, i.e., a truth assignment on which the given theory differs from
the unknown one. Angluin’s et al.’s algorithm runs in time polynomial in the
number of clauses and variables used in the unknown formula ¥.
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The basic idea behind our approach is to replace the oracles by polynomial
time deterministic procedures that use the model set M. First, to simulate a
membership query m for ¥, we must test whether m € closure(M). This can
be done in O(n|M|) time using the inClosure algorithm described earlier (Fig.
3).

To simulate an equivalence query for ¥, we must somehow be able to efficiently
determine if models(¥’) = closure(M) using only the model set M, where ¥
is a Horn theory conjectured by the simulation of the Angluin et al. algorithm.
For some ¥’ this can be done easily: namely, if closure(M) € models(X'). This
means that there must be a model m € M that is not a model of ¥/, and we
can detect this by a simple scan of M. Thus, our first step in simulating an
equivalence query Y’ will be to make sure that all models in M are models
of X'. If not, we have a counterexample for ¥/, and the equivalence query is
complete. If so, then we know that closure(M) C models(X') (that is, ¥’ is an
overgeneralization).

In the next step we need to determine whether ¥’ has some model that is not
in closure(M). If we had an efficient way of listing the characteristic models
for a given Horn theory, we could check that each characteristic model of ¥’
is in M. As soon as we encounter characteristic model that is not in M, we
know that ¥’ contains strictly more models than closure(M). Unfortunately,
as of yet, no efficient algorithm for generating characteristic models has been
found. Kavvadias et al. [10] have recently shown that the problem is at least as
hard as the so-called hypergraph enumeration problem, which is a well-known
open problem [7].

We will therefore use a random sampling strategy to search for a possible
counterexample for the overgeneralization ¥/. Without loss of generality, we
assume that

|models(X') — models(X)|
omn

> €.

Note that if this condition is not satisfied, then ¥’ already meets the criteria
for the final Horn theory Y, and so we may stop and output ¥ = Y.

Under this condition, if we choose an assignment randomly then we have
probability at least ¢ of drawing an m that is a model of ¥’ but not of ¥ and
thus is a counterexample to X. It is easy to test whether we have drawn such an
m: we first use the conjectured Horn theory ¥’ (whose explicit representation
is given to us by the learning algorithm), and check that m is a model of ¥'.
We then use the test described above to check that m is not in closure(M). If
m meets both conditions, we have a counterexample. If one of the checks fails,
we repeat the process with another randomly chosen assignment. We repeat
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this process a total of [ times (per equivalence query); if all [ tries fail, we
simply output >'.

The probability that we fail to find a counterexample in [ trials can be made
smaller than §' for [ = O(Zlog;) by a simple and standard probabilistic
analysis. If we wish to achieve a global failure probability of at most ¢, then
we can set ¢ = %, where () is the total number of equivalence queries that can
be made (a polynomial in all the relevant quantities). Thus, with probability
at least 1 — ¢, this algorithm will output S with the claimed properties.

8 Conclusions

In this paper, we have demonstrated that, contrary to prevalent wisdom,
knowledge-based systems can efficiently use representations based on sets of
models rather than logical formulas. Incomplete information does not neces-
sarily make model-based representations unwieldy, because it possible to store
only a subset of characteristic models that are equivalent to the entire model
set. We showed that for Horn theories neither the formula nor the model-based
representation dominates the other in terms of size, and that sometimes one
other can offer an exponential savings over the other. Recently, Khardon and
Roth [12] have introduced an interesting generalization of our model-based
representation, and have shown a clear computational advantage of the use of
their model-based representation by combining various learning and reasoning
tasks in a single framework [13].

We also showed that the characteristic model representation of Horn theories
has very good computational properties, in that both deduction and abduc-
tion can be performed in polynomial time. On the other hand, all known
and foreseeable algorithms for abduction with Horn clauses are of worst-case
exponential complexity.

We concluded by examining algorithms for generating efficient representations
of the Horn approximation of a set of models. In particular, we presented a
randomized algorithm for computing a general clausal representation of the
Horn approximation of an arbitrary model set.
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